Corresponding authors' e-mail address: abdulmaths@yahoo.com

ABSTRACT

This paper uncovers the normal subgroups of the noncommutative general rhotrix group and establishes their corresponding quotient groups. The ideas are presented to serve as an extension to the recent work by Mohammed and Okon on subgroups of the non-commutative general rhotrix group. In the process, a number of theorems are developed and concrete example shown.

Keywords: Rhotrix, Group, Subgroup, Normal subgroup, Quotient group

INTRODUCTION

Since the concept of rhotrix was initiated by Ajibade (2003) as an extension of ideas on matrix-tertions and matrix-noitrets suggested by Atanassov and Shannon (1998), there have been many expression of interest by researchers in the usage of rhotrix set as an underlying set in the study of various forms of algebraic structures (see Aminu et al. (2017), Mohammed (2007a and 2007b), Mohammed and Sani (2011), Mohammed et al.(2014), Mohammed and Okon (2016) and Mohammed and Balarabe (2017)). The initial algebra and analysis of rhotrices of size 3 were discussed in (Ajibade, 2003). Following this, Sani (2004) defined a rhotrix R of size n as a rhomboidal array of numbers which can be expressed as a couple of two square matrices A and C of sizes $(t \times t)$ and $(t-1) \times(t-1)$, where $t=\frac{n+1}{2}$ and $n \in 2 Z^{+}+1$. That is,
$R_{n}=\left\langle A_{t \times t}, C_{(t-1) \times(t-1)}\right\rangle=$

$=\left\langle\left[\begin{array}{ccccc}a_{11} & a_{12} & \ldots & a_{1(t-1)} & a_{1 t} \\ a_{21} & a_{22} & \ldots & a_{2(t-1)} & a_{2 t} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ a_{(t-1) 1} & a_{(t-1) 2} & \ldots & a_{(t-1)(t-1)} & a_{(t-1) t} \\ a_{t 1} & a_{t 2} & \ldots & a_{t(t-1)} & a_{t t}\end{array}\right],\left[\begin{array}{ccc}c_{11} & \ldots & c_{1(t-1)} \\ \ldots & \ldots & \ldots \\ c_{(t-1) 1} & \ldots & c_{(t-1)(t-1)}\end{array}\right]\right\rangle$,
where $\left[a_{i j}\right]$ and $\left[c_{l k}\right]$ are called the major and minor matrices of R_{n} respectively. The set $R_{n}(F)$, consisting of all such collections of rhotrices with entries from an arbitrary field F is given as:

$$
\begin{aligned}
& R_{n}(F)= \\
& \left\{\left(\begin{array}{llllll}
\\
& & & a_{11} & & \\
& & a_{21} & c_{11} & a_{12} & \\
& \ldots & \ldots . & \ldots & \ldots & \ldots \\
a_{t 1} & \ldots & \ldots & \ldots & \ldots & \ldots \\
\\
& \ldots & \ldots & \ldots & a_{1 t} \\
& & a_{t(t-1)} & c_{(t-1)(t-1)} & a_{(t-1) t} & \\
& & & a_{t t}
\end{array}\right): a_{i j} \in F, c_{l k} \in F\right\}
\end{aligned}
$$

where $1 \leq i, j \leq t$,

$$
1 \leq l, k \leq t-1 ; t=\frac{n+1}{2} \text { and } n \in 2 Z^{+}+1
$$

A row-column method for multiplication of two rhotrices R_{n}, Q_{n} having the same size was defined in (Sani, 2007) as:

$$
\begin{aligned}
& \boldsymbol{R}_{n} \circ Q_{n}=\left\langle a_{i_{1} j_{1}}, c_{l_{1} k_{1}}\right\rangle \circ\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle \\
& =\left\langle\sum_{i_{2} j_{1}}^{t}\left(a_{i_{1} j_{1}} b_{i_{2} j_{2}}\right), \sum_{l_{2} k_{1}}\left(c_{l_{1} k_{1}} d_{l_{2} k_{2}}\right)\right\rangle
\end{aligned}
$$

