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ABSTRACT 
 Calculated Total Cross-Sections (TCS) of elastic electron-atom 
scattering for He, Ne, Ar, Kr, Xe and Rn are presented. The 
computed TCS were calculated using the partial wave, Eikonal, 
Born, and the optical theorem approximation methods with the 
Lenz-Jensen potential, at electron incident energies between 
1to1000 eV.  Results obtained using the partial wave, Eikonal and 
optical theorem approximation methods are in good agreement 
with experimental TCS data of Van den Biesen et al (1982). 
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INTRODUCTION 
In scattering theory, the Total Cross-Section (TCS) is a measure of 
the probability that an interaction occurs; the larger the cross 
section, the greater the probability that an interaction will take 
place when a particle is incident on a target (Anchaver, 2003). 

Elastic electron-atom scattering takes place if the final state of an 
atom after the interaction coincides with the initial one (Winitzki, 
2004). Total and differential cross-sections for such a process can 
be calculated in various approximations — Born (Merzbacher, 
1970)), Eikonal (Innanen, 2010; Shajesh, 2010), optical theorem 
(Lokajicek & Kundrat, 2009; Ronniger, 2006), partial wave method 
(Cox & Bonham, 1967), etc. In this work, the total cross-sections of 
the noble gases He, Ne, Ar, Kr, Xe and Rn (Halka & Nordstrom, 
2010; Ramazanov et al, 2007) were computed using the four 
approximation methods listed above.  

MATERIALS AND METHODS 

We used the FORTRAN code program developed by Koonin & 
Meredith (1989) which takes the relativistic differential cross-
section as a sum of squared modules of the real and imaginary 
scattering amplitudes. The amplitudes can be calculated through 
the phase shifts of spherical waves, which are obtained by 

integration of equations for radial wave functions. In these 
computations the analytical approximation for the atomic 
electrostatic potential given by Lenz and Jensen, called the Lenz-
Jensen  
potential (Blister & Hautala, 1978), based on the Thomas-Fermi 
model, is used. 

 

Scattering Theory 

For particles of mass m and energy  

ܧ = ℏమ௞మ

ଶ௠
> 0          1.0 

 scattering from a central potential, V(r) is described by a wave 
function, ψ(r) that satisfies the Schrodinger Wave Equation (SWE) 
 

− ℏమ

ଶ௠
∇ଶ߰+ ܸ߰ =   2.0   ߰ܧ

with the boundary condition at large distance 

߰௥→∞ → ݁௜௞௭ + (ߠ)݂ ௘
೔ೖೝ

௥
    3.0 

Equation (3.0) holds for a beam of electrons incident along z-axis, 
and the scattering angle, ߠ is the angle between r and ̂ݖ while ݂ is 
the complex scattering amplitude, which is the basic function we 
seek to determine. The differential cross-section is given by: 

ௗఙ
ௗΩ

=  ଶ    4.0|(ߠ)݂|

 
The total cross-section is  
 

ߪ = ∫݀Ω ୢσ
ୢΩ

= 2π∫ dθsinθ|f(θ)|ଶπ
଴   5.0 

  

݂ is a function of both ܧ and ߠ (Koonin & Meredith, 1989).  
 
Approximation Methods 

Approximations play a very important role in our understanding of 
processes that cannot be solved exactly. The calculation of 
scattering cross sections is one of the most important uses of 
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Fermi’s Golden Rule (Wacker, 2011). Fermi’s rule involves only 
one matrix element of the interaction which makes it a first order 
approximation to the exact result. This approximation suggests an 
approximation to the complex scattering amplitude.  

The Born approximation involves an approximation to the complex 
scattering amplitude (Merzbacher, 1970). It has been extensively 
used to study low energy as well as high energy scattering 
processes.  The Eikonal approximation is a technique for 
estimating the high energy behaviour of a forward scattering 
amplitude (Innanen, 2010). It was originally developed for potential 
scattering in quantum mechanics, where one approximates the 
classical trajectory corresponding to forward scattering by a 
straight line and uses a WKB approximation for the wavefunction 
(Sakuri, 1985).  The optical theorem relates the forward scattering 
amplitude to the cross section (Lokajicek & Kundrat, 2009).  

