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ABSTRACT

We develop self-starting family of three and five step continuous
extended trapezoidal rule of second kind a block hybrid type
(BHETR2s) methods through interpolation and collocation
procedure. The BHETR2s methods are then used to produce
multiple numerical integrators which are each of the same order
and assembled into a single block matrix equation. These
equations are simultaneously applied to provide the approximate
solution for the ordinary differential equations. The stability
properties of the methods were investigated and found to be
consistent, zero-stable and hence convergent. The block
integrators were tested on three numerical initial value problems
of ODEs to show accuracy and efficiency.

Keywords: BhETRzs, Zero-Stability, Convergence, General
Linear Method, Collocation Method, Trapezoidal Rule, Ordinary
Differential Equation

INTRODUCTION

Ordinary differential equations (ODE’s) are important tools in solving
real world problems and a wide variety of natural phenomena are
modeled by these ODE’s. Over the years, several researchers have
considered the collocation method as a way of generating numerical
solutions to ordinary differential equations. The collocation method is
dated back as 1956 in the research carried out by Lanczos (1956) and
subsequently by Brunner (1996). Lanczos (1956) introduced the
standard collocation method with some selected points. However, Fox
and Parker (1968) introduced the use of Chebyshev polynomials in
collocating the existing method, which was captioned as the Lanczos-
Tau method. Ortiz (1969) went on to discuss the general Tau method,
which was later extended by Onumanyi and Ortiz (1984) to a method
known as the collocation Tau Method. The standard collocation method
with method of selected points provides a direct extension of the Tau
method to linear ode’s with non polynomial coefficients. The collocation
Tau method however, uses the Chebyshev perturbation terms to select
the collocation points. Tau-method was extensively studied by
Onumanyi and Okunuga (1985, 1986), Okunuga and Sofoluwe (1990).
Other researchers such as Fatokun (2007), Onumanyi et al (1994),
Adeneyi and Alabi (2006), introduced some other variants of the
collocation methods which recently led to some continuous collocation
approach.

Collocation methods are widely considered as a way of generating
numerical solution to ordinary differential equation of the form:

di(y) =1(xy).Y(X) =Y, (1)
X

This class of problems arises in the study of (1) is used in simulating
the growth of populations, simple harmonic motion, trajectory of a
particle etc. With the advent of modern high speed electronic digital
computers, the numerical integrators have been successfully applied to
study problems in mathematics, engineering, computer science and
atmospheric sciences, see Jain et al (2007).

Many numerical integration schemes to generate the numerical solution
to problem (1) have been proposed by several authors such as Butcher
(2003), Awoyemi et al (2007), Jator (2010) and Akinfenwa (2011).

METHODOLOGY: DERIVATION OF THE METHODS
The k -step linear multistep method for the solution of (1) is given in
the form

k K

Zaj yn+j = hZﬂJ fn+j (2)
j=0 j=0
Which has K + 3 unknowns a;and B, j=0,1,..k therefore

can be of order K + 2 . According to Dahlquist (1963), the order of (2)

cannot exceed K + 1 (for K odd) and K + 2 (for K even) for the
method to be stable. Authors such as Gear (1965) and Butcher (1980)
have proposed modified forms of (2) which were shown to overcome
the Dahlquist barrier theorem. These methods known as hybrid
methods were obtained by incorporating off-step points in the derivation
process.

We developed a k -step continuous hybrid formula which is an
extension of (2) and involves K (X, Y) evaluated at off-grid points (

X ),0<q<k,qQ{O,l,...,k}intheform:

n+v?! yn+V
k k

DY =hY Bt +hB S @)
=0 i=0

where &, =1, g and f3; not both zero, Y, ; = Y(X+ jh)

and f ., = (X, Yo, ), Lambert (1973, 1991). A method

such as (3) preserves the traditional advantage of one step methods of
being self-starting and permitting easy change of step length, Lambert
(1973). Their advantage over R-K methods lies in the fact that they are
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less expensive in terms of the number of function evaluation for a given
order. The methods also generate simultaneous solutions at all grid
points.