It was noted that this row-column method for rhotrix multiplication is non-commutative, but associative. The identity rhotrix for any real rhotrix of size n was given as:

$$
I_{n}=\left\langle I_{t \times t}, I_{(t-1) \times(t-1)}\right\rangle=
$$

The determinant of a rhotrix R of size n was also defined as $\operatorname{det}\left(R_{n}\right)=\operatorname{det}\left\langle a_{i j}, c_{l k}\right\rangle=\operatorname{det}\left(A_{t \times t}\right) \cdot \operatorname{det}\left(C_{(t-1) \times(t-1)}\right)$; and that R_{n} is invertible if and only if $\operatorname{det}\left(R_{n}\right) \neq 0$. Furthermore, for any rhotrix $R_{n}=\left\langle a_{i j}, c_{l k}\right\rangle$, the transpose of R_{n} was defined as $R_{n}^{T}=\left\langle a_{j i}, c_{k l}\right\rangle$. It was also shown in (Sani, 2007) that $\operatorname{det}\left(R_{n} \circ Q_{n}\right)=\operatorname{det}\left(R_{n}\right) \circ \operatorname{det}\left(Q_{n}\right)=\operatorname{det}\left(R_{n}\right) \cdot \operatorname{det}\left(Q_{n}\right)$ and $\left(R_{n} \circ Q_{n}\right)^{T}=\left(Q_{n}\right)^{T} \circ\left(R_{n}\right)^{T}$.

Throughout this paper, let $G R_{n}(F)$ denote the set of all invertible rhotrices of size n with entries from a field F That is,

where $1 \leq i, j \leq t$,
$1 \leq l, k \leq t-1 ; t=\frac{n+1}{2}$ and $n \in 2 Z^{+}+1$.
The pair $\left(G R_{n}(F), \circ\right)$ was shown in (Mohammed and Okon, 2016) as the non-commutative general rhotrix group of size n over an arbitrary field F. The subgroups of this non-commutative general rhotrix group of size n over an arbitrary field F were identified in their work. These include: the special rhotrix group; upper and lower triangular rhotrix groups; diagonal and scalar rhotrix group.Now, the interest is to uncover the normal subgroups and quotient groups of non-commutative general rhotrix group. To the best of our knowledge, the normal subgroupsof non-commutative general rhotrix group and their corresponding quotient groupshad never been considered in the literature of rhotrix theory as a whole.
A subgroup H of a group G is called normal if $x H=H x, \forall x \in G$. Furthermore, if H is a normal subgroup of a group G , then there exist a group G / H, whose elements are the distinct left (right) cosets of H in G (Fraleigh, 2003). In line with this idea, it was shown in (Seymour, 2005) that, the Special Linear group $S L_{n}(F)$ consisting of all invertible $n \times n$ dimensional matrices with determinant as 1 , over an arbitrary field F is a normal subgroup of the General Linear group $G L_{n}(F)$ of degree n over an arbitrary field F. In this paper, an analogous of this result will beestablished in the context of
rhotrix theory. That is, it will be shown that, the set $S R_{n}(F)$, consisting of all invertible rhotrices of size n with determinant as 1, over an arbitrary field F, is a normal subgroup ofthe Noncommutative General Rhotrix Group of size n over an arbitrary field $\mathrm{F} G R_{n}(F)$. Furthermore, an analogous result of (Fraleigh, 2003)will also be uncovered for non-commutative rhotrix group. This means, it would be shown that, there exist a quotient group $G R_{n}(F) / S R_{n}(F)$ whose elements are the distinct left (right) cosets of $S R_{n}(F)$ in $G R_{n}(F)$. Moreover, in order to minimize the abstractions, construction of concrete examples of normal subgroup of a given non-commutative rhotrix group andits corresponding quotient group are given, along with their group tables.
This work is significant, because it introduces the notions of normal subgroups and quotient groups having rhotrix set as underlying set. Part aside, the concrete examples given in thiswork, can furtherserve the purpose of reducing the abstractionsduring teaching and learning of these concepts in abstract algebra

