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ABSTRACT

Calculated Total Cross-Sections (TCS) of elastic electron-atom
scattering for He, Ne, Ar, Kr, Xe and Rn are presented. The
computed TCS were calculated using the partial wave, Eikonal,
Born, and the optical theorem approximation methods with the
Lenz-Jensen potential, at electron incident energies between
1t01000 eV. Results obtained using the partial wave, Eikonal and
optical theorem approximation methods are in good agreement
with experimental TCS data of Van den Biesen et al (1982).
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INTRODUCTION

In scattering theory, the Total Cross-Section (TCS) is a measure of
the probability that an interaction occurs; the larger the cross
section, the greater the probability that an interaction will take
place when a particle is incident on a target (Anchaver, 2003).

Elastic electron-atom scattering takes place if the final state of an
atom after the interaction coincides with the initial one (Winitzki,
2004). Total and differential cross-sections for such a process can
be calculated in various approximations — Born (Merzbacher,
1970)), Eikonal (Innanen, 2010; Shajesh, 2010), optical theorem
(Lokajicek & Kundrat, 2009; Ronniger, 2006), partial wave method
(Cox & Bonham, 1967), etc. In this work, the total cross-sections of
the noble gases He, Ne, Ar, Kr, Xe and Rn (Halka & Nordstrom,
2010; Ramazanov et al, 2007) were computed using the four
approximation methods listed above.

MATERIALS AND METHODS

We used the FORTRAN code program developed by Koonin &
Meredith (1989) which takes the relativistic differential cross-
section as a sum of squared modules of the real and imaginary
scattering amplitudes. The amplitudes can be calculated through
the phase shifts of spherical waves, which are obtained by

integration of equations for radial wave functions. In these
computations the analytical approximation for the atomic
electrostatic potential given by Lenz and Jensen, called the Lenz-
Jensen

potential (Blister & Hautala, 1978), based on the Thomas-Fermi
model, is used.

Scattering Theory

For particles of mass m and energy

L) 1.0

m

E =

hZ
2
scattering from a central potential, V() is described by a wave
function, w(r) that satisfies the Schrodinger Wave Equation (SWE)

_h -
VA + VY = By 2.0
with the boundary condition at large distance
. eikr
Prow = 7+ f(0)— 3.0
Equation (3.0) holds for a beam of electrons incident along z-axis,
and the scattering angle, € is the angle between r and Z while f is

the complex scattering amplitude, which is the basic function we
seek to determine. The differential cross-section is given by:

G=lrOr 40

The total cross-section is

o = [ Q3 = 2n [} desing|f(8) ? 5.0

f is a function of both E and 6 (Koonin & Meredith, 1989).

Approximation Methods

Approximations play a very important role in our understanding of
processes that cannot be solved exactly. The calculation of
scattering cross sections is one of the most important uses of
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Fermi's Golden Rule (Wacker, 2011). Fermi's rule involves only
one matrix element of the interaction which makes it a first order
approximation to the exact result. This approximation suggests an
approximation to the complex scattering amplitude.

The Born approximation involves an approximation to the complex
scattering amplitude (Merzbacher, 1970). It has been extensively
used to study low energy as well as high energy scattering
processes. The Eikonal approximation is a technique for
estimating the high energy behaviour of a forward scattering
amplitude (Innanen, 2010). It was originally developed for potential
scattering in quantum mechanics, where one approximates the
classical trajectory corresponding to forward scattering by a
straight line and uses a WKB approximation for the wavefunction
(Sakuri, 1985). The optical theorem relates the forward scattering

amplitude to the cross section (Lokajicek & Kundrat, 2009).

Partial Wave Method

The method of partial wave expansion is a special trick to simplify
the calculation of the scattering amplitude, f (Newton, 1982). The
standard partial wave decomposition of the scattering wave
functiony is

P(r) = Big(2 + Dite’” 2 p (cosh) 6.0

When equation (2.6) is substituted into the SWE (2.0) the radial

wave functions, R; are found to satisfy the radial differential

equations:
R a2 1(1+1)h? _

This is the same equation as that satisfied by a bound state wave
function but the boundary conditions are different. In particular, R
vanishes at the origin, but it has the large-r asymptotic behaviour

R, - krlcosé,j,(kr) — sinn;(kr)] 8.0
Where j; and n; are the regular and irregular spherical Bessel

functions of order l.

The scattering amplitude is related to the phase shifts &; by [9]:
£(0) = %2;‘;0(21 + 1)eisins, P,(cos6) 9.0

From equations (5.0) and (9.0) the total cross-section is given by

0 = GYo(2 + 1)sin?s, 100

Although the sums in equations (9.0) and (10.0) extend over all [,
they are in practice limited to only a finite number of partial waves.
This is because for large 1, the repulsive centrifugal potential in
equation (7.0) is effective in keeping the particle outside the range
of the potential and so the phase shift is very small.