The general k -step continuous extended trapezoidal rule of second
kind, a hybrid type (CHETRzs) with one off-grid collocation point is

given by:
Y0 = 2,0, +0 2B 00 Fy #1800 T, @

where o (X), B;(X)and 3 (X)are the continuous

coefficients of the method, ( is a chosen midpoint of the

subinterval [kafl, Xn+k] , Gear (1965).

From equation (4), we obtained the D and C matrix as:

1 X, X2 XK+
2 k+2
1 Xn+1 Xn+1 o Xn+1
2 k+2
1 Xn+2 Xn+2 o Xn+2
D =
2 k+2
l Xn+k—1 Xn+k—1 oo Xn+k—1
k+1
0 1 2Xn+v—1 (k + 2)Xn+v—l
0 1  2x., (k+2)xy7
0 1 2 - . . (k+2x5
- 4 0
and
Ay 21 a1y 251 hﬂmfm hﬂm,l hﬁq‘l
Ayp0 Oy .,

hﬁm—l,z hﬂm,z hﬁql

hﬂm,k+2 hﬂq,k+2_
(6)

Equations (4), (5) and (6) are therefore used to derived the
continuous formulation of the hybrid ETR2s with one off-grid

| D22 Fu-ike Ao By

collocation point for step numbers k=3 and 5 .

5

q =
2.1: Consider k=3, 2 , equation (4) becomes:
2 2
y(X) = Zaj (X) yn+j + hZﬂJ (X) fn+j + hﬁ§(x) fn+§
j=0 j=1 2 2

From (7), we obtained (5) and (6) as:
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1 x, X2 X X2 x° ]
1 Xy X o nt o
1 Yo Xoo Yoo X Xoo
P=lo 1 2%, 3¢, 4%, 5x,
0 1 2x , 3x*, 4x*, 5x*
n+s ne n+2 n+2
0o 1 2, 3., 4%, 5X:+2_ (®)
and
QG @y %y hB, hB,, hpB,,
%, , &, hB, hB, hp,
C= Qs Gy 3 hB; hB,, hpB,,
Qs G, %, W, hB,, hp,,
Qs s s hBs hB,s hpB,s
| Zos e Oap hBie hB,e hﬂz,e_

©)

After some computations, the values of a"(x) ! al(x)’
Bs(¥)

ay(X), Bi(X), 3 and B, (X) are obtained from (8)

and (9) and substituted into equation (7) to give us the desired
continuous formulation for the three step block hybrid ETRzs in
the form:

145 & 751 & 233 &
v, +8) =\ "2z 4 T2 2 T 86 4
5
139 & _ 4 &
172 44 1 a3 45 ]y" + [
3 2 5
_692 & | 652 & 160 & _ 40 &
43 43 43 42 43 & 43 45
3
283 & 1617 & 305 &
43 h4]y"+'+[ 86 5,3 | a3 &
L 44 & _ 3359 g€ 1271 &
a3 45 172 42 172 4 |Yn+2
4 3
L [19s & 648 & 1633 &
43 3 43 n 129 52
_s20 . 76 &), _6s &
129 120 5,4 |/n+1 43 n
32 &8 16 & ed
43 53 1290 5,4 129
208 & ) 887 & L 379 et
120 42 I 86 & 86 43
28 & 155 . as0 & p
43 4 43 43 42 |In+2

(10)
Equation (10) is evaluated at some & points to obtained discrete

equations which we called (11). These equations are combined to
form a block, which are implemented to give simultaneously
approximate solutions to problem (1).

1
Z(43yn+3 —141y,45 + 93Yn41 + 5vn)

h
= 5|32 paz = 3942 = 23

20

Problems for Ordinary Differential Equations using Block Hybrid Extended
Trapezoidal Rule of Second Kind


http://www.scienceworldjournal.org/

Science World Journal Vol 12(No 4) 2017
www.scienceworldjournal.org
ISSN 1597-6343

1
~(2752y,, 700yp41 —

s —2025yp42 — 27y,) =
2

h
216,05+ 45fusz + 10/

1 h
2 (1797Y42 — 1704y541 — 93y,) = ;[129fn+3 -

6405 + 1554f,s2 + 847fn+1]

h
~(=915Yp1z + 480y, +435y,) == [64fn+§ N
2

465 sz — 820fss — 129,

. 9 .
22:For k = 5, taking = E , We generate (4) in the form:

