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ABSTRACT  
This paper proposes a class of generalized two-step Numerov 
methods, a block hybrid type for the direct solution of general 
second order ordinary differential equations. Both the main 
method and additional methods were derived via interpolation and 
collocation procedures. The basic properties of zero stability, 
consistency and convergence of these methods were also 
investigated. Results from numerical examples show significant 
improvement. 
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INTRODUCTION 

Consider the general second order ordinary differential equation 
of the form:  

),,( yyxfy      (1.1) 

 
with initial conditions 
 

0)(,)( yayyay a 
                      

(1.2) 

 
In particular, (1.1) arise in many physical phenomena such as 
electrical circuit, spring and buoyancy problems. Many of these 
problems may not be easily solved analytically; therefore the 
development of numerical method(s) becomes inevitable. 
Second order ordinary differential equations have attracted 
considerable attention and its theoretical and numerical studies 
have appeared in relevant literature. 
 
The popular approach for solving (1.1) is by converting the 
problem to a system of first order ODE and then solving it using 

numerical method like the KR  method and Linear 
multistep methods (Lambert, 1973 and 1991; Fatunla, 1988 and 
1991). The major drawback inherent in this approach has been 
highlighted by Jator [6 and 7], Mehrkanoon [12], Awoyemi and 
Idowu [1] to include: Complicated computational work and 
lengthy execution time. 
 
The studies on direct approach to higher order ODEs 
demonstrated the advantages in speed and accuracy. Some 
attention has been focused on direct solution of (1.1), Fatunla 
[1991] suggested the zero-stable 2-point block method to solve 
special second order ODE’s in which the first derivative is 

absent. Omar et al. [13], Malid and Suleiman [10] studied 
parallel implementation of the direct block methods. The 
following scholars also study the direct numerical solution of 
(1.1), Onumanyi et al. [14]; Ismail et al. [5]. 
 

In this paper, a direct numerical solution to the general second 
order ODE’s of the form (1.1) is proposed without recourse to the 
conventional way of reducing it to a system of first order ODE 
(Chan et al., 2004). We developed generalized schemes of 
continuous linear multistep methods (CLMS) of hybrid type via 
multistep collocation technique. This method helps to provide a 
continuous numerical scheme which accommodates all hybrid 
points, so that on substitution of an off-grid point, a hybrid scheme 
is obtained.  
   
Derivation of the Block Hybrid Method  

The hybrid collocation method that produces approximations 

knkn yy 
,    to the general second order ODEs is given in the 

form: 
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and the continuous formulation of (2.1) given in the form: 
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In order to obtain (2.2), we approximate the solution by interpolating 

the function )(xY  given by:
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j xxY 
 
                  (2.3) 

where, 
 

i) ],[ bax   

ii) j  are unknowns coefficients to be determined.  

iii) r  is the number of interpolations for kr 1 and  

iv) s  is the number of distinct collocation points with 0s   

v) q  is a chosen off-grid interpolation point. 

The collocation approximation is constructed by imposing the following 
conditions: 
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1,...,2)1(0,)(   rjyxY jnjn  
                  

 (2.4)  

  kjvvjyxY nn ,...,1,0,,,,)( 21 
     

 (2.5)  
 

where 
1v and 

2v are not integers. 

 
Interpolating (2.3) at grid and off-grid point, while collocating (2.4) 
at some off-grid point(s) leads to a system of equations which can 
be put into matrix form: 

IDC                                                                                   

 (2.6) 
 
where,  

I is the identity matrix of dimension )()( rsrs  , C and 

D being square matrices of dimension )()( rsrs   

each. Matrix D  is inverted to obtain the columns of 
1 DC

which gives the continuous coefficients )(),( xx qj   and 

)(xj in (2.2). 

 
Derivation of Two-Step Block Hybrid Numerov Method (BhyNM 
1): with one off-grid interpolation point. 