The Non-Commutative General Rhotrix Group and Its Special Rhotrix Subgroup

The theorem 1 and theorem 2 below are recorded from (Mohammed and Okon, 2016) and will be of help in our discussions in subsequent sections

Theorem 1

Let $G R_{n}(F)$ be the set of all invertible rhotrices with entries from an arbitrary field F and let \circ be the row-column method for rhotrix multiplication. Then, the pair $\left(G R_{n}(F), \circ\right)$ is a noncommutative general rhotrix group of size n over F.
Proof
We shall show that the pair $\left(G R_{n}(F), \circ\right)$ is a group under the binary operation of row-column multiplication of rhotrices. i.e. we shall show that the following group axioms are satisfied:
(i) Closure: for any two rhotrices of $A_{n}, B_{n} \in G R_{n}(F)$,
$\operatorname{det}\left(A_{n}\right) \neq 0 \Rightarrow A_{n}$ is invertible, and
$\operatorname{det}\left(B_{n}\right) \neq 0 \Rightarrow B_{n}$ is invertible. Now,
$A_{n} \circ B_{n} \in G R_{n}(F)$ since
$\operatorname{det}\left(A_{n} \circ B_{n}\right)=\operatorname{det}\left(A_{n}\right) \operatorname{det}\left(B_{n}\right) \neq 0$
Thus, $G R_{n}(F)$ is closed under the group binary operation.
(ii) Associativity:

$$
\begin{aligned}
& \forall A_{n}, B_{n} \text { and } C_{n} \in G R_{n}(F) \\
& \left(A_{n} \circ B_{n}\right) \circ C_{n}=A_{n} \circ\left(B_{n} \circ C_{n}\right)
\end{aligned}
$$

as shown in (Sani, 2004) that row-column multiplication of rhotrices is non-commutative but associative.
(iii) Existence of identity: for each $A_{n} \in G R_{n}(F), \exists$

such that
$I_{n} \circ R_{n}=R_{n} \circ I_{n}=R_{n}, \quad \forall R_{n} \in G R_{n}(F)$
(iv) Existence of inverse: for each $A_{n} \in G R_{n}(F), \exists$
$A_{n}^{-1} \in G R_{n}(F)$ such that
$A_{n} \circ A_{n}^{-1}=I_{n} \in G R_{n}(F)$. So
$A_{n}^{-1} \in G R_{n}(F)$.
Hence, $\left(G R_{n}(F), \circ\right)$ is a group under the operation of row-column method for multiplication of rhotrices.

Theorem 2

Let $S R_{n}(F)$ be the subset of $G R_{n}(F)$ consisting of all rhotrices of size n having determinant as 1and let \circ be the noncommutative method for rhotrix multiplication. Then the pair $\left(S R_{n}(F), \circ\right)$ is a special rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$.
Proof
Since $I_{n} \in S R_{n}(F)$, then $S R_{n}(F) \neq \varnothing$.
Now, Let A_{n} and $B_{n} \in S R_{n}(F)$,
Then it follows that, $\operatorname{det}\left(A_{n}\right)=1 \neq 0$ and $\operatorname{det}\left(B_{n}\right)=1 \neq 0$ respectively. This implies that for each A_{n} and $B_{n} \in S R_{n}(F), \quad \exists A_{n}^{-1}$ and
$B_{n}^{-1} \in S R_{n}(F)$ э $A_{n} \circ B_{n}^{-1} \in S R_{n}(F)$ and
$\operatorname{det}\left(A_{n} \circ B_{n}^{-1}\right)=\operatorname{det}\left(A_{n}\right) \circ \operatorname{det}\left(B_{n}^{-1}\right)=1 \circ 1^{-1}$
Hence $\left(S R_{n}(F), \circ\right)$ is a subgroup of $\left(G R_{n}(F), \circ\right)$.

