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ABSTRACT  
We develop self-starting family of three and five step continuous 
extended trapezoidal rule of second kind a block hybrid type 
(BHETR2s) methods through interpolation and collocation 
procedure. The BHETR2s methods are then used to produce 
multiple numerical integrators which are each of the same order 
and assembled into a single block matrix equation. These 
equations are simultaneously applied to provide the approximate 
solution for the ordinary differential equations. The stability 
properties of the methods were investigated and found to be 
consistent, zero-stable and hence convergent.  The block 
integrators were tested on three numerical initial value problems 
of ODEs to show accuracy and efficiency. 
 
Keywords: BhETR2s, Zero-Stability, Convergence, General 
Linear Method, Collocation Method, Trapezoidal Rule, Ordinary 
Differential Equation 
 
INTRODUCTION 
Ordinary differential equations (ODE’s) are important tools in solving 
real world problems and a wide variety of natural phenomena are 
modeled by these ODE’s. Over the years, several researchers have 
considered the collocation method as a way of generating numerical 
solutions to ordinary differential equations. The collocation method is 
dated back as 1956 in the research carried out by Lanczos (1956) and 
subsequently by Brunner (1996). Lanczos (1956) introduced the 
standard collocation method with some selected points. However, Fox 
and Parker (1968) introduced the use of Chebyshev polynomials in 
collocating the existing method, which was captioned as the Lanczos-
Tau method. Ortiz (1969) went on to discuss the general Tau method, 
which was later extended by Onumanyi and Ortiz (1984) to a method 
known as the collocation Tau Method. The standard collocation method 
with method of selected points provides a direct extension of the Tau 
method to linear ode’s with non polynomial coefficients. The collocation 
Tau method however, uses the Chebyshev perturbation terms to select 
the collocation points. Tau-method was extensively studied by 
Onumanyi and Okunuga (1985, 1986), Okunuga and Sofoluwe (1990). 
Other researchers such as Fatokun (2007), Onumanyi et al (1994), 
Adeneyi and Alabi (2006), introduced some other variants of the 
collocation methods which recently led to some continuous collocation 
approach. 
 Collocation methods are widely considered as a way of generating 
numerical solution to ordinary differential equation of the form: 

),()( yxfy
dx

d
 , 00)( yxy        (1) 

This class of problems arises in the study of (1) is used in simulating 
the growth of populations, simple harmonic motion, trajectory of a 
particle etc. With the advent of modern high speed electronic digital 
computers, the numerical integrators have been successfully applied to 
study problems in mathematics, engineering, computer science and 
atmospheric sciences, see Jain et al (2007).  
Many numerical integration schemes to generate the numerical solution 
to problem (1) have been proposed by several authors such as Butcher 
(2003), Awoyemi et al (2007), Jator (2010) and Akinfenwa (2011). 
 
 METHODOLOGY: DERIVATION OF THE METHODS 
The k -step linear multistep method for the solution of (1) is given in 

the form 
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Which has 3k  unknowns j  and kjj ,...1,0,   therefore 

can be of order 2k . According to Dahlquist (1963), the order of (2) 

cannot exceed 1k (for k odd) and 2k  (for k even) for the 

method to be stable. Authors such as Gear (1965) and Butcher (1980) 
have proposed modified forms of (2) which were shown to overcome 
the Dahlquist barrier theorem. These methods known as hybrid 
methods were obtained by incorporating off-step points in the derivation 
process. 

We developed a k -step continuous hybrid formula which is an 

extension of (2) and involves ),( yxk evaluated at off-grid points (

vnvn yx  , ),  kqkq ,...,1,0,0   in the form: 
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where ,1k 0 and 0  not both zero, )( jhxyy jn 

and ),( vnvnvn yxff   , Lambert (1973, 1991). A method 

such as (3) preserves the traditional advantage of one step methods of 
being self-starting and permitting easy change of step length, Lambert 
(1973). Their advantage over R-K methods lies in the fact that they are 
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less expensive in terms of the number of function evaluation for a given 
order. The methods also generate simultaneous solutions at all grid 
points. 

The general k -step continuous extended trapezoidal rule of second 

kind, a hybrid type (CHETR2s) with one off-grid collocation point is 
given by: 
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where )(xj , )(xj and )(xv are the continuous 

coefficients of the method, q  is a chosen midpoint of the 

subinterval  knkn xx  ,1 , Gear (1965).  

 
From equation (4), we obtained the D and C matrix as: 
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Equations (4), (5) and (6) are therefore used to derived the 
continuous formulation of the hybrid ETR2s with one off-grid 

collocation point for step numbers 3k and 5 .  
 

2.1: Consider ,3k  2

5
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, equation (4) becomes:  
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From (7), we obtained (5) and (6) as: 
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After some computations, the values of 
),(0 x ),(1 x

),(2 x ),(1 x
)(

2

5 x

and 
)(2 x

 are obtained from (8) 
and (9) and substituted into equation (7) to give us the desired 
continuous formulation for the three step block hybrid ETR2s in 
the form: 
 

      (10) 

Equation (10) is evaluated at some   points to obtained discrete 

equations which we called (11). These equations are combined to 
form a block, which are implemented to give simultaneously 
approximate solutions to problem (1). 
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In this case, our D and C matrix becomes: 
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The unknown coefficients of the method (12) are obtained after 

solving D and C matrix where
1 DC , then substituted back 

into (12) to yield the CHETR2s for the five step block hybrid ETR2s 
in the form: 
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Stability Analysis 
In this paper, we shall discuss the following terminology; order 
and error constant, consistency and zero-stability of linear 
multistep methods. 
 
