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ABSTRACT  
This paper deals with the coupled system of Navier-Stokes 
equations and temperature (Thermohydraulics) in a strip in the 
class of spatially non-decaying (infinite-energy) solutions 
belonging to the properly chosen uniformly local Sobolev spaces. 
The global well-posedness and dissipativity of the Navier-Stokes 
equations in a strip in such spaces has been established in Zelik 
(2007). Similar protocol is observed using maximum principle to 
obtain bounds for the temperature solutions in Boussinesq 
approximation.    
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INTRODUCTION 
In this paper, we consider the equation of coupled system of fluid 
and temperature in Boussinesq approximation. 
We consider Boussinesq equation in nondimensional form in the 
strip  Ω = ℝ × [0,1]. 
 
𝛿𝑡𝑢 +  𝑢 ∙ ∇𝑢 + ∇𝑝 = ∆𝑢 +
                                               +𝑒𝑛𝑇... (1.1)                        
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Which satisfies the zero flux condition; where ),( 10 uuu  is 

the velocity vector, 10 T
 

is the temperature at the bottom

01 T
 

is the temperature at the top, ne is the standard 

coordinate basis in ℝ2and the kinematic viscosity 0 : 

We consider the problem of thermal convection (heat transfer) by 
an incompressible Newtonian fluid. We give a brief overview as 
presented in Doering and Gibbon (2004) : 

In the first approximation, the local temperature of the fluid may 
be considered a passive scalar, i.e., a quantity characteristic of 
each particular fluid element whose space-time evolution is thus 
controlled by the fluid's motion. Thermal conduction between 
neighboring fluid elements is then taken into account by including 
a diffusive term and introducing another material parameter, the 
thermal diffusion coefficient. The influence of the temperature field 
on the incompressible fluid's motion is taken into account by 
introducing a buoyancy force into the velocity evolution equation. 
The origin of the buoyancy force is the observation that 
temperature variations typically lead to density variations which, in 
the presence of a gravitational field, lead to pressure gradients. 
The inclusion of density variations in the buoyancy force – while 
neglecting them in the continuity equation - and the neglect of the 
local heat source due to viscous dissipation constitute the 
approximate formulation known as the Boussinesq equations. 

Preliminaries: Uniform and Weighted Energy Spaces 
In this section, we introduce and briefly discuss the weighted and 
uniformly local spaces which are the main technical tools to deal 
with infinite-energy solutions, see Zelik (2007) for more detailed 
exposition. These tools will help us to obtain estimates for our 
equations (1.1-1.6) in unbounded domain  Ω = ℝ[−1,1].We 

explain the space as follows: Let us define 11

0 xB - a unit 

rectangle centered at )0,( 0x  represented as: 
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Let us briefly state the definition and basic properties of weight 
functions and weighted functional spaces as presented by Zelik 
(2003. Anthony and Zelik (2014). Zelik (2013) and the references 
therein. Which will be systematically used throughout this project 
(see also Efendiev and Zelik (2002) for more details). We start 
with the class of admissible weight functions. 

Definition 2.1. A function    ∈ locC (ℝ) is weight function of 

exponential growth rate  0  if the following inequalities 

hold: 

 

      ,0)(,  xexCyx
y






                     (2.2)                                                   
For a  x, y ∈ Ω = ℝ  
We now introduce a class of weighted Sobolev spaces in a 
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regular unbounded domains associated with weights introduced 
above. We need only the case where  Ω = ℝ × [−1,1] is a strip 

which obviously have regular boundary. One would like to ask 
why we need weighted Sobolev Spaces; recall that the uniformly 
local spaces encountered some deficiencies in that they are not 
differentiable when the supremum is involved but the weighted 
energy spaces resolve this problem. 
 
Definition 2.2.  

      })()(,{   dxxuxuLuL
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   𝑥, 𝑦 ∈ Ω = ℝ 

The uniformly local space  p

bL ,  consists of all functions 

  p

locLu  for which the following norm is finite 
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because all functions that are bounded in 
L are also bounded 

in 
2
b

L but the reverse is not true. 
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Similarly, the uniformly local Sobolev spaces )(s
b

H consist of all 

functions )( s

locHu  for which the following norm is finite: 
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Where 
sH is the space of all distributions whose derivative up 

to order s  is in 2L . The following Lemma establishes the 

relationship between the spaces 2


L and 2
b

L . 

Lemma 2.3. Let   be a weight function of exponential growth 

rate, where )()( 000
xxx xx  , satisfying

 dx2  then the following inequalities hold 
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Where 
1C and 2C depend only on C  and  . 
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This follows from the integral criterion for convergence i.e. 
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The opposite side of the proof takes 
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Before we conclude this section, we introduce a special weight 
function which would be essentially used in the sequel. 
Let 
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This weight, in addition, to (2.5) (which holds for every positive 𝜇), 

satisfies the following property: 

 )()()( 2 xCxCx   


           (2.9)                          

A bit more general are the weights 

,0,,)(  NNx N

 which are also the weights of 

exponential growth rate 𝜇 for any 𝜇 > 0 and satisfy the analog of 

(2.9) where the exponent 2 is replaced by
N

N 1
. 