YO0 = 30 (Y, +h D5 (o 1B 00T

N

(11

12)

1
—(—166095y,1,4 —

ﬁ(748544yn+9/2 — 1488375yp44 — 661500y, 5 +
1285956Y,42 + 121500y,,,1 — 6125y,) =

2[128fn+9/2 = 1050fn13 — 567 fsz
376540y, + 490320y,45 +
5526041 — 2945y,) = 5 645 s — 2816f 49/, —
36455f,,5 — 24549fn+2]
= (—321735,14.4 — 108880Y45 + 397980y, +
34320y,.,, — 1685y,) = 2[1024fn+9/2 -
10965 fy44 — 37640f;15 — 17694 1.2

— (48405Y,,,4+499100,,,3 — 196560y, —

342300y,,,, — 8645y,) = 2[256fn+9/2 +23485f,,5 +
44919f,,, + 10965fn+1]
= (60885yy 4 + 509520143 — 393660y, —
222480y, + 45735y,) = §[1oz4fn+9/2 +79320f,45 +

In this case, our D and C matrix becomes: 113886f,,, — 36557, ] (16)
1 x, X X X x> X X ] e e
1 Xn+1 Xr2|+1 x:+1 X:+1 X:+1 Xr?+1 Xr:+1
1 x X2 X3 x* X5 X° X7 Stability Analysis
e TR Tz ez TweRo Twe2o U020 (43)  Inthis paper, we shall discuss the following terminology; order
D I Xz X Xos Xos o Xis o Xog o Xag and error constant, consistency and zero-stability of linear
T X, X X X, X, X, X, multistep methods.
0 1 2%, 36, M, 5K, B, T, 3.1: Order and error constant
0 1 2x 4 3, 4, 5X', 6x, 7X, Following Fatunla (1991) and Lambert (1973), the local
, 2 s 22 5 62 truncation error associated with equation (3) is the linear
10 1 2X,5 3Xis X3 SXps o 6Xip o 7Xi ] difference operator £ as
K
and clyGm = Yl Y% ) B Y% )]
_ - j=0
h h h
Gor %y G G Gy Wy DB, W, The Taylor series expansion of (17) about the point X, yield
Gy G, Gy Uy A, hBy, hB, hps, L{y(x), h}
Q a a a a h h h
03 1,3 2,3 33 4,3 ﬂz,a ﬂu,3 ﬂa,s " =C, y(xn) + Clhy’(Xn) + o+ thq y(Q) (Xn) +... (18)
o Gy Uy Gy Uy Ay By NB, hpy, where
Qs Qs G5 Oas s Nps hB5 hBis k
= ) 1
Qe Ohg Qg Qi Qg hﬂz,s hﬂu,G hﬂs,e Co Zoal (19)
j=
Qs Chg Gy Gy &, hB hB. hpB, K
| Qg Chg Qg O3 Qg hB,s hpB,s hﬂs,a_ C, = 2 Ja; (20)
j=0
The unknown coefficients of the method (12) are obtained after
solving D and C matrix where C = D™ then substituted back
into (12) to yield the CHETRs for the five step block hybrid ETR2s ' 1 & K
in the form: H (a- 1)
Co= g 2 do — T 2 @
q i
1 ql j=0 (q 1)' j=0
L (2193Y45 + 454545 + 16640y,145 — where,
h
2112042 — 2385Yns1 + 127y, = 2[256f .49/, + C, are the constant coeffients
1555143 — 1059f,.1.]
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According to Henrici (1962), the method (3) has order P if _Y [n17 hf (Y [n])
Co=C=..=C,=0and c,,, #0,where C,is _M 25)
called the error constant. (] [n-1]
y y

3.2: Consistency where B N
A Linear multistep method (3) is consistent if it has order greater or L 0] - e
equal to one (thatis P > 1) thatis, if Y f(v™)

. n n

(i) p)=0 Yz[ : f (Yz[ l

(i p')=0c() yl—| - Y = '
where, 0 and O are the first and second characteristic 0 ) '
polynomials of the method.
3.3: Zero-Stability \% [n] f (Y [n])
A Linear multistep method (3) is said to be zero stable if no roots of L's d L s /4
the first characteristic polynomial © (&) has modulus greater [n-1] n]
than one and every root with modulus one is distinct, Lambert [n-1] [n]
(1973, 1991). 2 2
3.4: General Linear Method (GLM) yir = and Y=

The GLM were introduced by Burrage and Butcher (1980) and
Shirley (2005) on the implementation of LMM for the numerical
solution of equation (1).