3.1: Order and error constant 
      Following Fatunla (1991) and Lambert (1973), the local 
truncation error associated with equation (3) is the linear 
difference operator ℒ as 
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where, 

qc are the constant coefficients 
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According to Henrici (1962), the method (3) has order p if  

0...10  pccc and ,01 pc where 1pc is 

called the error constant. 
 
3.2: Consistency 
A Linear multistep method (3) is consistent if it has order greater or 

equal to one (that is 1p ) that is, if  
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where,  and  are the first and second characteristic 

polynomials of the method. 
 
3.3: Zero-Stability 
A Linear multistep method (3) is said to be zero stable if no roots of 

the first characteristic polynomial )(  has modulus greater 

than one and every root with modulus one is distinct, Lambert 
(1973, 1991).  
 
3.4: General Linear Method (GLM) 
The GLM were introduced by Burrage and Butcher (1980) and 
Shirley (2005) on the implementation of LMM for the numerical 
solution of equation (1). 
The GLM for the solution of problem (1) can be expressed in the 
form 
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and the general linear method takes the form 



































 ]1[

][

][

][ )(

n

n

n

n

y

Yhf

M

y

Y

      (25) 

where, 

,

.

.

.

][

][

2

][

1

][





























n

s

n

n

n

Y

Y

Y

Y ,

)(

.

.

.

)(

)(

)(

][

][

2

][

1

][





























n

s

n

n

n

Yf

Yf

Yf

Yf        





































]1[

]1[

2

]1[

1

]1[

.

.

.

n

r

n

n

n

y

y

y

y       and     





























][

][

2

][

1

][

.

.

.

n

r

n

n

n

y

y

y

y  

 
From (22) to (25), the following definitions hold 
 
Definition 1: 

For a GLM (25), the stability matrix )(zM  is given by 

UzAzBVzM 1)1()(       (26) 

and the characteristic polynomial given by  

))(det(),( zMIz         (27) 

Butcher (2003). 
 
Definition 2: 

A General Linear Method is A-stable if for all zAICz   ,1
  is 

non-singular and )(zM is a stability matrix, Butcher (2003).  

Note: 
i. For an A-stable method, there is no restriction on the choice of 

the step size. 

ii. A-stability helps us to determine the type of problems our 

methods can handle. 

 
Analysis of our Newly Derived Methods 
          4.1:      Three Step Block Hybrid ETR2s (BHETR2s 1)   
          4.1.1    Order, Consistency and Convergence (BHETR2s 1) 
 

Applying (17) to (21), we obtained the order and error 

constant of our method (11) as 5p   and 

Tc )
!4

23
,

!5

269
,

)!2(

1
,

!5

7
(

66  respectively. Since (11) 

has order 15 p , it is consistent. See (3.1) 
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          4.1.2     Zero-Stability (BHETR2s 1) 
The block method (11) can be expressed in the form 

     

 

  (28) 
 
 
Hence the characteristic polynomial of the block method (11) is 
given by  

 )1()0(det)( AA    
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det)( 

 

 

  01)( 3       0,1 4321    

  From (3.3), the method is zero-stable. 
 
4.1.3    GLM for BHETR2s 1 
We converted the three step block hybrid ETR2s (11) into GLM 
(24) as 
 

      (29) 
 
We plotted the absolute stability region of (29) as 

 
Fig. 1: Absolute stability region for BHETR2s 1 method 
 
 
4.2:    Five Step Block Hybrid ETR2s (BHETR2s 2)   
4.2.1 Order, Consistency and Convergence (BHETR2s 2) 
We obtained the order and error constant of THBH 2 (16) using (17) to 

(21) as 7p   and 

Tc )
)!2.(7

3447
,

)!2(

97
,

)!2.(7

523
,

)!2.(7

1217
,

)!2(

45
,

)!2.(7

13
(

4444828 

respectively. Since (16) has order 17 p , it is consistent. See 

(3.1) 
 
4.2.2 Zero-Stability (BHETR2s 2) 
 

 
 

 
 

From (29), the first characteristic polynomial )( of THBH 2 

(16) is in the form

0)1()det()( 5)1()0(   AA , which 

implies that 11   and 432   065   . 

Hence, it is zero stable.  We have therefore shown the 
convergence of the method. 
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4.2.3:       GLM for BHETR2s 2 
 
Equation (16) is converted into GLM (24) as 

 
 
                 (30) 
 

 
Fig. 2: Absolute stability region for BHETR2s 2 method 
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Numerical Example 
 
In this paper, we constructed block hybrid extended trapezoidal rule of 
second kind (BHETR2s 1 and BHETR2s 2). Both methods are applied 
on three numerical problems of ordinary differential equations occurring 
in real life. For the sake of reporting, the hybrid block methods for step 
numbers 𝑘 = 3 𝑎𝑛𝑑 5 were presented. We present the performance 

of the newly derived block methods using the well-known MatLab ode 
solver, Ode23s. For the avoidance of doubt, our method(s) tends to 
perform very well on the MatLab Ode solver, (see Fig.3-8). 
 