Partial Wave Method  

The method of partial wave expansion is a special trick to simplify 
the calculation of the scattering amplitude, ݂ (Newton, 1982). The 
standard partial wave decomposition of the scattering wave 
function ߰ is 

(ݎ)߰ = ∑ (2݈ + 1)݅௟݁௜ఙ ோ೗(௥)
௞௥ ௟ܲ(ܿߠݏ݋)∞

௟ୀ଴   6.0 

  
When equation (2.6) is substituted into the SWE (2.0) the radial 
wave functions, ܴ௟ are found to satisfy the radial differential 
equations:  

ቂ− ℏమ

ଶ௠
ௗమ

ௗ௥మ
+ (ݎ)ܸ + ௟(௟ାଵ)ℏమ

ଶ௠௥మ
− (ݎ)ቃܴ௟ܧ = 0 7.0 

This is the same equation as that satisfied by a bound state wave 
function but the boundary conditions are different. In particular, ܴ 
vanishes at the origin, but it has the large-r asymptotic behaviour  

ܴ௟ → −(ݎ݇)௟݆௟ߜݏ݋ܿ]ݎ݇  8.0  [(ݎ݇)௟݊௟ߜ݊݅ݏ

 Where ݆௟ and ݊௟ are the regular and irregular spherical Bessel 
functions of order ݈.  

The scattering amplitude is related to the phase shifts ߜ௟ by [9]: 

(ߠ)݂ = ଵ
௞
∑ (2݈+ 1)݁௜ఋ೗ߜ݊݅ݏ௟ ௟ܲ(ܿߠݏ݋)∞
௟ୀ଴   9.0  

From equations (5.0) and (9.0) the total cross-section is given by  

ߪ = ସగ
௞మ
∑ (2݈ + ∞௟ߜଶ݊݅ݏ(1
௟ୀ଴     10.0 

 Although the sums in equations (9.0) and (10.0) extend over all ݈, 
they are in practice limited to only a finite number of partial waves. 
This is because for large ݈, the repulsive centrifugal potential in 
equation (7.0) is effective in keeping the particle outside the range 
of the potential and so the phase shift is very small.  

If the potential is negligible beyond a radius ݎ௠௔௫, an estimate of 
the highest partial wave that is important is had by setting the 
turning point at this radius: 

 ௟೘ೌೣ(௟೘ೌೣାଵ)ℏమ

ଶ௠௥೘ೌೣ
మ =   11.0     ܧ

 ⇒ ݈௠௔௫ ≈ ௠௔௫ݎ݇     12.0  

This estimate is usually slightly low since the penetration of the 
centrifugal barrier leads to non-vanishing phase shifts in partial 
waves somewhat higher than this (Koonin & Meredith, 1989).  

The Phase shifts  

To find the phase shift in a given partial wave, we must solve the 
radial equation (7.0). The equation is linear, so that the boundary 
condition at large  
 .can be satisfied simply by appropriately normalizing the solution ݎ

If we put ܴ௟(ݎ = 0) = 0 and take the value at the next lattice 
point, ܴ௟(ݎ = ℎ), to be any convenient small number we then use 

 ݂" ≈ ௙భିଶ௙బା௙షభ
௛మ

    13.0 

for ܴ௟"(ℎ), along with the known values ܴ௟(0), ܴ௟(ℎ), and ݇(ℎ) 
to find ܴ௟(2ℎ).  

