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ABSTRACT  
In this paper, we study Navier – Stokes Equations in an infinite 
strip     [    ]. We used the Uniformly Local Spaces as 
with focus on model situation where pressure has been omitted in 
the momentum equation. We obtain a priori estimates for the 
solutions and use the phase – portrait analysis to obtain bounds 
for them. We caution that the method used in this paper cannot 
be applied in general situation but is peculiar to only 
circumstances where the pressure term has been artificially 
removed. 
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INTRODUCTION 

In this paper we seek to find the weighted energy estimate, in 

uniformly local spaces, of the Navier – Stokes Equations in an 

infinite strip by omitting the pressure term. The phase portrait 

method has been used to study the solutions and obtain 

bounds for them. 

 The Navier Stokes Systems: 

{
    (   )                  
                             

                                                        

(1.1) 

is considered in     [    ]. 

 

The global in time estimate for    Navier – Stokes equations 

was first obtained for bounded domains in the works of 

Ladyzhenkiya(1972). Later on, the unbounded domain case 

was treated by Abergel(1979) and Babin(1992), and the forcing 

term was required to lie in some weighted space. However the 

dimension estimate of the attractor for more general forces. 

We know that, based on energy estimate, we can obtain 

energy solutions for (1.1) by multiplying through by   and 

integrating over the domain   and use the fact that the 

nonlinear term disappears: 

((   )  )      
( ( )  ) ( )  ( )                                            

(1.2) 

For every divergence free vector field with Dirichlet boundary 
conditions. 
The situation is completely different when the domain   is 

unbounded because the space of square integrable (divergence 
free) vector field is not a convenient phase space to work with as 
we are unable to multiply   because doing so the integral will not 

make sense. In an unbounded domain, the quest for estimates is 

intended to have the assumption that     ( )   ( )  
           which is too restrictive a decay condition. So under 

this choice of the phase space many hydrodynamical objects like 
Poiseuille flows (infinite energy), Kolmogorov flows etc. cannot be 
considered in the circumstances; because of the above 
restrictions hold on our model equation (1.1) we are unable to 
consider constant solutions space periodic solutions etc. which 
will hinder us from capturing physically relevant solutions. 

Overcoming the above obstacles is a work in Zelik(2007) where 
the weighted energy theory was fully developed for    Navier – 

Stokes problem in a strip     [    ]. In this paper, we 

want to neglect the pressure term of Navier – Stokes system by 
not adopting any specific method available to excluding pressure. 
We work in uniformly local spaces and use the phase portrait 
method to determine bounds for the amended Navier – Stokes 
system. 

PRELIMINARIES: UNIFORM AND WEIGHTED ENERGY 
SPACES 

In this section, we introduce and briefly discuss the weighted 

and uniformly local spaces which are the main technical tools to 

deal with infinite-energy solutions, see Zelik (2007) for more 

detailed exposition. These tools will help us to obtain estimates 

for our equations (1.1-1.6) in unbounded domain    
 [    ].We explain the space as follows: Let us define
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Let us briefly state the definition and basic properties of weight 

functions and weighted functional spaces as presented by Zelik 

(2003), Anthony and Zelik (2014), Zelik (2013)  and the 

references therein. Which will be systematically used throughout 

this project (see also Efendiev and Zelik (2002)  for more details). 

We start with the class of admissible weight functions. 

 

Definition 2.1. A function     
locC ( ) is weight function 

of exponential growth rate  0  if the following inequalities 

hold: 
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We now introduce a class of weighted Sobolev spaces in a 

regular unbounded domains associated with weights introduced 

above. We need only the case where      [    ] is a strip 

which obviously have regular boundary. One would like to ask 

why we need weighted Sobolev Spaces; recall that the uniformly 

local spaces encountered some deficiencies in that they are not 

differentiable when the supremum is involved but the weighted 

energy spaces resolve this problem. 

Definition 2.2.  
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The uniformly local space  p

bL ,  consists of all functions 

  p

locLu  for which the following norm is finite 
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because all functions that are bounded in 
L are also bounded 

in 
2
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L but the reverse is not true. 
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Similarly, the uniformly local Sobolev spaces )(s
b

H consist of all 

functions )( s

locHu  for which the following norm is finite: 
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Where 
sH is the space of all distributions whose derivative up 

to order s  is in 2L . The following Lemma establishes the 

relationship between the spaces 2


L and 2
b

L . 

 

Lemma 2.3. Let   be a weight function of exponential growth 

rate, where )()( 000
xxx xx  , satisfying

 dx2  then the following inequalities hold 
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Where 1C and 2C depend only on C  and  . 
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This follows from the integral criterion for convergence i.e. 
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Before we conclude this section, we introduce a special weight 
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function which would be essentially used in the sequel. 

