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ABSTRACT 
A numerical method for computing stable control signals for system 
with bounded input disturbance is developed. The algorithm is an 
elaboration of the gradient technique and variable metric method for 
computing control variables in linear and non-linear optimization 
problems. This method is developed for an integral quadratic problem 
subject to a dynamic system with input bounded uncertainty. 
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INTRODUCTION 
This paper is concerned with the development of a numerical 
method for the computation of controls for system with bounded 
input disturbances. Existing numerical methods for computing 
control signals for optimisation problems do not consider the 
situation when uncertainties are involved in the system, this work 
is set to give consideration to such problem and for a start we shall 
develop this method for an integral quadratic problem subject to a 
dynamical system with input bounded uncertainty. 
 
Formulation of Problem: 
 
Consider 

Min  
T

dttRututQxtx
0

)}()()()({  … (1) 

subject to 
 

)()()()( tCvtButAxtx    … (2) 
 
and 
 

,)0( 0xx  given,  ],,0[ Tt   … (3) 
 

NRXtx )(  , is the state vector  MRUtu )(  

is the control vector and  MRVtv )(   is the uncertain 
vector. 

.VU    T is the final time.  MNRQ  is positive 

semi-definite (symmetric) MRR   is a positive definite matrix. 
 
We state the following assumptions: 
 

1A : We assume that A is a stable matrix and if otherwise there 
exist a matrix  
 

NMRK  such that  KBAA T . 
 
Given that NPD  denotes the set of positive symmetric 
members of  NNR   
 

 
Then 
 

,01  QPAAP T NPDQ 1  … (4) 
 

:2A )(tv is a Caratheodory function and given   mm,
,IR m mtv  )(  

 
:3A     ( ), BA ,is controllable. 

 
For our subsequent development of this paper, we now consider 
 

)()( tAxtx      … (5) 
 
Let   ),( 0 tt be a transition matrix for (5) then we can write 
the solution for equations (2) and (3) as 
 

 
T

xtttx
000 ),()(

)}()(),(  CvBut  d        … (6) 
 
We calculate the transition matrix using the following formula 
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Where   
 

k denotes the eigen-value of the matrix A. 
 
Let  ],[ MN IRIRB  be the set of bounded linear map 
between   
 

NIR and MIR  . We now define a map  
 

],[],[: MNMN IRIRBIRIRBL   
 
Be such that  
 

 dButLu
t

)(),(
0    … (8) 

 
And similarly define 
 

 
t

CvtKv
0

),(   d)(   … (9) 

 
For arbitrary elements NIRww 21 , , define the inner 

product on NIR  as 

dttwtwww Tt
)()(, 20 121    … (10) 
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Let  100 ),( zxtt        … (11) 

 
Therefore 
 

KvLuztx  1)(       … (12) 
 
We can now write (1) as 
 

 )(),()(),(),( tRututQxtxvuJ  
 

=   RuuKvLuzQKvLuz ,(, 11        … (13) 
 
Therefore, 
 





KvKQvQzKvLuQz
KvLQuLuKQvuRLLQuvuJ

TTT

TTT

,,22
,2,)(,),(

1,1

    … (14) 

 
We state the following remarks 
 
Remark (1):   ),( vuJ  is convex with respect to  MIRUu   
 
Proof; Consider 
 

0),,(])(,[  RuuuLQLuuRLLQu TT  
 
This implies convexity. 
 
Remark (2): Under the assumption that )(tu  is a minimizer for  ),( vuJ  and  )(tv  

is a maximizer , then ),( vuJ  is concave with respect to MIRv  
 
Proof:  Let  i  be l dimensional row vector of matrix KKQT . Denote the norm of v  by   v . Since v  is assumed bounded 

there exist  m~  such that mv ~ . Now consider 
 

0][)(, 222
2

1

2

1

2  


dKKQTrmvvKvKQv T
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i
i

l

i
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T    …(15) 

 
Assumption:    
 

4A :  By Minimax theorem (Abiola, 2009) we assume  )()( 0 tumtv   where m  mtv )( , and 
 

).(
2
10 mmm   Using 4A , we write  ),( vuJ  as 

 





QzKumLuQz
uLKQmmRLLQuuJ

TT

TT

,2,2
))(2)(()(,)(

0
1

020

  …(16) 

 
We state the following proposition from (14). 
 
Proposition (1) 
 
For every 0 0m  ,   2{( ) ( ) 2 ( )} 0T o o TLQ L R m m KQ L     
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The prove of the above proposition is an obvious fact. 
 
Numerical Method 
The problem under consideration is the minimization of  ( )J u  defined in (16) with respect to the control signal ( ) nu t IR . 
 