The Special Normal Subgroup and Quotient Group

Theorem 3

Let $\left(G R_{n}(F), \circ\right)$ be the group of all invertible rhotrices of size n with entries from an arbitrary field F under row-column method of rhotrix multiplication'。'. Let $S R_{n}(F)$ be the subset of $\left(G R_{n}(F), \circ\right)$ consisting of all rhotrices having determinant as

1. Then the pair $\left(S R_{n}(F), \circ\right)$ is a special normal subgroup of $\left(G R_{n}(F), \circ\right)$.

Proof
From theorem 2 above, the pair $\left(S R_{n}(F), \circ\right)$ is a subgroup of $\left(G R_{n}(F), \circ\right)$. Now, it remains to show that $\left(S R_{n}(F), \circ\right)$ is a normal subgroup of $\left(G R_{n}(F), \circ\right)$.
For any rhotrix $X_{n} \in G R_{n}(F)$ and any rhotrix $A_{n} \in S R_{n}(F), \operatorname{det}\left(X_{n}^{-1} \circ A_{n} \circ X_{n}\right)=1$.
Hence, $X_{n}^{-1} \circ A_{n} \circ X_{n}$ belongs to $S R_{n}(F)$.
So, $S R_{n}(F)$ is a special normal subgroup of $G R_{n}(F)$.

Theorem 4

Let $\left(G R_{n}(F), \circ\right)$ be the non-commutative general rhotrix group and let $\left(S R_{n}(F), \circ\right)$ be the special normal subgroup of $\left(G R_{n}(F), \circ\right)$. Then the cosets of $S R_{n}(F)$ in $G R_{n}(F)$ forms a special quotient group $G R_{n}(F) / S R_{n}(F)^{\text {under }}$ rhotrix coset multiplication, as defined by
$\left(A_{n} \circ S R_{n}(F)\right) \circ\left(B_{n} \circ S R_{n}(F)\right)=\left(A_{n} \circ B_{n}\right) \circ S R_{n}(F)$.
Proof
The rhotrix coset multiplication is well -defined, since
$\left(A_{n} \circ S R_{n}(F)\right) \circ\left(B_{n} \circ S R_{n}(F)\right)$
$=A_{n} \circ\left(S R_{n}(F) \circ B_{n}\right) \circ S R_{n}(F)$
$=A_{n} \circ\left(B_{n} \circ S R_{n}(F)\right) \circ S R_{n}(F)$
$=\left(A_{n} \circ B_{n}\right) \circ\left(S R_{n}(F) \circ S R_{n}(F)\right)=\left(A_{n} \circ B_{n}\right) \circ S R_{n}(F)$
using the fact that $S R_{n}(F)$ is a special normal subgroup of
$G R_{n}(F)$, so
$S R_{n}(F) \circ B_{n}=B_{n} \circ S R_{n}(F)$ and
$\left(S R_{n}(F) \circ S R_{n}(F)\right)=S R_{n}(F)$.
Associativity of rhotrix coset multiplication follows from the fact that associativity holds in $G R_{n}(F)$. Notice that $S R_{n}(F)$ is the identity element of $G R_{n}(F) / S R_{n}(F)$, since
$\left(A_{n} \circ S R_{n}(F)\right) \circ S R_{n}(F)=A_{n} \circ\left(S R_{n}(F) \circ S R_{n}(F)\right)$ $=A_{n} \circ S R_{n}(F)$
and
$S R_{n}(F) \circ\left(A_{n} \circ S R_{n}(F)\right)$
$=\left(S R_{n}(F) \circ A_{n}\right) \circ S R_{n}(F)$
$=\left(A_{n} \circ S R_{n}(F)\right) \circ S R_{n}(F)=A_{n} \circ S R_{n}(F)$
Lastly, $A_{n}^{-1} \circ S R_{n}(F)$ is the inverse of $A_{n} \circ S R_{n}(F)$, since

$$
\left(A_{n}^{-1} \circ S R_{n}(F)\right) \circ\left(A_{n} \circ S R_{n}(F)\right)
$$