Now we can integrate outward in ݎ to a radius ݎ(ଵ) >  ,௠௔௫. Hereݎ
ܸ vanishes and ܴ must be a linear combination of the free 
solutions, ݆݇ݎ௟(݇ݎ) and ݇݊ݎ௟(݇ݎ): 

 ܴ௟
(ଵ) = ൯(ଵ)ݎ௟݆௟൫݇ߜݏ݋ܿൣ(ଵ)ݎ݇ܣ −  ൯൧  14.0(ଵ)ݎ௟݊௟൫݇ߜ݊݅ݏ

 Although the constant, ܣ above, depends on the value chosen for 
ݎ)ܴ = ℎ), it is largely irrelevant for our purposes; however, it 
must be kept small enough so that overflows  are  avoided. Now 

we continue integrating to a larger radius ݎ(ଶ) >         :(ଵ)ݎ
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ܴ௟
(ଶ) = ൯(ଶ)ݎ௟݆௟൫݇ߜݏ݋ܿൣ(ଶ)ݎ݇ܣ −   ൯൧  15.0(ଶ)ݎ௟݊௟൫݇ߜ݊݅ݏ

Equations (14.0) and (15.0) can then be solved for ߜ௟ to obtain 

௟ߜ݊ܽݐ = ீ௝೗
(భ)ି௝೗

(మ)

ீ௡೗
(భ)ି௡೗

(మ); ܩ = ௥(భ)ோ೗
(మ)

௥(మ)ோ೗
(భ)  16.0 

where ௟݆
(ଵ) = ݆௟(݇ݎ(ଵ) etc. Equation (16.0) determines ߜ௟ only 

within a multiple of ߨ but this does not affect the physical 
observables [see equations (9.0) and (10.0)]. The correct multiple 
of ߨ’s at a given energy can be determined by comparing the 
number of nodes in ܴ and in the free solution, ݆݇ݎ௟ which occur 
for ݎ <  ௠௔௫. The phase shift in each partial wave vanishes atݎ
high energies and approaches ௟ܰߨ at zero energy, where ௟ܰ is 
the number of bound states in the potential in the ݈’th partial wave 
(Koonin & Meredith, 1989).  
 

The Lenz-Jensen Potential  

One practical application of the theory discussed above is the 
calculation of the scattering of electrons from neutral atoms. In 
general this is a complicated multi-channel scattering problem 
since there can be reactions leading to final states in which the 
atom is excited. However, as the reaction probabilities are small in 
comparison to elastic scattering, for many purposes the problem 
can be modeled by the scattering of an electron from a central 
potential (Koonin & Meredith, 1989). This potential represents the 
combined influence of the attraction of the central nuclear charge 
(Z) and the screening of this attraction by the Z atomic electrons. 
For a neutral target atom, the potential vanishes at large distances 
faster than ିݎଵ. A very accurate approximation to this potential 
can be had by solving for the self-consistent Hartree-Fock potential 
of the neutral atom. However, a much simpler estimate can be 
obtained using an approximation to the Thomas-Fermi model of 
the atom given by Lenz and Jensen (Blister & Hautala, 1978) 

 ܸ = − ௓௘మ

௥
݁ି௫(1 + ݔ + ܾଶݔଶ + ܾଷݔଷ + ܾସݔସ);     17.0 

 with  

݁ଶ = 14.409; ܾଶ = 0.3344;  ܾଷ = 0.0485;  ܾସ = 2.647 × 10ିଷ;     
      18.0  

and  

ݔ = 4.5397ܼ
భ
లݎ

భ
మ                                                           19.0 

 This potential is singular at the origin. If the potential is regularized 
by taking it to be a constant within some small radius ݎ௠௜௡ (say 
the radius of the atom’s 1s shell), then the calculated cross-section 
will be unaffected except at momentum transfers large enough so 
that ݎݍ௠௜௡ ≫ 1.  
The incident particle is assumed to have the mass of the electron, 
and, as is appropriate for atomic systems, all lengths are 

measured in angstrom (Å)  
and all energies in electronvolt (eV). The potential is assumed to 
vanish beyond 2Å. Furthermore, the ିݎଵ singularity in the potential 
is cutoff inside the radius of the 1s shell of the target atom. 