Let 
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This weight, in addition, to (2.5) (which holds for every positive  ), 

satisfies the following property: 

    )()()( 2 xCxCx   


 

A bit more general are the weights 

,0,,)(  NNx N

 which are also the weights of 

exponential growth rate   for any     and satisfy the analog of 

(2.9) where the exponent 2 is replaced by
N

N 1
. 

In the sequel, we will need the Sobolev embedding and 

interpolation inequalities for the case of weighted spaces with the 

embedding constants independent of 0 . Following Babin 

and Vishik (1990); and Robinson (2001), such inequalities can be 

derived from the analogous non-weighted situation utilizing the 

isomorphism uuT  

 between weighted and non-weighted 

spaces. 

 

 

Lemma 2.4. Let   be a weight function defined by (2.7). Then, 

for all l and of exponential growth rate, the map


T is an 

isomorphism between )(, plW
 
and )(

,
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W  and the 

following inequalities hold: 
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Where 1C and 2C are independent of  but may depend on l  

and p  
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By Young’s inequalities and the relation that 
2

1
 (since 

only small values of  are important for us, for convenience, we 

assume that
2

1
 ), we have 
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This gives the left inequality of (2.10) (in the particular case

2,1  pl ). Let us prove now the right one: 
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By Cauchy Schwartz, Young’s inequalities and using the fact that 
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                                          (2.13) 

  

This gives the right inequality of (2.10).Thus, for the particular 

case 2,1  pl , (1.17) is proved. The proof in a general 

case is analogous and we leave it to the reader; we have the 

following relation 
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Next corollary gives the weighted analogue of one interpolation 

inequality useful for what follows, see Triebel (1978). 

 

Corollary 2.5. Let   be defined (2.7) and let
2,1

Wu  then 

the following interpolation inequalities hold 
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Where the constant C is independent of 0 . 

 

Proof  

We know that for unweighted case, the embedding of
H into 

3L is performed by the following Sobolev embedding theorem: 
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Taking 2,1WV   
  in (1.26) and using Lemma 2.4, we obtain 

(2.14). This ends the proof. 

Now, in order to obtain the proper estimates for the solutions in 

the uniformly local spaces, one can use the so-called weighted 

energy estimates as an intermediate step and utilize the relation 
23

2
)(.

3 sup~
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s
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Where  is a property chosen (square integral) weight function, 

2.7. 
 
ESTIMATES FOR NAVIER – STOKES EQUATIONS WITHOUT 
PRESSURE 

We want to prove that any sufficiently regular solution of the Navier – 
Stokes proble; (1.1) in a cylinder satisfies the uniformly local 
estimate: 

‖ ( )‖  
 ( )   (‖ ( )‖  

 ( ))   (‖ ‖  
 ( ))            (3.1) 

for some monotone function  . The first difficulty here is that, in 

contrast to the case of usual energy solutions, the function   
‖ ( )‖  

 ( )
  is not differentiable due to the presence of supremum 

in the definition of   
  - norm. This does not allow us to obtain 

estimate (3.1) directly by multiplying the equation by the appropriate 
factor and use Gronwall’s inequality. Instead, following the general 
strategy in, we deduce the weighted energy estimates as an 

intermediate step; multiplying the equation by     where   is a 
proper weight function described in equation 2.7.  If we succeed to 

verify the analogue of (3.1) in all weighted spaces     

 ( ) 

uniformly with respect to all shifts     , the desired uniformly 

local estimate will obtained by taking the supremum with respect to 
     and using Lemma 2.2. Thus, we need to multiply equation 

(1.1) by     where    ( ) is an appropriate weight function in 
   direction. But the nonlinear term will still remain unresolved since 

it will not disappear as in the bounded case. In fact it will produce a 

cubic nonlinearity     . Note that the cubic term is not clear how to 

control the cubic term in order to produce an a priori estimate. 

Another setback is the fact that     is not divergence free so the 

pressure   does not disappear in the weighted energy equality and 

(      ) will pose a problem closely related with finding a 

reasonable extension of the Helmholtz projector (to divergence free 
vector fields) to uniformly local spaces. In summary, we have at least 
two hurdles to overcome in order to close our estimates: to estimate 

the cubic term     produced by the nonlinear term and (     ) 

when we multiply the momentum equation (1.1) by     and 
integrate over the domain  . Let us put this in perspective to have a 

clearer view of the terms when we multiply (1.1) by 

  
 (  )   (        (  ) is defined as in (2.7) and   is a small 

positive constant to be determined later) and integrate over   to 
obtain: 

(       )  ((   )     )  (       )  (       )  
(     )                   (3.2) 
and hence,  
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  ((   )     )   ‖ ‖
  
 

  (      )  

(     )   (       )     (3.3) 