$=\left(A_{n}^{-1} \circ A_{n}\right) \circ S R_{n}(F)$
$=I_{n} \circ S R_{n}(F)=S R_{n}(F)$
and
$\left(A_{n} \circ S R_{n}(F)\right) \circ\left(A_{n}^{-1} \circ S R_{n}(F)\right)$
$=\left(A_{n} \circ A_{n}^{-1}\right) \circ S R_{n}(F)$
$=I_{n} \circ S R_{n}(F)=S R_{n}(F)$
Hence, $\quad G R_{n}(F) / S R_{n}(F)$ is a quotient group under operation of multiplication of cosets of $S R_{n}(F)$ in $G R_{n}(F)$.

OTHER RESULTS

Theorem 5

Let $\left(S R_{n}(F), \circ\right)$ be the non-commutative special rhotrix
group and let $S R T R_{n}(F)$ be a subset of $S R_{n}(F)$,
consisting of all right triangular rhotrices with determinant as 1 , then $\operatorname{SRTR}_{n}(F)$ is a normal subgroup of $S R_{n}(F)$ and there exist the quotient group $S R_{n}(F) / S L T R_{n}(F)$ under operation of coset multiplication, defined by

$$
\begin{aligned}
& \left(A_{n} \circ \operatorname{SRTR}_{n}(F)\right) \circ\left(B_{n} \circ \operatorname{SRTR}_{n}(F)\right)= \\
& \left(A_{n} \circ B_{n}\right) \circ \operatorname{SRTR}_{n}(F) .
\end{aligned}
$$

Proof
First, it will be shown that $\operatorname{SRTR}_{n}(F)$ is a normal subgroup of $S R_{n}(F)$ and finally, show that the cosets of $\operatorname{SRTR}_{n}(F)$ in $S R_{n}(F)$ forms a quotient group under multiplication of cosets.
Let
$\operatorname{SRTR}_{n}(F)=$

where $1 \leq i, j \leq t$,
$1 \leq l, k \leq t-1 ; t=\frac{n+1}{2}, n \in 2 Z^{+}+1$.
Since $\operatorname{det}\left(I_{n}\right)=1, I_{n}$ belongs to $\operatorname{SRTR}_{n}(F)$. If A_{n} and B_{n} belong to $\operatorname{SRTR}_{n}(F)$, then,
$\operatorname{det}\left(A_{n} \circ B_{n}\right)=\operatorname{det}\left(A_{n}\right) \circ \operatorname{det}\left(B_{n}\right)=(1) \circ(1)=1$,
$\Rightarrow A_{n} \circ B_{n} \in \operatorname{SRTR}_{n}(F)$.
Also, $\operatorname{det}\left(A_{n}^{-1}\right)=\frac{1}{\operatorname{det}\left(A_{n}\right)}=\frac{1}{1}=1$.
$\Rightarrow A_{n}^{-1} \in \operatorname{SRTR}_{n}(F)$. Associativity law holds in $\operatorname{SRTR}_{n}(F)$, since by virtue of associativity in $S R_{n}(F)$. Hence, $\operatorname{SRTR}_{n}(F)$ is a subgroup of $S R_{n}(F)$.
Now, for any special rhotrix $X_{n} \in S R_{n}(F)$ and any special right triangular rhotrix $A_{n} \in \operatorname{SRTR}_{n}(F)$, we have $\operatorname{det}\left(X_{n}^{-1} \circ A_{n} \circ X_{n}\right)=1$. Hence, $X_{n}{ }^{-1} \circ A_{n} \circ X_{n}$ belongs to $\operatorname{SRTR}_{n}(F)$. so, $\operatorname{SRTR}_{n}(F)$ is a special right triangular normal subgroup of $S R_{n}(F)$.
Finally, to show that the cosets of $\operatorname{SRTR}_{n}(F)$ in $S R_{n}(F)$ forms a quotient group under multiplication of cosets is as follows: Let the operation of coset multiplication in $\operatorname{SRTR}_{n}(F)$ be defined by
$\left(A_{n} \circ \operatorname{SRTR}_{n}(F)\right) \circ\left(B_{n} \circ \operatorname{SRTR}_{n}(F)\right)=$ $\left(A_{n} \circ B_{n}\right) \circ \operatorname{SRTR}_{n}(F)$
Then the rhotrix coset multiplication is well -defined, since
$\left(A_{n} \circ \operatorname{SRTR}_{n}(F)\right) \circ\left(B_{n} \circ \operatorname{SRTR}_{n}(F)\right)=$ $A_{n} \circ\left(\operatorname{SRTR}_{n}(F) \circ B_{n}\right) \circ \operatorname{SRTR}_{n}(F)$