If the potential is negligible beyond a radius 7,,,,, an estimate of
the highest partial wave that is important is had by setting the
turning point at this radius:

lmax(lmax+1)hz —
= Loae & Kmax 12.0

This estimate is usually slightly low since the penetration of the
centrifugal barrier leads to non-vanishing phase shifts in partial
waves somewhat higher than this (Koonin & Meredith, 1989).

The Phase shifts

To find the phase shift in a given partial wave, we must solve the
radial equation (7.0). The equation is linear, so that the boundary
condition at large

r can be satisfied simply by appropriately normalizing the solution.

If we put R;(r =0) =0 and take the value at the next lattice
paint, R, (r = h), to be any convenient small number we then use

f" ~ fl_zlf:oz'*'f—l 13.0

for R; (h), along with the known values R, (0), R, (k), and k(h)
to find R; (2h).
Now we can integrate outward in 7 to a radius ) > r,,,,... Here,
V vanishes and R must be a linear combination of the free

solutions, krj,(kr) and krn, (kr):

Rl(l) = AkrD[cos8,j,(ker®) — sindn, (kr )] 14.0
Although the constant, A above, depends on the value chosen for
R(r =h), it is largely irrelevant for our purposes; however, it

must be kept small enough so that overflows are avoided. Now

Wwe continue integrating to a larger radius ) > r@:
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Rl(z) = Akr @|[cos8,j,(kr@) — sinsn, (kr )] 15.0

Equations (14.0) and (15.0) can then be solved for §; to obtain

(1) _ () (2)
tans, =S4 I ¢ = TR
L Gngl)—ngz)' r(Z)Rl(l)

16.0

where j = j,(kr® etc. Equation (16.0) determines &, only
within a multiple of 7 but this does not affect the physical
observables [see equations (9.0) and (10.0)]. The correct multiple
of m's at a given energy can be determined by comparing the
number of nodes in R and in the free solution, krj, which occur
for r < 1,4,. The phase shift in each partial wave vanishes at
high energies and approaches N;m at zero energy, where N, is
the number of bound states in the potential in the {'th partial wave
(Koonin & Meredith, 1989).

The Lenz-Jensen Potential

One practical application of the theory discussed above is the
calculation of the scattering of electrons from neutral atoms. In
general this is a complicated multi-channel scattering problem
since there can be reactions leading to final states in which the
atom is excited. However, as the reaction probabilities are small in
comparison to elastic scattering, for many purposes the problem
can be modeled by the scattering of an electron from a central
potential (Koonin & Meredith, 1989). This potential represents the
combined influence of the attraction of the central nuclear charge
(2) and the screening of this attraction by the Z atomic electrons.
For a neutral target atom, the potential vanishes at large distances
faster than =1, A very accurate approximation to this potential
can be had by solving for the self-consistent Hartree-Fock potential
of the neutral atom. However, a much simpler estimate can be
obtained using an approximation to the Thomas-Fermi model of
the atom given by Lenz and Jensen (Blister & Hautala, 1978)

V=22 X (1 x + byx® + bya® + byx*); 170

with

e? = 14.409; b, = 0.3344; b; = 0.0485; b, = 2.647 x 1073;
18.0

and

x = 45397Zers 19.0

This potential is singular at the origin. If the potential is regularized
by taking it to be a constant within some small radius 7, (say
the radius of the atom’s 1s shell), then the calculated cross-section
will be unaffected except at momentum transfers large enough so
that qlmin > 1.
The incident particle is assumed to have the mass of the electron,
and, as is appropriate for atomic systems, all lengths are
measured in angstrom &)
and all energies in electronvolt (eV). The potential is assumed to
vanish beyond 2A. Furthermore, the 1 singularity in the potential
is cutoff inside the radius of the 1s shell of the target atom.

Research Methodology

A FORTRAN program developed by Koonin & Meredith (1989)
was the main program used for all the computations. The program
is made up of four categories of files: common utility programs,
physics source code, data files and include files. The physics
source code is the main source code which contains the routine for
the actual computations. The data files contain data to be read into
the main program at run-time and have the extension .DAT. The
first thing done was the successful installation of the FORTRAN
codes in the computer. This requires familiarity with the computer’s
operating system, the FORTRAN compiler, linker, editor, and the
graphics package to be used in plotting. The program runs
interactively. It begins with a title page describing the physical
problem to be investigated and the output that will be produced.
Next, the menu is displayed, giving the choice of entering
parameter values, examining parameter values, running the
program, or terminating the program. When the calculation is
finished, all values are zeroed (except default parameters), and the
main menu is re-displayed, giving us the opportunity to redo the
calculation with a new set of parameters or to end execution. Data
generated from the program were saved in files which were later

imported into the graphics software Origin 5.0 for plotting.