 

Research Methodology 

A FORTRAN program developed by Koonin & Meredith (1989) 
was the main program used for all the computations. The program 
is made up of four categories of files: common utility programs, 
physics source code, data files and include files. The physics 
source code is the main source code which contains the routine for 
the actual computations. The data files contain data to be read into 
the main program at run-time and have the extension .DAT.  The 
first thing done was the successful installation of the FORTRAN 
codes in the computer. This requires familiarity with the computer’s 
operating system, the FORTRAN compiler, linker, editor, and the 
graphics package to be used in plotting. The program runs 
interactively. It begins with a title page describing the physical 
problem to be investigated and the output that will be produced. 
Next, the menu is displayed, giving the choice of entering 
parameter values, examining parameter values, running the 
program, or terminating the program. When the calculation is 
finished, all values are zeroed (except default parameters), and the 
main menu is re-displayed, giving us the opportunity to redo the 
calculation with a new set of parameters or to end execution. Data 
generated from the program were saved in files which were later 
imported into the graphics software Origin 5.0 for plotting. 

 

RESULTS  

 Results were generated for several electron incident energies as 
presented in the tables below:  

 

28 



Science World Journal Vol 6 (No2) 2011 
 www.scienceworldjournal.org 
ISSN 1597-6343 
 

Computations of Scattering Cross Sections for He, Ne, Ar, Kr, Xe and Rn 

From table 1 below, using the partial wave method, we observed 
that the TCS for He decrease with increasing electron incident 
energies from 1 to 1,000 eV. The TCS for Ne, Ar, Xe and Rn 
exhibited a number of minima and maxima between 1 to 100 eV, 
but decrease with increasing incident energies between 100 to 
1,000 eV. Also, the TCS increase with increasing atomic number  

for all elements considered. The differences in TCS for He, in the 
energy range of about 70 to 1,000 eV, are substantially higher than 
differences in TCS for other noble gases. This might have resulted 
from the fact that He has an “S” valance shell only while all the 
others have “P” valence shells. 

 

 

Table 1: Computed Total Cross-Sections for Elastic Electron- Atom Scattering for He, Ne, Ar, Kr, Xe and Rn using the Partial Wave Method with the Lenz-
Jensen Potential.

He Ne Ar Kr Xe Rn

1.0                    7.553 8.651 27.289 34.350 1.065           2.615           

5.0                    7.532 2.023 36.882 25.574 44.328         3.328           

10.0                  6.728 3.184 19.513 14.571 5.089           5.091           

20.0                  4.686 4.815 11.903 7.024 10.461         13.309         

30.0                  3.577 5.154 9.844 4.825 5.900           12.120         

40.0                  2.879 5.086 8.559 3.917 5.238           9.873           

50.0                  2.400 4.882 7.468 3.526 5.285           8.611           

60.0                  2.058 4.629 6.599 3.381 5.547           7.870           

70.0                  1.803 4.380 5.936 3.354 5.854           7.375           

80.0                  1.604 4.152 5.418 3.371 6.107           6.997           

90.0                  1.444 3.943 5.001 3.403 6.260           6.679           

100.0                 1.313 3.751 4.664 3.436 6.298           6.401           

200.0                 0.687 2.571 3.137 3.278 4.344           4.768           

300.0                 0.463 2.010 2.548 2.903 3.366           4.001           

400.0                 0.350 1.679 2.197 2.608 2.910           3.410           

500.0                 0.281 1.452 1.950 2.379 2.620           2.967           

600.0                 0.234 1.286 1.764 2.197 2.409           2.656           

700.0                 0.201 1.157 1.617 2.047 2.245           2.436           

800.0                 0.176 1.054 1.497 1.923 2.113           2.274           

900.0                 0.156 0.969 1.396 1.818 2.002           2.149           

1,000.0              0.141 0.897 1.311 1.727 1.908           2.049           

E (eV)

ELEMENT
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From table 2 , using the Eikonal method, the TCS for He also 
decrease with increasing electron incident energies from 1 to 
1,000 eV. The TCS for Ne, Ar, kr, Xe and Rn exhibited a number 
of minima and maxima between 1 to 30 eV, but decrease with 
increasing incident energies between 30 to 1,000 eV. Also, the  
 
 

 
TCS increase with increasing atomic number for all elements 
considered. The differences in TCS for He, in the energy range of 
about 50 to 1,000 eV, are substantially higher than differences in 
TCS for other noble gases. 
 