$$
\begin{aligned}
& =A_{n} \circ\left(B_{n} \circ \operatorname{SRTR}_{n}(F)\right) \circ \operatorname{SRTR}_{n}(F) \\
& =\left(A_{n} \circ B_{n}\right) \circ\left(\operatorname{SRTR}_{n}(F) \circ \operatorname{SRTR}_{n}(F)\right) \\
& =\left(A_{n} \circ B_{n}\right) \circ \operatorname{SRTR}_{n}(F)
\end{aligned}
$$

using the fact that $\operatorname{SRTR}_{n}(F)$ is a special right triangular normal subgroup of $S R_{n}(F)$, so
$\operatorname{SRTR}_{n}(F) \circ B_{n}=B_{n} \circ \operatorname{SRTR}_{n}(F)$ and
$\left(\operatorname{SRTR}_{n}(F) \circ \operatorname{SRTR}_{n}(F)\right)=\operatorname{SRTR}_{n}(F)$.
Associativity of rhotrix coset multiplication follows from the fact that associativity holds in $S R_{n}(F)$. Notice that $\operatorname{SRTR}_{n}(F)$ is the identity element of $S R_{n}(F) / S R T R_{n}(F)$, since $\left(A_{n} \circ \operatorname{SRTR}_{n}(F)\right) \circ \operatorname{SRTR}_{n}(F)$
$=A_{n} \circ\left(\operatorname{SRTR}_{n}(F) \circ \operatorname{SRTR}_{n}(F)\right)=A_{n} \circ \operatorname{SRTR}_{n}(F)$
and
$\operatorname{SRTR}_{n}(F) \circ\left(A_{n} \circ \operatorname{SRTR}_{n}(F)\right)$
$=\left(\operatorname{SRTR}_{n}(F) \circ A_{n}\right) \circ \operatorname{SRTR}_{n}(F)$
$=\left(A_{n} \circ \operatorname{SRTR}_{n}(F)\right) \circ \operatorname{SRTR}_{n}(F)=A_{n} \circ \operatorname{SRTR}_{n}(F)$
Lastly, $\quad A_{n}^{-1} \circ \operatorname{SRTR}_{n}(F)$ is the inverse of
$A_{n} \circ \operatorname{SRTR}_{n}(F)$, since
$\left(A_{n}^{-1} \circ \operatorname{SRTR}_{n}(F)\right) \circ\left(A_{n} \circ \operatorname{SRTR}_{n}(F)\right)$
$=\left(A_{n}^{-1} \circ A_{n}\right) \circ \operatorname{SRTR}_{n}(F)=I_{n} \circ \operatorname{SRTR}_{n}(F)$
$=\operatorname{SRTR}_{n}(F)$
and
$\left(A_{n} \circ \operatorname{SRTR}_{n}(F)\right) \circ\left(A_{n}^{-1} \circ \operatorname{SRTR}_{n}(F)\right)$
$=\left(A_{n} \circ A_{n}^{-1}\right) \circ \operatorname{SRTR}_{n}(F)=I_{n} \circ \operatorname{SRTR}_{n}(F)$
$=\operatorname{SRTR}_{n}(F)$
Hence, $S R_{n}(F) / S R T R_{n}(F)$ is a quotient group under operation of coset multiplication.