We consider 3,3  sr and 
2

1
q

 
and equation (2.2) 

yields 
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Equation (3.1) can be put into matrix form (2.6) where D
 

is 
obtained as: 
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and the following schemes are derived from (3.2) namely: 
Main Method: 
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and equations of the first derivative given by: 
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Derivation of Two-Step Block Hybrid Numerov Method (BhyNM 2): 
with two off-grid interpolation points. 

We consider 3,4  sr and 
2

3
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where matrix D  is 

obtained as 
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and the following equations are obtained: 
Main Method: 
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Evaluating 1st derivative at some grid and off-grid points yield the 
following equations: 
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Derivation of Two-Step Block Hybrid Numerov Method (BhyNM 3): 
with three off-grid interpolation points. 

We consider 3,5  sr with 
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And the following equations are obtained: 
Main Method: 
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Equations of the first derivative given by: 
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(5.3) 

 
 Order, Consistency, Zero-Stability of the Methods 
Extending the idea of Henrici [4] and Jator [6], the linear difference 

operator L associated with (2.2) is defined by 
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where, )(xy is an arbitrary function continuously differentiable on the 
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second derivative )( jhxy  about x and collect the terms to 
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Definition 6.1 
The method (2.2) is said to be of order p if 

0... 110  pccc and 02 pc where 2pc is 

called the error constant, 
  )(22

2 n

pp

p xyhc 

  is the 

truncation error at point nx . 

 
Definition 6.2 

A linear multistep method (2.2) is consistent if it has order 1p . 

Definition 6.3 
The block method of the form (3.3), (4.2) and (5.2) is said to be zero 

stable if as 0h , the roots kjj )2(1,  of the first 

characteristic polynomials )( is given by 
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Satisfies 1 the multiplicity must not exceed two, Fatunla [2]. 

 
Definition 6.4 
A linear multistep method (2.2) is convergent iff it is consistent and 
zero-stable. 
As a consequence to definitions (6.1) and (6.2), the block hybrid 
method of the form (3.3), (4.2) and (5.2) respectively is consistent. 
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Zero Stability of BhyNM 1 
To analyze the zero stability, the block hybrid method (3.3) is 
normalized. Zero stability can be described by matrix finite difference 
equation as follows: 
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and constant matrices 

3I = 33 identity matrix. 
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The first characteristic polynomial is define as 

  0det)( )1()0(  AA  

         0)1(2      

Since the roots of the first characteristic polynomial has modulus less 
than or equal to one, the block method (3.3) is zero stable. Hence, by 
definition (6.4), the method is convergent. 
Zero Stability of BhyNM 2 
The block hybrid method (4.2) can be described equation (6.4) where, 
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and
4I = 44 identity matrix. 
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and equation (6.3) becomes 

  0det)( )1()0(  AA  

 0)1(3     0,1 4321    

We have therefore shown that the block hybrid method (4.2) is zero-
stable. Following definition (6.4), the method is convergent. 
Zero Stability of BhyNM 3 
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The block hybrid method (5.2) can be described equation (6.4) where, 

5I = 55 identity matrix. 
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then equation (6.3) yields: 

  0det)( )1()0(  AA  

         0)1(4     

0,1 54321    

By definition (6.3), the block method (5.2) is zero stable. Hence, 
by definition (6.4), the method is also convergent. 
 
1.  Numerical Examples and Discussion. 

To illustrate the effectiveness of the block hybrid Numerov type method 

(BhyNM 1, BhyNM 2 and BhyNM 3) for step size
100

1
h , the 

following test examples are solved numerically. 
For sake of implementation, we combine equations (3.3) and their first 
derivative equations (3.4), we also combine (4.2) with (4.3) as well as 
combine (5.2) with (5.3). This procedure leads to a system of six, eight 
and ten equations each to be solved simultaneously to give us the 

approximate solutions ,...2,1, iyi , this approach has been 

proven to be a good self-starting procedure for the solution of (1.1) 
without reduction to first order ODE.  
 