 
 

 
 
 
Table 2: Computed Total Cross-Sections for Elastic Electron- Atom Scattering for He, Ne, Ar, Kr, Xe and Rn using the Eikonal Approximation Method with 
the Lenz-Jensen Potential.. 

He Ne Ar Kr Xe Rn
1.0            4.784 6.203 3.797 4.691 4.951    4.424    

5.0            4.755 6.686 6.448 4.914 4.991    3.083    

10.0          4.335 5.490 6.526 5.079 7.331    5.188    

20.0          3.440 4.809 4.602 6.267 3.990    3.103    

30.0          2.698 4.632 5.066 4.305 5.156    4.289    

40.0          2.191 4.268 4.330 3.949 4.300    4.689    

50.0          1.834 3.740 3.913 4.103 3.600    4.386    

60.0          1.573 3.538 3.895 4.444 3.614    3.908    

70.0          1.376 3.424 3.962 4.393 3.519    3.269    

80.0          1.222 3.286 3.799 3.989 3.756    2.990    

90.0          1.098 3.130 3.566 3.643 3.799    3.042    

100.0        0.997 2.981 3.379 3.423 3.873    3.221    

200.0        0.518 2.164 2.640 3.046 2.717    3.101    

300.0        0.350 1.746 2.211 2.575 2.704    2.388    

400.0        0.264 1.486 1.927 2.197 2.570    2.466    

500.0        0.212 1.308 1.735 2.055 2.305    2.348    

600.0        0.177 1.175 1.589 1.986 2.018    2.283    

700.0        0.152 1.070 1.469 1.920 1.925    2.254    

800.0        0.133 0.983 1.369 1.825 1.864    2.178    

900.0        0.119 0.910 1.283 1.716 1.799    2.083    

1,000.0     0.107 0.848 1.208 1.610 1.734    1.932    

E (eV)
ELEMENT

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

30 



Science World Journal Vol 6 (No2) 2011 
 www.scienceworldjournal.org 
ISSN 1597-6343 
 

Computations of Scattering Cross Sections for He, Ne, Ar, Kr, Xe and Rn 

From table 3, using the Born method, the calculated TCS are 
significantly higher than the TCS obtained using the three other  
approximation methods. This is as a result of the fact that the Born  
approximation is only valid at high electron incident energies. As  
 
 
 
 
 
 

previously observed, the calculated TCS decrease with increasing 
incident energies but no minima and maxima were observed for all 
the elements considered. 
 
 
 
 
 
 

Table 3: Computed Total Cross-Sections for Elastic Electron- Atom Scattering for He, Ne, Ar, Kr, Xe and Rn using the Born Approximation Method with the 
Lenz-Jensen Potential.. 