( )J u is non-linear, continuous and twice differentiable. We wish to find numerically  *u  such that: 
 

( *) ( )J u J u *:u u u     

 
Suppose  ( )J u  denotes the gradient of ( )J u , and we also set  
 

( ) ( )J u g u         … (17) 
 
Let  
 

2 ( ) ( )J u A u        … (18) 
 
Where  )(uA  denotes the Hessian matrix at point  .u   we assume that  )(uA  is non-degenerate at point *u .   The first order 
condition for minimum is that  
 

( ) 0J u         … (19)      
 
A second order condition for minimum is that 
 

2 ( ) ( ) 0J u A u         … (20) 
 
We see from proposition (1) that  ( ) 0A x   
 
One way of minimizing an unconstrained optimization problem is by application of Newton’s Method, which is described briefly below: 
 
We consider the problem described as: 
 

Min nIRxxF ),(       … (21) 
 
Find *x  such that   x *x x     and *( ) ( )F x F x . 

 
Suppose ( ) ( )F x g x   is the gradient of   ( )F x  at point x  and 2 ( ) ( )F x A x   is the Hessian matrix, then the function 

( )F x at each iteration is approximated by a quadratic model    and effectively minimized as: 
 

1( ) ( ) ( ) ( ( ) )
2

T Tx p F x g x P P A x P        … (22) 

 
Using the first order condition for minimum, we have 
 

( ) ( ) ( ) 0x p F x A x P           … (23) 
 
Solving equation (23) we have 

 

)()( xFpxA        … (24) 
 
On the basis of (24) we state the Newton’s Algorithm. 
 
 
 

21 



Science World Journal Vol 7 (No 1) 2012 
 www.scienceworldjournal.org 
ISSN 1597-6343 
 

                                                                        On a Numerical Algorithm for Uncertain System 

 
Newton’s Algorithm 
 
Step 1   Calculate  )(),().( kkk xAxgxF  
 
Step 2.  Check if  )( kxg   for a predetermined ,  if so stop, else 
 
Step3.   Set kk PxA )( = )( kxg  
 
Step4.   Set kkk Pxx 1  
 
Step5.   Set ,1 kk  and go to Step1. 
 
The Newton’s algorithm described above can be shown to have second order convergence (Dixon, 1975). This is because it utilizes 
quadratic model which is minimized at each iteration. The global convergence of Newton’s method is not guaranteed because the iteration 
can diverge from arbitrary starting points. Since Newton’s equations have to be solved at each iteration, it breaks down when )( kxA  is 

singular. However, to circumvent the drawback posed by the possibility of singularity of  )( kxA , a variable metric algorithm was 
proposed (Dixon, 1975) 
 
The scheme involves the following: 
 

)(1 k
k

kkk xgPxx       … (25) 
 

0
0 , Px are guessed arbitrarily. k  is determined by a suitable line search method. 0P is a positive definite matrix and normally kP  is 

intended to be approximation of the inverse of the Hessian matrix  )(2 xF . 
 
This matrix is updated using information obtained in each iterative step as follows: 
 

),,,(1 kkkkk zyvPP       … (26) 
 
Where  ,1,1 kk

k
kk

k ggyxxv    and kz  is a vector parameter.   

 
Variants of the variable metric algorithm are derived in the way in which the appropriate inverse matrices are constructed. A lot of methods 
for determining kP have been proposed. For example (Dixon, 1975) proposed an updating rule for kP  such that  
 

DPP kk 1       … (27) 
 
where D is required to be very small as much as possible in some norm. He suggested the following Frobenious norm, defined as: 
 

][2 TDWDWTrD 
 

    … (28) 
 
W is a positive definite matrix.  D is assumed symmetric such that  
 

0 DDT        … (29) 
 
The quasi-newton condition defined as: 
 









yPWr
rDy

k

0
       … (30) 

 
is also satisfied. 
 
Minimising (28) subject to (29) and (30) using Lagrange method an analytical solution for D was derived as: 
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


T

TT

y
bPyWbPywD })()({ 

    … (31) 

 
where 
 

,1 yW 
yWy

PyyWyb T

TT

1

)(2/1



  

 
We next consider a method for constructing an approximation inverse for the Hessian matrix which also takes into consideration the 
uncertainty nature of the problem under investigation. This is the crux of this paper. 
 
Minimising Algorithm 
 
Consider the problem defined in   (1) – (3) and let  
 

))()()(()()()()(),,,( tCvtButAxtRututQxtxvuxH TTT    ….    (32) 
 
be the system Hamiltonian. 
 