The GLM for the solution of problem (1) can be expressed in the

[n-1] [n]

form L J L i
Y, [+ — hZa” f(x, +¢c;hY [n+1]) + ZUU y[n] i=1..,s (2 From (22) to (25), the following definitions hold
Y = hzb., f(x, +ch Y[ ) + ZVUy[”] i=1..r (3 Eefinition 1 . . o
= ora GLM (25), the stability matrix M (Z) is given by
n>0n=01..,N.h Z(er —-x,)/N and M(z) =V +zB(l-zA)"U (26)

X, =X, +Nhandi =12,...,
internal to each step and represent approximations to the solution

S are stage values which are

at the point X, +Cih, the vector of external values

[n] = [y[”], [n], . yE”]]T denotes information available

at the end of the N' -step for the input to the next step. Again we
emphasize that I denotes quantities as output from each step and
input to the next step and S denotes step values used in the
computation.

These methods are characterized by four matrices A,U, B and

V' which make up a partition (S + 1) X (S+T) matix M in
the form:

A .U
M=|. . . (24)
B .V

and the general linear method takes the form

and the characteristic polynomial given by
p(4,2) =det(Al —M(z2)) 27)
Butcher (2003).

Definition 2:

A General Linear Method is A-stable if for all Z € C™%, 1 — ZA is

non-singular and M (Z) is a stability matrix, Butcher (2003).

Note:

i. For an A-stable method, there is no restriction on the choice of
the step size.

i, A-stability helps us to determine the type of problems our
methods can handle.

Analysis of our Newly Derived Methods
4.1:  Three Step Block Hybrid ETRzs (BHETR:s 1)
411 Order, Consistency and Convergence (BHETRzs 1)

Applying (17) to (21), we obtained the order and error

constant of our method (11) as p= 5 and
C —(Z I _ﬁ) fively. Si 11
6 — 5’ (2!)6 =T respectively. Since (11)

has order P =5 > 1 itis consistent. See (3.1)
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4.1.2 Zero-Stability (BHETRzs 1)
The block method (11) can be expressed in the form

Hence the characteristic polynomial of the block method (11) is
given by

p(A) = det(AA© — AD)

-3
05 [ 05 1 15 2 25
Re(z)

Fig. 1: Absolute stability region for BHETR2s 1 method

4.2: Five Step Block Hybrid ETRzs (BHETR:s 2)

421 Order, Consistency and Convergence (BHETR:s 2)

We obtained the order and error constant of THBH 2 (16) using (17) to

1) asp=7 and
13 45 1217 523 97 3447 4

Cs = ( )

7202 (2D T2 T2 (@) 7.2
respectively. Since (16) has order P =7 =1, itis consistent. See
(3.1)