In the sequel, we will need the Sobolev embedding and 
interpolation inequalities for the case of weighted spaces with the 

embedding constants independent of 0 . Following Babin 

and Vishik (1990)  and Robinson (2001), such inequalities can be 
derived from the analogous non-weighted situation utilizing the 

isomorphism uuT  


 between weighted and non-weighted 

spaces. 
 

Lemma 2.4. Let   be a weight function defined by (2.7). Then, 

for all l and of exponential growth rate, the map


T is an 

isomorphism between )(, plW
 
and )(

,


pl
W  and the 

following inequalities hold: 
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Where 1C and 2C are independent of  but may depend on l  

and p  

 

Proof let us take ,uV   then for
2
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(2.11)  shows isometry between spaces
2
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2
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procedure give isomorphism  between
pL and

pL . We show that 
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2,1W and 
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By Youngs’s inequalities and the relation that 
2

1
 (since 

only small values of  are important for us, for convenience, we 

assume that
2

1
 ), we have 
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This gives the left inequality of (2.10) (in the particular case

2,1  pl ). Let us prove now the right one: 
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By Cauchy Schwartz, Young’s inequalities and using the fact that 
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This gives the right inequality of (2.10).Thus, for the particular 

case 2,1  pl , (1.17) is proved. The proof in a general 

case is analogous and we leave it to the reader; we have the 
following relation 
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As required 
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Next corollary gives the weighted analogue of one interpolation 
inequality useful for what follows, see Triebel (1978). 

Corollary 2.5. Let   be defined (2.7) and let 
2,1

Wu  then 

the following interpolation inequalities hold 
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Where the constant C is independent of 0 . 
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We know that for unweighted case, the embedding of
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3L  and 

1H we have the following equation with exponent : 
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Taking 2,1WV    in (1.26) and using Lemma 2.4, we obtain 

(2.14). This ends the proof. 
 
Now, in order to obtain the proper estimates for the solutions in 
the uniformly local spaces, one can use the so-called weighted 
energy estimates as an intermediate step and utilize the relation 
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Where  is a property chosen (square integral) weight function, 

2.7. 

We assume that ),( Tu , is a sufficiently regular solution of the 

system (1.1) – (1.6) satisfying the following properties: 
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Where  

 10 0  T                                                (2.22)                                          

 
We want to obtain estimates for T and u in uniformly local spaces 
as the ones obtained for the solutions of the Navier Stokes 
system, see Zelik(2007) for more expositions. The key technical 
tool for that is the maximum/comparison principle for temperature 
which we will consider later. 
 
Maximum Principle for Temperature 
In this subsection, we consider equations (1.4)-(1.6) for 
temperature assuming that u is a given vector field satisfying 

(1.1) ( u  is not necessarily a solution of the Navier-Stokes 

equation. Our aim is to show that the inequality (2.22) at time 

moment 0t
 
implies analogous inequality for all 0t . To 

justify the maximum/comparison principle, we need the following 
properties of the truncation function. 

Lemma 3.1. Let )(1  bHV . Then, the truncation functions
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In particular, 
 

 0),(),(   txTtxT                                    (3.1)        

 

0),(),(   txTtxT                                   (3.2)
 

 
Almost everywhere 
Now, we will state the prove of the main result of this subsection. 

Theorem 3.2. Let u and T  satisfy equation (1.1)-(1.6), and 

1)0,(0  xT  for almost all x  then, 

  ),(,1),(0 txtxT
                                                                           (3.3)  
Proof: 

Let us first prove that 0T almost everywhere. To this end, 

we multiply (1.4) by 
2T , where T is the truncation ofT

and )(x  is the weight function
1)( 1

x
ex






 . We 

integrate by parts and use   TTT and 


T to obtain 

T estimates as follows: 

 0)),(()(
2

1
,

2

2   TTTuTTTT
dt

d
L




     (3.4)          
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then using (3.1) and (3.2) to obtain 
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By using that 0divu , we simplify the nonlinearity to get the 
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Using that  satisfies (2.9), we see that 
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Using Ladyzhenskaya inequality, 
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Thus we have the estimate for the nonlinearity: 
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

 (3.10)  
 

Substituting this estimate into (3.5) we obtain  

2
2

22222

2222222
2

2 


LLLLLLL

TvTuCTuT
v

T
dt

d
 

            (3.11)         

Taking 0 small enough reduce to: 

 

   
2

2

2

1

2

222
 LLL

TcTcT
dt

d
       (3.12) 

 
Dropping the second term on the LHS of the equation (3.12) 

we obtain: 
 

0
2

2

2

22
 

 LL
TcT

dt

d
 

And applying gronwall and taking supremum with respect to all 
shifts, we obtain the following estimate: 

 

 
tc

LL
eTT 2

22

22

)0(


                        (3.13) 

Since we know 0)0,(  xT we may conclude from above 

that: 
 

  0)()1(
2

2  
L

tT                            (3.14) 

We proceed similarly bearing in mind that 

0)1),((   txT to prove that: 

 
tc

LL
eTtT 2

22

22
)0()1()()1(


        (3.15) 

Where 0)0()1(
2

2  
L

T . By similar argument we 

conclude that: 

0)()1(
2

2  
L

tT  

Thus, 3.3 follows immediately. This ends the proof. We state a 

corollary that will give us a bound in time for T . 