Compute the gradient of (32) with respect to )(tu  as follows: 

),,,( vhuxH  = ))())(()(())(())(()()( tCvthuBtAxthuRthutQxtx TTT     . . . (33) 

Since R is symmetric then RRT   

Therefore, 

BhRhtuvuxHvhuxH TT   )(2),,,(),,,(   … (34) 

Now, 

BRtu
h

vuxHvhuxH TT
h 





 )(2),,,(),,,(lim 0  … (35) 

Therefore 

BRtu
u
H TT 

 )(2       … (36) 

We now choose  )(2)( tPxt       … (37) 

P is a positive definite matrix calculated from (4), we then have  

))()((2 tPxBRtu
u
H TT 



     … (38) 

This is expressible as 










   

t tT dCutmdButxttBPRtuuH
0 000 )(),()(),(),()(2)(    …(39) 
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We can now propose the following algorithm: 

Define )(uJ  by equation (16),  )(uH  by (39), then 

 

Step 1: Choose  0u  arbitrarily and compute   )( 0uJ , )( 0uH  and set 

kk guH  )( , and set 0,  kFg kk  

Step 2: If ,kg for a predetermined , stop, else set  

Step 3: ),(1 kkkkkk uFWuu    where 






kk

kk
k FAF

gg
,

,  

A  ))(2)(()( 020 LKQmmRLLQ TT   

  2
1

0

1

1

)()( 



 



 



t

kk

k

duHPuH

PW



 

To avoid the possibility of  kW  being negative definite, P is a positive definite matrix calculated from: 

0 QPAPA T  

Updating of sequences is by gradient technique, which is defined as follows: 

kkkk FAgg 1  

kkkk FgF   11  




 

kk

kk
k gg

gg
,

1,1  

Step 4: Set 1 kk  and go to step 1 

The convergence of this algorithm is similar to conjugate gradient algorithm given by Ibiejugba & Abiola (1985) 

In what follows we show the procedure to derive the operator kW  

Suppose at iteration k and 1k  

kkk uuu 1       … (40) 
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Let )(uS  be such that  





















T

k dttu
u
HuS

0
)()(      … (41) 

where )(uH
u
H











 which was defined in (39) 

Let a distance function be defined between 1ku   and  ku  as follows: 

 duPuS k

T

k )()()(
0

2        … (42) 

P is a positive definite matrix calculated  as before. We consider only   when 

,0S and suppose there is an infinitesimal change in ku  which is defined as 

d
ds

ud
P

ds
udT kk 






 

0

)()(
=1     … (43) 

Then the corresponding change in  (41) is given as 

d
ds

ud
u
H

ds
udS T k

T
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







 












0

)()(
    … (44) 

We now minimise (44) by choosing  
ds

ud k )(
 as control. In doing, this we use the 

Lagrange multiplier technique and let   be the multiplier such that: 

 d
ds

udP
ds

ud
ds

ud
u
HS

T kkTk
T

 















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
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


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

 











0

)()()(
  … (45)    

We define the Hamiltonian as follows: 




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

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


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
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udP
ds
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ds

ud
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ud
u
HH kkTkk

T )()()()(
  … (46) 

ds
udP

u
H

ds
ud

H kT

k
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)(














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
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    … (47) 

Setting (47) equals to zero implies 
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      … (48) 

Therefore, 

u
HP

ds
ud k
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2
1)(


      … (49)         

Using (49) in (43) we have: 
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    … (51) 

Numerical Illustration 

Following Corless & Leitmann (1981), consider the following system defined by: 









)()()()(
)()(

2212

21

tvtutxtx
txtx




     … (52) 

The objective function is defined as  

Minimize   dttutuxvuJ   )()(
2
1),,( 2

2
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1  

From the above, it is easy to see that 
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We also note that A  is unstable. We therefore select   21 kkK   such that 0,0 21  kk  
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Then if   

0 QPAAP T , we can compute  
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2
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which inverse is computed to be: 




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












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15
8
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2

15
2

15
8

P  

Applying the proposed algorithm, we have Table 1: 

TABLE   1. CONTROL AND OBJECTIVE FUNCTION 
 

Iteration Time Control  u Objective function 
1 1 -44.193350 2592.106 
2  45.114150 5597.7884 
1 2 -31.34126  1372.045 
2  -47.49781 2853.739 
1 3 -23.35895 851.0466 
2  26.9681 1857.691 
1 4 -19.87427 629.528 
2  24.146440 1389.023 
1 5 34.4169 606.081 
1 6 23.739 587.460 
1 7 21.9034 502.018 
1 8 19.6593 422,2720 
1 9 18.934 383.1967 
1 10 17.881 343.480 
1 11 13.191 296.097 
1 12 2,3015 13,71743 

 
 
Conclusion 
We achieve the minimum of the objective function in just 12 
iterations which can be considered as good enough. In our 
subsequent paper we shall consider the application of this 
algorithm water quality control system where uncertainties are 
involved. Furthermore we have demonstrated in this paper that it is 
possible to derive a numerical algorithm for some class of control 
problems where uncertainties are involved. 
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