He Ne Ar Kr Xe Rn
1.0            30.950 171.100 289.500 510.100 698.500 990.400 

5.0            16.070 108.600 197.200 376.300 538.500 800.300 

10.0          9.415 73.420 140.600 285.000 422.300 652.000 

20.0          5.121 45.300 91.110 196.200 301.600 485.700 

30.0          3.518 33.080 68.170 151.400 237.400 391.600 

40.0          2.665 26.060 54.570 123.600 196.500 329.600 

50.0          2.143 21.520 45.580 104.700 168.100 285.400 

60.0          1.791 18.350 39.180 91.000 147.100 252.100 

70.0          1.538 16.000 34.380 80.510 130.900 226.000 

80.0          1.346 14.180 30.630 72.220 118.000 205.000 

90.0          1.197 12.730 27.630 65.500 107.400 187.600 

100.0        1.078 11.550 25.160 59.940 98.640   173.100 

200.0        0.539 5.995 13.340 32.570 54.580   98.170   

300.0        0.359 4.046 9.086 22.400 37.840   68.820   

400.0        0.270 3.051 6.890 17.080 28.990   53.060   

500.0        0.216 2.448 5.549 13.810 23.500   43.190   

600.0        0.180 2.044 4.646 11.590 19.760   36.440   

700.0        0.154 1.754 3.995 9.982 17.050   31.510   

800.0        0.134 1.536 3.504 8.767 14.990   27.760   

900.0        0.120 1.366 3.120 7.816 13.380   24.810   

1,000.0     0.108 1.230 2.812 7.051 12.080   22.430   

E (eV)
ELEMENT

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

31 



Science World Journal Vol 6 (No2) 2011 
 www.scienceworldjournal.org 
ISSN 1597-6343 
 

Computations of Scattering Cross Sections for He, Ne, Ar, Kr, Xe and Rn 

From table 4 and fig. 4, using the optical theorem method, the 
calculated TCS for Kr, Xe and Rn exhibited a number of minima 
and maxima in the energy range of 1 to 100 eV. No minima or 
maxima were observed for He, Ne and Ar. Here also, the 
calculated TCS decrease with increasing electron incident 
energies. 
 

The calculated TCS using the partial wave, Eikonal and optical 
theorem approximation methods are generally in good agreement 
with the experimental TCS obtained by Van den Biesen et al 
(1982). However TCS calculated using the Born approximation 
method are much higher than the experimental values for the 
energy range considered. This is because the Born approximation 
is only valid at high electron incident energies. 

 
 
 
 
 
Table 4: Computed Total Cross-Sections for Elastic Electron- Atom Scattering for He, Ne, Ar, Kr, Xe and Rn using the Optical Theorem with the Lenz-Jensen 
Potential. 

He Ne Ar Kr Xe Rn
1.0            14.100 17.970 14.720 15.650 15.030  14.780  

5.0            7.362 11.110 10.930 10.040 9.741    7.424    

10.0          5.558 8.350 9.390 8.464 9.859    8.527    

20.0          3.760 6.477 6.622 7.953 6.482    5.435    

30.0          2.810 5.683 6.430 6.072 6.788    6.237    

40.0          2.236 5.115 5.550 5.362 5.767    6.063    

50.0          1.854 4.494 4.900 5.217 4.802    5.668    

60.0          1.583 4.126 4.592 5.266 4.864    5.117    

70.0          1.381 3.893 4.539 5.262 4.563    4.269    

80.0          1.224 3.692 4.402 4.823 4.613    3.837    

90.0          1.100 3.500 4.165 4.353 4.606    3.997    

100.0        0.998 3.321 3.932 4.076 4.596    4.062    

200.0        0.518 2.310 2.862 3.408 3.188    3.690    

300.0        0.350 1.834 2.381 2.763 2.978    2.598    

400.0        0.264 1.541 2.019 2.384 2.812    2.662    

500.0        0.212 1.343 1.800 2.193 2.436    2.536    

600.0        0.177 1.198 1.646 2.095 2.121    2.491    

700.0        0.152 1.085 1.522 1.995 1.997    2.402    

800.0        0.133 0.994 1.416 1.874 1.918    2.242    

900.0        0.119 0.918 1.324 1.751 1.856    2.078    

1,000.0     0.107 0.853 1.244 1.640 1.803    1.904    

E (eV)
ELEMENT
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CONCLUSION 

Computed Total Cross-Sections (TCS) of elastic electron-atom 
scattering for the elements He, Ne, Ar, Kr, Xe and Rn are 
presented. The TCS were calculated using the partial wave, 
Eikonal, Born, and the optical theorem approximation methods 
with the Lenz-Jensen potential, at incident energies of 1to1000 eV.  
Results obtained using the partial wave, Eikonal and optical 
theorem methods are in good agreement with the experimental 
TCS values. 
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