RESULTS

Results were generated for several electron incident energies as

presented in the tables below:
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From table 1 below, using the partial wave method, we observed
that the TCS for He decrease with increasing electron incident
energies from 1 to 1,000 eV. The TCS for Ne, Ar, Xe and Rn
exhibited a number of minima and maxima between 1 to 100 eV,
but decrease with increasing incident energies between 100 to
1,000 eV. Also, the TCS increase with increasing atomic number

for all elements considered. The differences in TCS for He, in the
energy range of about 70 to 1,000 eV, are substantially higher than
differences in TCS for other noble gases. This might have resulted
from the fact that He has an “S” valance shell only while all the
others have “P” valence shells.

Table 1: Computed Total Cross-Sections for Elastic Electron- Atom Scattering for He, Ne, Ar, Kr, Xe and Rn using the Partial Wave Method with the Lenz-

Jensen Potential.

B EMENT
E(eV) He Ne Ar Kr Xe Rn

10 7.553 8.651 27.289 34.30 1065 2615
5.0 7.532 2023 36.832 25,574 44.328 3328
10.0 6.728 3184 19513 14.571] 5.089 5.001
2.0 4.636 4.815 11.903 7.024 10.461 13.309
0.0 3577 5154 9.844 4.825 5.900 12120
40.0 2879 5.086 8559 3.917 5233 9.873
50.0 2400 4.882 7.468 3526 5.285 8611
60.0 208 4.629 6.599 3381 5.547 7.870
70.0 1803 4.330 595 334 5854 7.375
80.0 1604 4.152 5418 3371 6.107 6.997
0.0 1444 3943 5.001 3403 6.260 6.679
100.0 1313 3751 4.664 3436 6.298 6.401
20.0 0.687 2571 3137, 3.278 4.344 4.768
300.0 0.463 2010 2548 2903 3.366 4.001
400.0 0.350 1679 2197, 2608 2910 3410
500.0 0.281 1452 1980 2319 2620 2,967
600.0 0.234 1285 1764 2197 2409 2.656
700.0 0.201 1157 1617 2047 2245 2436
800.0 0.176 104 1497 1923 2113 2274
900.0 0.156 0.969 13%6 1818 2002 2149
1,000.0 0141 0.897 1311 1727 1908 2049
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From table 2 , using the Eikonal method, the TCS for He also
decrease with increasing electron incident energies from 1 to
1,000 eV. The TCS for Ne, Ar, kr, Xe and Rn exhibited a number
of minima and maxima between 1 to 30 eV, but decrease with
increasing incident energies between 30 to 1,000 eV. Also, the

TCS increase with increasing atomic number for all elements
considered. The differences in TCS for He, in the energy range of
about 50 to 1,000 eV, are substantially higher than differences in
TCS for other noble gases.

Table 2: Computed Total Cross-Sections for Elastic Electron- Atom Scattering for He, Ne, Ar, Kr, Xe and Rn using the Eikonal Approximation Method with

the Lenz-Jensen Potential..

ELEMENT

E(eV) He Ne Ar

Kr |Xe RN

1.0 4.784 6.203 3.797

4691 4951 | 4424

5.0 4.755| 6.686] 6.448

4914 4.991 3.083

10.0 4335 5490 6.526

5.079] 7.331 5.188

20.0 3440 4.809] 4.602

6.267] 3990 3103

30.0 2698 4.632] 5.066

4305 5156 | 4.289

40.0 2191 4268 4.330

3949 4300 4.689

50.0 1834 3740 3913

4103 3.600| 4.386

60.0 1573 3538 3.895

4444 3.614| 3.908

70.0 1.376] 3424 3.962

4393 3519| 3.269

80.0 1.222| 3.286 3.799

3989 375 2990

90.0 1.098 3130 3.566

3643 3799 3042

100.0 0997 2.981 3.379

3423 3873 3221

200.0 0518 2.164 2.640

3.046 2717 3.101

300.0 0.350] 1.746 2.211

2575 2.704 2.388

400.0 0.264| 1.486 1.927

2197 2570 2.466

500.0 0212 1.308 1.735

2.055[ 2.305 2.348

600.0 01771 1.17/5 1.589

1.986] 2.018 2.283

700.0 0.152] 1.0/0 1.469

1.920, 1.925 2.254

800.0 0.133] 0.983 1.369

1.825] 1.864 2.178

900.0 0.119( 0.910 1.283

1.716] 1.799 2.083

1,000.0 0.107] 0.848 1.208

1.610] 1.734 1.932

30
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From table 3, using the Born method, the calculated TCS are
significantly higher than the TCS obtained using the three other
approximation methods. This is as a result of the fact that the Born
approximation is only valid at high electron incident energies. As

previously observed, the calculated TCS decrease with increasing
incident energies but no minima and maxima were observed for all
the elements considered.