Example 1 
Consider the second order ODE 

3)0(,12)0(,44  yyyyy , 10  x  

The problem is known to have theoretical solution 
xx xeexy 22 2712)(   

 
Example 2 

1)0(,4)0(,178  yyyyy , 10  x  

The problem is known to have theoretical solution 

)sin(15)cos(4)( 44 xexexy xx   

 
RESULTS 
 
Table 1: Numerical Solution for example 1  

 
 
Table 2: Maximum Errors for example 1 
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Table 3: Numerical Solution for example 2 

 
 
Table 4: Maximum Errors for example 2 

 
 

  ,...2,1,)()(maxmax  ixyxyE ltheoreticaicalculatedi  

 
Table 5: Order and Error Constants of BhyNM 1 

  
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(𝑠) 

 
             𝑝 

 
           𝑐𝑝+2  

 
     3.3𝑎 

 
4 

        −
1

240
 

 
    3.3𝑏 

 
4 

        −
1

3200
 

 
    3.3𝑐 

 
4 

           
1

12700
 

 
Table 6: Equations of 1st Derivative of (3.2) 

  
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(𝑠) 

 
             𝑝 

 
           𝑐𝑝+2  

 
     3.4𝑎 

 
4 

        −
259

576000
 

 
    3.4𝑏 

 
4 

          −
1

2250
 

 
    3.4𝑐 

 
4 

         −
379

36000
 

 
 
 
 
 
 

 
Table 7: Order and Error Constants of BhyNM  2 

  
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(𝑠) 

 
             𝑝 

 
           𝑐𝑝+2  

 
     4.2𝑎 

 
6 

     −
43

1451520
 

 
    4.2𝑏 

 
5 

        −
1

6400
 

 
    4.2𝑐 

 
5 

           
1

6400
 

 
    4.2𝑑 

 
5 

       −
1

7000
 

 
Table 8: Equations of 1st Derivative of (4.1) 

  
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(𝑠) 

 
             𝑝 

 
           𝑐𝑝+2  

 
     4.3𝑎 

 
5 

       −
41

448000
 

 
    4.3𝑏 

 
5 

        −
37

504000
 

 
    4.3𝑐 

 
5 

        −
41

448000
 

 
    4.3𝑑 

 
5 

              
1

7000
 

 
Table 9: Order and Error Constants of BhyNM  3 

  
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(𝑠) 

 
             𝑝 

 
           𝑐𝑝+2  

 
     5.2𝑎 

 
6 

     −
43

1451520
 

 
    5.2𝑏 

 
6 

     −
1009

69672960
 

 
    5.2𝑐 

 
6 

         
6589

69672960
 

 
    5.2𝑑 

 
6 

     −
899

445906944
 

 
    5.2𝑒 

 
6 

       −
1921

304819200
 

 
Table 10: Equations of 1st Derivative of (5.1) 

  
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(𝑠) 

 
             𝑝 

 
              𝑐𝑝+2  

 
     5.3𝑎 

 
6 

        −
6469

4877107200
 

 
    5.3𝑏 

 
6 

          −
2627

5486745600
 

 
    5.3𝑐 

 
6 

             
29849

4877107200
 

 
    5.3𝑑 

 
6 

       −
356123

624269721600
 

 
    5.3𝑒 

 
6 

             −
911209

7620480
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DISCUSSION
 We developed some generalized block Numerov method of hybrid 

type (BhyNM 1, BhyNM 2 and BhyNM 3) via multistep collocation 
technique for a direct numerical solution to the general second 
order ODE of the form (1.1). The methods developed proved to 
be very efficient in terms of accuracy and speed (see, tables 1 
and 3) due to their order and high error constants (refer to, tables 
5-10). Their absolute maximum errors (𝐸𝑚𝑎𝑥) suggest that they 

converge much faster to the analytical solution than other 
methods of the same order (see, tables 2 and 4). The regions of 
absolute stability of our block hybrid method were also presented 
(Fig. 1, 2 and 3) 
 

 
Fig.1: Region of absolute stability for BhyNM 1 
 
 

 
Fig.2: Region of absolute stability for BhyNM 2 
 
 

 
Fig.3: Region of absolute stability for BhyNM  3 
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