4.2.2 Zero-Stability (BHETR:s 2)

1 0 0 o\ (0 0 0 1 1 0000 0fVeu OOOOOlynf
2
010000V OOOOOly
0 1 0 o| |o 0 0 1 i
= el 2 . 00 1000[%s| [000001])
0 0 1 ol |o 0 0 1 00010 0V 000001-},1
n-a
0O0001O0Y 0000O01
o o o 10 o o0 1 m Vi1
0000O01 0000O0T1
3 yn+" yn
p(A)=2(2-1)=0 =4 =12,=72=2,=0
From (3.3), the method is zero-stable. 78553 4519 13691 9841 13808 15373 00000 2819
70560 5040 15120 10080 19845 1008(( / ° 725760 1
4.1.3 GLM for BHETRzs 1 . . 6691 5 517 206 9472 67 160 |
We converted the three step block hybrid ETRzs (11) into GLM a0 6 915 315 19845 630/l P00 0 15 I
(24) as
1160145 689 1017 464 133 |, |1 (o 1013
Mo 0 0 0 0 0 0 1 7840 112 560 1120 735 1120 26880 s
+h +
_l29 80 465 & 15 _ 435 3296 104 1664 62 8192 32 |f.| 1o 5090 32 |/,
480 180 480 480 180 480 2205 315 945 315 19845 315 2268 |7
o B 1554 640 129 o o4 93 374463 1215 31077 3159 162  4131|/ s 2151 1
1797 1797 1797 1797 1797 1797 - — = 2 00000 — ml
250880 3584 17920 35840 245  3584(] 57344
0 300 1350 480 2025 175 27
2752 52 27: 2752 2752 2732 21125 325 5375 125 4400 115 (s 00000 543 A
16 78 o 141 03 5 14112 1008 3024 2016 3969 2016 145152
L TR T S B 1 B
0 _46 18 64 41 93 5 From (29), the first characteristic polynomial p(ﬂ) of THBH 2
43 43 43 43 43 43 . .
(16) is in the form
0 847 1554 640 129 0 1704 93 (0) (1) 5
1797 1797 1797 1797 1797 1797 p(ﬂ,)=det(ﬂ,A —A )=/1(ﬂ,—l)=0 which
129 820 465 64 915 435 T _ _ _
| 280 “as0 480 480 0 150 Taso | (29) mphesthatﬂizl and /12=ﬂ3=ﬂ,4—2,5—/16—0.
Hence, it is zero stable. We have therefore shown the
We plotted the absolute stability region of (29) as convergence of the method.
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423: GLM for BHETRzs 2

Equation (16) is converted into GLM (24) as

0 0 0 0 0 0 0 0 0 0 0 1 ]
14620 . 455544 317280 . 4096 60885 509520 393660 45735
222480 222480 222480 222480 222480 222480 222480 222480

_131580 539028 281820 . 3072 48405 499100 _342300_ 8645
196560 196560 196560 196560 196560 196560 196560 19656
o , 212328 451680 131580 12288 321735 397980 34320 1685
108880 108880 108880 108880 108880 108880 108880 10888
o , 294588 437460 33792 _ 7740 o  _376540 490320 55260 _ 2945
166095 166095 166095 166095 166095 166095 166095 16609
o 714420 1323000 = 161280 1488375 661500 1285156 121500 6125
748544 748544 748544 748544 748544 748544 748544 748544
o o 4236 220 1024 o 1515 16640 7040 795 27
731 731 731 731 2193 731 731 2193
o o 4236 6220 | 1024 o 1515 16640 7040 795 27
731 731 731 731 2193 731 731 2193
o 294588 437460 33792 _ 7740 o 376540 490320 55260 2045
166095 166095 166095 166095 166095 166095 166095 16609
o 212328 451680 131580 12288 321735 307980 34320 1685
108880 108880 108880 108880 108880 108880 108880 10888
131580_539028 281820 3072 48405 499100 342300 8645
196560 196560 196560 196560 196560 196560 196560 19656
14620 455544 317280 4096 60885 509520 393660 45735
| 222480 222480 222480 222480 222480 222480 222480 222480
(30)
2
1.5+ —
L |
0.5 —
05+ —
Ak 4
-15- —
> i i i i i i i
-05 0 05 1 1.5 2 2.5 3 35
Re(z)
Fig. 2: Absolute stability region for BHETRzs 2 method
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Numerical Example i JIBHETREST
”J' ) y2BHETR2s1
In this paper, we constructed block hybrid extended trapezoidal rule of ol '-, ' :ﬁﬂﬁi
second kind (BHETRzs 1 and BHETRzs 2). Both methods are applied MY : el
on three numerical problems of ordinary differential equations occurring Y JTBHETREs!
in real life. For the sake of reporting, the hybrid block methods for step v ;ﬁﬁ;;:“
numbers k = 3 and 5 were presented. We present the performance o %, ' yaodezss
of the newly derived block methods using the well-known MatLab ode 03 '°.,. . . e ;ﬁgg:
solver, Ode23s. For the avoidance of doubt, our method(s) tends to 02} ey, ' " e yS0des
perform very well on the MatLab Ode solver, (see Fig.3-8). bt gt _ o
f . ,".-I""". "."'".""""llluuuu- LT ER
Problem 1: System of Ordinary Differential Equations in 8 s ' s T 3 o 5
dimensions Fig.3: solution curve for problem 1 using BHETRs 1
y1(x) = =1.71y,(x) + 0.43y,(x) + 8.32y3(x) + L [Ty
0.00007y,(x) e
y2(x) = 1.71y;(x) — 8.75y,(x) ul b : T
yi(x) = —10.03y3(x) + 0.43y,(x) + 0.035y5(x) s — T
ya(x) = 8.32y,(x) + 0.171y;(x) — 1.12y,(x) Y ' e
ye(x) = —=1.145y5(x) + 0.43y4(x) + 0.43y,(x) Eost N, _ e
¥6(x) = =280y, (x)yg(x) + 0.69y,(x) + 1.71y5(x) — B T e shiee
0.43y6(x) + 0.69y;(x) Al “, "o s
Y7 (%) = 280y,(x)ys(x) — 1.81y,(x) ’ e, JERPRRRTL R o
y4(x) = =280y, (x)yg(x) + 1.81y,(x) o e
with initial conditon given by y;(0) =1, y,(0) = U eI e,
0, ¥3(0) = 0, ,(0) =0, y5(0) = 0, y,(0) = 0, NORPERPTNRY T, LTS PP PPUOR Rt LU LU 1)
y,(0) = 0,v5(0) = 0.0057,0 < x < 10,h = 0.01 R

