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ABSTRACT  
A new class of numerical methods for Volterra integro-differential 
equations of the second order is developed. The methods are 
based on interpolation and collocation of the shifted Legendre 
polynomial as basis function with Trapezoidal quadrature rules. 
The convergence analysis revealed that the methods are 
consistent and zero stable, hence their convergence. Numerical 
examples revealed that the methods compared favourably with 
existing standard methods. 
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INTRODUCTION 
This paper discusses the numerical solution of the second order 
initial value problems of the Volterra type integro-differential 
equations of the form: 
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METHODOLOGY 
The methods of solution for second order initial value problems 
for ordinary differential equations of the form: 
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is considered, as discussed by Fatunla (1991), Awoyemi and 
Kayode (2005), Adesanya et al. (2009). These papers 
independently implemented their methods in predictor-corrector 
mode which is believed to have some setbacks. In order to cater 
for the shortcoming of the predictor-corrector methods, the block 
method was adopted. The block method gives solutions at each 
grid within the interval of integration without overlapping, and the 
burden of developing separate predictors is eradicated. Some 
earlier works on block methods include those of Jator (2007), 
Jator and Li (2009), D’Ambrosio et al. (2009), Fudziah et al. 
(2009), Yahaya and Badmus (2009), Awoyemi et al. (2011) and 
Mehrkanoon (2011), even as all of them proposed a discrete 
block methods that do not enable evaluation at all points within 
the interval of integration. In this paper we propose a continuous 
block method and its modification to handle second order initial 
value problems of the Volterra type of the form (1.0). Modifying 
(2.0), we can use it to solve systems of equations arising from the 
discretization of the second order initial value problems of the 
Volterra type (1.0). The idea is to approximate the exact solution 
𝑦(𝑥) of (1.0) in the partition 𝐼𝑛 = 𝑎 < x0 < x1 < ⋯ < xn = b 

of the integration interval [𝑎, 𝑏] with a constant step size  ℎ by 
the shifted Legendre polynomial of the form: 
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where ),(, 2 baCyci   and  nxxt   

The second derivative of (2.1) is substituted into (1.0) to obtain a 
differential system of the form 
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Now interpolating (2.1) at 𝑥𝑛+𝑟 , 𝑟 = 0 and 𝑘 − 1 and collocating 

(2.2) at 𝑥𝑛+𝑟 , 𝑟 = 1, … , 𝑘 and after some substitutions and 

manipulations, we obtain the continuous scheme of the form: 
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where, 

   



n

j

jjnnjjn zjnyxxKwhxz
0

0 0,,,, …………. (2.4) 

and the weights 𝑤𝑛𝑗depend on the choice of the quadrature rule. 

In this work, the Trapezoidal quadrature rule is adopted. 
Evaluating (2.3) for  𝑘 = 4, we obtain the continuous linear 

multistep method after some substitutions and manipulations of 
the form: 
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Evaluating  (2.6) and its first derivative at the points 𝑥𝑛+1, 𝑥𝑛+2, 

𝑥𝑛+4 and 𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3 and 𝑥𝑛+4 respectively with 

  𝑡 = (𝑥 − 𝑥𝑛) and substituting in (2.5), we obtain the following 

discrete schemes: 
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Similarly, evaluating (2.3) for  𝑘 = 5, we get  
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Evaluating  (2.9) and its first derivative at the points 𝑥𝑛+1, 𝑥𝑛+2, 

𝑥𝑛+3, 𝑥𝑛+5 and 𝑥𝑛𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3, 𝑥𝑛+4 , 𝑥𝑛+5  

respectively with   𝑡 = (𝑥 − 𝑥𝑛) and substituting in (2.8), we 

obtain the following main discrete schemes 
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Analysis of the Methods 
 
Order and error constant 
Expanding the block solution of (2.7) and (2.10) in Taylor’s series 
and collecting like terms in powers of  ℎ, we obtain the following 

respectively: 
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Hence the block method (2.7) has order 𝑝 = (5,5,5,5,5,5,5,5)𝑇 and 
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while the block method (2.10) has varying orders of 𝑝 = 5 and 6 

with varying error constants of 
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Consistency 
Following Lambert (1991) and Fatunla (1991), the methods are 
consistent since they have orders   𝑝 = 5, 6 > 1 

 
Zero stability 
The blocks (2.7) and (2.10) are said to be zero stable if the roots 
𝑧𝑟 , 𝑟 = 1, … , 𝑛 of the first characteristic polynomial  �̌�(𝑧), 

defined by 
𝑝(𝑧) = 𝑑𝑒𝑡|𝑧𝑄 − 𝑇| 

satisfy |𝑧𝑟| ≤ 1 and every root with |𝑧𝑟| = 1 has multiplicity not 

exceeding two in the limit as ℎ → 0 
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From the block (2.7), we have 

𝑧8 − 𝑧6 = 0  and  𝑧 = (0,0,0,0,0,0, −1,1) 
From the block (2.10), we have 

𝑧10 − 𝑧8 = 0, 𝑧 = (0,0,0,0,0,0,0,0, −1,1) 

These show that the block methods are zero stable, since all 
roots with modulus one do not have multiplicity exceeding the 
order of the differential equation in the limit as  ℎ → 0. 

 
Convergence 
Following Lambert (1973) and Fatunla (1991), the methods are 
convergent since they are both consistent and zero stable 
 
Numerical Illustrations 
The following numerical experiments are performed with the aid of 
MAPLE 18 software package in order to further affirm the earlier 
established convergence of the methods. 
 
Example 1 
The second order linear Volterra integro differential equation 
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The exact solution is   xxxy cossin   (AL-Smadi et 

al., 2013). 
The errors for 𝑛 = 100 at different step-numbers are displayed 
in Tables1-2 
 
Example 2 
The second order nonlinear Volterra integro differential equation 

           ,10,10,00,02sinh
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The exact solution is 𝑦(𝑥) = 𝑠𝑖𝑛ℎ𝑥 (AL-Smadi et al., 2013). 

The errors for 𝑛 = 50  at different step-numbers are displayed in 

Tables 3-4 below 
 
Table 1: Comparison of Numerical Results of Example 1 for 𝑛 =
100 

 
 
Table 2: Comparison of Numerical Results of Example 1 for 𝑛 =
100 

 
 
Table 3: Comparison of Numerical Results of Example 2 for 𝑛 =
50 

 
 

Table 4: Comparison of Numerical Results of Example 2 for 𝑛 =
50 

 
 
Discussion of Results  
Based on the findings from this work, we have successfully 
established that the shifted Legendre polynomials can as well be 
used as basis function in the formulation of both continuous and 
discrete multistep method for solving the Volterra integro 
differential equations. The continuous formulation which was 
obtained via interpolation and collocation was evaluated at some 
selected grid points to generate the discrete block method. Unlike 
the discrete methods approach where additional equations are 
supplied from a different formulation, all our additional equations 
are obtained from the same continuous formulation for each step 
number k. The method was then applied in block form as 
simultaneous numerical integrators over non-overlapping 
intervals. 
 
Conclusion 
The performance of the newly constructed method on linear and 
as well as nonlinear Volterra integro-differential equations 
increases with increase in the step number of the methods as can 
be seen with the results obtained with the five step block method 
is better than that obtained with four step method and the 
accuracy of the results improve as the step sizes reduces. 
Generally, the new methods were found to compare favourably 
with the existing methods in terms of accuracy. 
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