Problem 1: System of Ordinary Differential Equations in 8 
dimensions 
 
 𝑦1

′ (𝑥) = −1.71𝑦1(𝑥) + 0.43𝑦2(𝑥) + 8.32𝑦3(𝑥) +
0.00007𝑦4(𝑥)  

𝑦2
′ (𝑥) = 1.71𝑦1(𝑥) − 8.75𝑦2(𝑥)  

𝑦3
′ (𝑥) = −10.03𝑦3(𝑥) + 0.43𝑦4(𝑥) + 0.035𝑦5(𝑥)  

𝑦4
′(𝑥) = 8.32𝑦2(𝑥) + 0.171𝑦3(𝑥) − 1.12𝑦4(𝑥)  

𝑦5
′ (𝑥) = −1.145𝑦5(𝑥) + 0.43𝑦6(𝑥) + 0.43𝑦7(𝑥)  

 𝑦6
′ (𝑥) = −280𝑦6(𝑥)𝑦8(𝑥) + 0.69𝑦4(𝑥) + 1.71𝑦5(𝑥) −

0.43𝑦6(𝑥) + 0.69𝑦7(𝑥) 

𝑦7
′ (𝑥) = 280𝑦6(𝑥)𝑦8(𝑥) − 1.81𝑦7(𝑥)  

 𝑦8
′ (𝑥) = −280𝑦6(𝑥)𝑦8(𝑥) + 1.81𝑦7(𝑥)  

  with initial condition given by 𝑦1(0) = 1,  𝑦2(0) =
0,  𝑦3(0) = 0,  𝑦4(0) = 0,  𝑦5(0) = 0,  𝑦6(0) = 0,
  𝑦7(0) = 0, 𝑦8(0) = 0.0057, 0 ≤ 𝑥 ≤ 10, ℎ = 0.01 

 
Problem 2: Oregenator Chemical Reaction Equation 
 The Oregenator is expressed mathematically by the 
following 𝑖𝑣𝑝 

𝑦1
′ = 77.27(𝑦2 + 𝑦1(1 − 8.375 × 10−6𝑦1 − 𝑦2)), 𝑦1(0) = 1 

𝑦2
′ =

1

77.27
(𝑦3 − ((1 + 𝑦1)𝑦2) ,                      𝑦2(0) = 0 

𝑦3
′ = 0.16(𝑦1 − 𝑦3) ,                                       𝑦3(0) = −1 

      0 ≤ 𝑥 ≤ 700, ℎ = 0.01  
       [NB: A famous chemical reaction is the Oregenator reaction 

between Br
BrHBrO ,2

and )(IVCe  described by Field 

and Noyes in 1984]. 
 
Problem 3: Stiff System of Ordinary Differential Equations 
 Consider the linear stiff system of ordinary differential 
equations on the range 0 ≤ 𝑥 ≤ 10 . 

       𝑦1
′ = −10𝑦1 + 50𝑦2  

       𝑦2
′ = −50𝑦1 − 10𝑦2  

       𝑦3
′ = −40𝑦3 − 200𝑦4  

       𝑦4
′ = −200𝑦3 − 40𝑦4   

       𝑦5
′ = −0.2𝑦5 − 2𝑦6  

       𝑦6
′ = −2𝑦5 − 0.2𝑦6  

𝑦1(0) = 0,  𝑦2(0) = 1,  𝑦3(0) = 0,  𝑦4(0) = 1,  𝑦5(0)
= 0,  𝑦6(0) = 1, ℎ = 0.01 

 

 
Fig.3: solution curve for problem 1 using BHETR2s 1 
 

 
Fig 4: solution curve for problem 1 using BHETR2s 2. 
 

 
Fig. 5: solution curve for problem 2 using BHETR2s 1. 
 

 
 
Fig. 6: solution curve for problem 2 using BHETR2s 2. 
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Fig. 7: solution curve for problem 3 using BHETR2s 1. 
 

 
Fig. 8: solution curve for problem 3 using BHETR2s 2. 
 
 
Conclusion 
Our new method(s) competes quite well especially when 
compared with the Ode Solver. The solution curves show the 
performance block hybrid methods for step numbers 𝑘 =
3 𝑎𝑛𝑑 5 was quite remarkable especially when compared with 
the well known 𝑜𝑑𝑒 23𝑠 and 𝑜𝑑𝑒 45. The block hybrid methods 

were shown to be consistent, zero-stable and hence convergent 
(see table). Moreover, they were also shown to have order 𝑝 =
𝑘 + 2. Fig.2-8 reveal that our block hybrid methods are A-stable 

since their region(s) of absolute stability contain the whole of the 
left hand complex half plane and as such are suitable for the 
solution of stiff problems. 
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