timet)

Fig 4: soluti fi blem 1 using BHETR2s 2.
Problem 2: Oregenator Chemical Reaction Equation 19 % sollion curve for problem T using »

The Oregenator is expressed mathematically by the

o

following ivp g
y1= 771-27(yz +y:1(1-8375x107%; —¥,)),51(0) = 1 0
Y2 = 575, 03 = (A +y1)y2) y2(0) =0 .
vz =0.16(y1 —y3), y3(0) = -1

0<x<700 h=0.01

[NB: A famous chemical reaction is the Oregenator reaction
between Br HBrO,,, Br~and Ce(IV) described by Field
and Noyes in 1984].

solution(y)

R e et

s T s s e e e ——— —

Problem 3: Stiff System of Ordinary Differential Equations I !
Consider the linear stiff system of ordinary differential o & ” - o ol o o
equations on therange 0 < x < 10. - ' -
" = _10y, + 50y, Fig. 5: solution curve for problem 2 using BHETRzs 1.

Y1
y; = —50y; — 10y,
V3

110

10

-

= —2y5— 0.2y,
y1(0) =0, ¥,(0) = 1, y3(0) = 0, y,(0) = 1, y5(0)
=0, y,(0) =1,h=0.01

yIBHETR2s2
YIBHETR252
yIBHETR252
numiyiodels
BN N ylode2s
ylode2s

solution(y)

4

R N
T T

2%

J

3
Um\'l’('rllllllllIII|IIIIII|Ii‘-:l'l"r'l-'l'lllilllﬂullkkrl-rHHHNHHPFh‘\"FII

2 | I ]
0 10 20 00 0 50 500 0
i)

Fig. 6: solution curve for problem 2 using BHETR2s 2.
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Fig. 7: solution curve for problem 3 using BHETR2s 1.
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Fig. 8: solution curve for problem 3 using BHETRzs 2.

Conclusion

Our new method(s) competes quite well especially when
compared with the Ode Solver. The solution curves show the
performance block hybrid methods for step numbers k =
3 and 5 was quite remarkable especially when compared with
the well known ode 23s and ode 45. The block hybrid methods
were shown to be consistent, zero-stable and hence convergent
(see table). Moreover, they were also shown to have order p =
k + 2. Fig.2-8 reveal that our block hybrid methods are A-stable
since their region(s) of absolute stability contain the whole of the
left hand complex half plane and as such are suitable for the
solution of stiff problems.
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