Corollary 3.3. Let T  be the solution of (1.4) then let, 

  ];,0[2];,0[2

2

  TT LL
uCCT



           (3.17) 
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Proof: We first construct an auxiliary function
2

1
)( 2x

xT




which satisfies (1.5) so that  
 

 ),( 2xtT      )( 2xT + ),(
~

2 txT            (3.18) 

 
We recall (1.4) as repeated here: 

0)(  TTuTt  

 
Then we substitute (3.18) into the equation to obtain the 

following: 
 

 0
~~

),(),(
~

 TTuTuTt
    (3.19)             

Which simplifies to: 

2

~~
),(

~ 1u
TTuTt   

We perform our usual multiplication by 
2~

T and integrate 

over the domain to obtain: 

)
~

,
~

),((
~~

2

1 2
22

22




TTuTT
dt

d

LL
  

 
2

~

2

~

2

~

8

22

2

2
2

1 2222
 

LLLL
TT

C

Tu 



   (3.21) 

 

Similarly, we find the estimate for nonlinearity in T
~

and u
analogous to the one derived earlier in (3.10). Thus, 

 
 







 

2222

222

~~
),),((

bbb LLL
TCTuCTTu 

(3.22)

()

      

Substituting (3.22) into (3.21) and absorbing similar terms we 
obtain: 

 

4

~
)1(

~
)1(

~
2

22222 2

22222

b

bbbbb

L

LLLLL

u
TuCTuCT

dt

d
 

                                       (3.23) 

By simplifying the above we have: 

 
2

2

22

2

2

22

~

4

~~

 L

L

LL
TC

u
TCT

dt

d
b

b



      (3.24) 

 
Integrating (3.24) between t and t+1we obtain: 

  


2
1

22

222
)(

~~
)1(

~

 L

t

t
LL

tTdtTtT
b

                                       






1
2

1
2

22

~

4

1
t

t
L

t

t

L
dtTCdtu



   (3.24) 

We drop the first term on the LHS of (3.25) and use our 

already obtained bounds for ),( txT as given in (3.3): 

  


2
1

2

];,0[22

0

~
supsup TL

t

t
Ltx

uCCdtT


  (3.24) 

 
This ends the proof. 
 
Apriori Estimate for the Full Boussinesq System 
We obtain estimate for the full Boussinesq system by using the 
results of previous Lemma and corollary. 

 
Theorem 4.1. If velocity u and temperature T satisfy equations 
(1.1)-(1.6); and for 

  1)0,(0  xT                                  (4.1) 

the following hold true: 

 1),(0  txT                                    (4.2) 

Then, we can estimate (1.1)-(1.6) as follows: 

 CCuCuT
LLL

 2

0 )( 222


     (4.3) 

 
Next, we apply the usual principle of treating (1.1) as we treated 
the nonlinear Navier-Stokes equation in the previous section for 

the case of zero flux condition with Ten
serving as the forcing 

term. We sketch the steps of the proof without too many details. 

First, we take the scalar product of (1.1) with
 vu 2 :  

(𝜕𝑡𝑢, ∅2𝑢 − 𝑣∅) + (𝑢. ∇𝑢, ∅2𝑢 − 𝑣∅) − 

−𝜇(∆𝑢, ∅2𝑢 − 𝑣∅) + (∇𝑝, ∅2𝑢 − 𝑣∅) = 

= (𝑇, ∅2𝑢 − 𝑣∅)                 (4.4) 

And like before, we obtain: 
𝑑

𝑑𝑡
(
1

2
||𝑢||

𝐿∅
2

2
− (𝑢, 𝑣∅) + 

+𝑐||∇𝑢||
𝐿∅

2

2
) (1 − 𝜀 sup

𝑡𝜖[0,𝑇]
||𝑢(𝑡)||

𝐿∅
2

2
) + 

+𝛾||𝑢||
𝐿∅

2

2
≤ 𝐶||𝑇||

𝐿∅
2

2
+ 𝜀2 sup

𝑡𝜖[0,𝑇]
||𝑢(𝑡)||

𝐿∅
2

2
 (4.5)  

                                   
 

It is easy to see that 1)(sup 2

],0[


 


L

Tt

tu , hence we 

obtain: 

212
))0(()( 22 CuCtu

bLL
 



 

 

By a particular choice of   12))0((
4

1
2


 Cu

L
 we 

obtain the following estimate: 
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22

))0(( 22 CuCu
bb LL
                   (4.6) 

 

Coupling estimates (3.17) and (4.6) we obtain full estimate for the 

Boussinesq system as in (4.3) repeated here: 

 0,)()( 2

0 222  tCCuCtuT
bbb LLL

      (4.7)       

This completes the proof. 
Uniqueness and further regularity results for the solutions may be 
obtained in a standard way like that of  Navier-Stokes Equations; 
see Zelik(2007) for more on this. 
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