Next, we try and resolve the nasty terms in (3.3) i.e. the second and 
fourth terms on the LHS; this is to help simplify them as much as 
possible. Using 2D coordinates; we now seek to estimate the non – 
linear term as follows: 

 ∑ 
 
        

     

 

   

  ∑(     
        

       

 

   

   
      

 )   

applying the divergent – free condition and collecting like terms we 
obtain 

 ∑ 
 
     

       

 

   

  ∑ 
 
  

      
   

 

   

 

Simplifying the above sum integral with careful consideration that   

is applied in the    direction we obtain: 

 ∑  
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  )    
 

 
(    

     (  
    

 ))  

( |  |     )                                                                                                                   

(3.4) 
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Next, we have the pressure term to resolve but it will simply not 
disappear because the equation: 

 
 
           

 
  (   )  

   
 
 [         ]  

  (      ) 

Butm the application of the divergence free condition did not help 

exclude the term with pressure (      ) – a difficult piece to 

estimate. 
Just for the moment, we shall proceed with other terms of Navier – 
stokes equation without the term containing the pressure and 
compute the estimate with the impression that we shall return later 
with good theory that will enable us overcome the difficulty posed by 

(      ) and eventually close our estimate for Navier -  Stokes 

equation in an unbounded domain     . 

Now, recall (3.3) using (3.4) and ignoring the term (      ) we 

have: 
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 (       )                  (3.5) 

The non – linear term is then estimated using corollary 2.1 and 
Poincare inequality to obtain the following: 
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(3.6) 
Let us tidy up these bits of the Navier – Stokes equation and write 
(3.5) using (3.6) to obtain   
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By Cauchy Schwartz inequality on the RHS of (3.7) we obtain 
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By Young’s inequality on (3.8) we get 
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This simplifies to: 
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Where   is a positive constant to be determined later. Applying 

Poincare inequality on the second term of the RHS of (3.10) and 
assuming     is small enough; the equation reduces to: 
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(3.11) 

Take that 
 

 
 

  

 
 for the purpose of achieving a positive linear term 

that will afford us not only global existence of solution but also 
dissipative. 
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Where estimate (2.1) from lemma 2.1 and    
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used in order to obtain the RHS of (3.12) and constant          

are independent of    . We concisely get 
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   ( ) to obtain the following differential 

inequality: 
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  ; we have, first that  
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(3.15) 

Now, recall (3.14) and write it as:   ( )    ( )  
  

 
     ( ) 

so that for the initial data  ( )      ‖ ( )‖  
 

  and by the 

above scaling, with its initial condition ( )   ‖ ( )‖  
 

 . 

 

We shall seek to solve (3.14) to prove that it has global bounds 
for solutions because of the positive linear term on the LHS of 
(3.14). we state a Lemma involving a two stage proof of the 
estimate for (3.14): The first part of the proof considers the case 
of a simple ODE, while the next considers a system of ODE: 
Theorem 4.1 Let y(t) =    ( ) be absolutely continuous and 

satisfy for every small   the following 
differential inequality: 

  ( )  
 

 
 ( )        
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For  some                       . Then 
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And constant                        . 

 
Proof: 
This portion of the proof will use the phase-potrait technique. 
Given 
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                                     (   ) 
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           ( )    ( )                                          (   ) 

Bearing in mind that all solutions (4.5) lies below (4.6) with the 
same initial condition, we conclude that  ( )   ( ) 

                                      ( )  
   
To study the dynamics of ODE (4.6), we find the following 
equilibrium solutions: 
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and 
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see that   ( ) remains bounded as     and   ( )= 
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Looking at the phase-portrait of the ODE, we get full description 

about the dynamics: There is a stable equilibrium near    
  

 
, 

and all solutions around it which are less that    are attracted to 

it. We know that w(t) will decay for all time tending to 
  ( )     ( )  [  ( )   ( )] . Thus in that case we simply 
have  ( )   ( )   ( ). The above choice of the initial 

condition is possible if                         , 

otherwise w(t) will blow up in finite time, we also exclude the 
choice of                   ( )    ( ). 

But in the case of  ( )    ( ) the solution will grow tending to 

  ( )        So in that case,  ( )    ( )  Finally, in both 

cases,  ( )   ( )    ( )            ( )  
   

 
 we 

obtain 

 ( )      ( )     (     ) 

We have shown how to derive the desired a priori estimate for the 
NSE in uniformly local spaces in the model situation where the 
pressure term is not taken into account. The phase portrait 
analysis has been used to get bounds for the solutions. 
Existence, uniqueness and further regularity of solutions may be 
obtained in a standard way by the Galerkin approximation. We 
must emphasize here, however, that this method applies only to 
model situation where pressure is formally omitted. 
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