Table 3: Computed Total Cross-Sections for Elastic Electron- Atom Scattering for He, Ne, Ar, Kr, Xe and Rn using the Born Approximation Method with the
Lenz-Jensen Potential..

ELENMENT
E(eV) He Ne Ar Kr |Xe RN
1.0| 30.950| 171.100| 289.500| 510.100| 698.500 | 990.400
50| 16.070] 108.600| 197.200[ 376.300] 538.500 [ 800.300
10.0| 9.415| 73.420 140.600 285.000 422.300 | 652.000
20.0( 5.121] 45300 91.110[ 196.200| 301.600 [ 485.700
30.0 3.518| 33.080] 68.170( 151.400| 237.400 [ 391.600
40.0 2.665[ 26.060] 54.570[ 123.600] 196.500 [ 329.600
50.0( 2.143| 21.520| 45.580| 104.700| 168.100 [ 285.400
60.0f 1.791| 18350 39.180[ 91000 147.100 | 252.100
70.0 1.538] 16.000[ 34.380| 80.510] 130.900 | 226.000
80.0| 1.346| 14.180] 30.630] 72.220| 118.000 [ 205.000
90.0( 1197 12730 27.630[ 65.500/ 107.400 [ 187.600
100.0| 1.078] 11550 25.160] 59.940| 98.640 | 173.100
200.0 0539 5.995 13340 32570, 54580 98.170
300.0 0.359] 4.046 9.086 22400 37.840( 68.820
400.0 0.270] 3.051 6.890[ 17.080] 28990 53.060
500.0 0.216] 2448 5549 13.810] 23500 43.190
600.0] 0180 2.044] 4.646] 11590 19.760| 36.440
700.0] 0154 1754 3995 9982 17.050| 31510
800.0] 0134 1536 3504/ 8767 14.990| 27.760
900.0] 0120 1366 3120 7.816| 13.380| 24.810
1,000.0| 0108 1230 2812 7051 12.080| 22430
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From table 4 and fig. 4, using the optical theorem method, the
calculated TCS for Kr, Xe and Rn exhibited a number of minima
and maxima in the energy range of 1 to 100 eV. No minima or
maxima were observed for He, Ne and Ar. Here also, the
calculated TCS decrease with increasing electron incident
energies.

The calculated TCS using the partial wave, Eikonal and optical
theorem approximation methods are generally in good agreement
with the experimental TCS obtained by Van den Biesen et al
(1982). However TCS calculated using the Born approximation
method are much higher than the experimental values for the
energy range considered. This is because the Born approximation
is only valid at high electron incident energies.

Table 4: Computed Total Cross-Sections for Elastic Electron- Atom Scattering for He, Ne, Ar, Kr, Xe and Rn using the Optical Theorem with the Lenz-Jensen

Potential.
ELEMENT
E (eV) He Ne Ar Kr |Xe RN
1.0| 14.100{ 17.970| 14.720| 15.650[ 15.030| 14.780
50| 7.362] 11.110] 10.930] 10.040| 9.741| 7.424
10.0 5558 8.350 9.390 8464 9.859 8.527
200| 3760 6477] 6622 7953 6.482| 5.435
300 2810 5683 6430 6.072] 6.788| 6.237
400| 2236 5115 55500 5362 5767| 6.063
500| 1854 4494 4900 5217 4802| 5.668
60.0| 1583 4126 4592 5266 4.864| 5117
700| 1381 3893 4539 5262 4563| 4.269
80.0| 1224 3692 4402 4823 4613| 3.837
90.0| 1100, 3500 4.165 4353 4.606| 3.997
100.0| 0998 3321 3932 4076 45%| 4.062
200.0 0518, 2310 2.862 3408 3.188 3.690
3000| 0350 1834 2381 2763 2978 2598
400.0| 0264 1541 2019 2384 2812| 2662
5000| 0212 1343 1800 2193 2436| 2536
6000| 0177 1198 1646 2095 2121| 2491
7000| 0152 1085 1522 1995 1997 | 2402
800.0| 0133 0994 1416 1874 1918| 2242
900.0| 0119 0918 1324 1751 1.856| 2078
1,000.0| 0.107] 0853 1244/ 16400 1.803| 1.904
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CONCLUSION

Computed Total Cross-Sections (TCS) of elastic electron-atom
scattering for the elements He, Ne, Ar, Kr, Xe and Rn are
presented. The TCS were calculated using the partial wave,
Eikonal, Born, and the optical theorem approximation methods
with the Lenz-Jensen potential, at incident energies of 1to1000 eV.
Results obtained using the partial wave, Eikonal and optical
theorem methods are in good agreement with the experimental
TCS values.
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