Theorem 6
Let $\left(S R_{n}(F), \circ\right)$ be the non-commutative special rhotrix group and let $\operatorname{SLTR}_{n}(F)$ be a subset of $S R_{n}(F)$, consisting of all left triangular rhotrices with determinant as 1 , then $\operatorname{SLTR}_{n}(F)$ is a normal subgroup of $S R_{n}(F)$ and
there exist the quotient group $S R_{n}(F) / \operatorname{SLTR}_{n}(F)$ under operation of coset multiplication, defined by

$$
\begin{aligned}
& \left(A_{n} \circ \operatorname{SLTR}_{n}(F)\right) \circ\left(B_{n} \circ \operatorname{SLTR}_{n}(F)\right) \\
& =\left(A_{n} \circ B_{n}\right) \circ \operatorname{SLTR}_{n}(F) .
\end{aligned}
$$

Proof
First, it will be shown that $\operatorname{SLTR}_{n}(F)$ is a normal subgroup of $S R_{n}(F)$ and finally, show that the cosets of $\operatorname{SLTR}_{n}(F)$ in $S R_{n}(F)$ forms a quotient group under multiplication of cosets.

Let
$\operatorname{SLTR}_{n}(F)=$

where $1 \leq i, j \leq t$,
$1 \leq l, k \leq t-1 ; t=\frac{n+1}{2}, n \in 2 Z^{+}+1$.
Since $\operatorname{det}\left(I_{n}\right)=1, I_{n}$ belongs to $\operatorname{SLTR}_{n}(F)$. If A_{n} and B_{n} belong to $\operatorname{SLTR}_{n}(F)$, then,
$\operatorname{det}\left(A_{n} \circ B_{n}\right)=\operatorname{det}\left(A_{n}\right) \circ \operatorname{det}\left(B_{n}\right)=(1) \circ(1)=1$,
$\Rightarrow A_{n} \circ B_{n} \in \operatorname{SLTR}_{n}(F)$.
Also, $\operatorname{det}\left(A_{n}^{-1}\right)=\frac{1}{\operatorname{det}\left(A_{n}\right)}=\frac{1}{1}=1$.
$\Rightarrow A_{n}^{-1} \in \operatorname{SLTR}_{n}(F) . \operatorname{SLTR}_{n}(F)$ is associative, since associativity law holds in $S R_{n}(F)$. Thus, $\operatorname{SLTR}_{n}(F)$ is a subgroup of $S R_{n}(F)$.
Now, for any special rhotrix $X_{n} \in S R_{n}(F)$ and any special left triangular rhotrix $A_{n} \in \operatorname{SLTR}_{n}(F)$, we have $\operatorname{det}\left(X_{n}^{-1} \circ A_{n} \circ X_{n}\right)=1$. Hence, $X_{n}{ }^{-1} \circ A_{n} \circ X_{n}$ belongs to $\operatorname{SLTR}_{n}(F)$. So, $\operatorname{SLTR}_{n}(F)$ is a special left
triangular normal subgroup of $S R_{n}(F)$.
Finally, to show that the cosets of $\operatorname{SLTR}_{n}(F)$ in $S R_{n}(F)$ forms a quotient group under multiplication of cosets is as follows: Let the operation of coset multiplication in $\operatorname{SLTR}_{n}(F)$ be defined by
$\left(A_{n} \circ \operatorname{SLTR}_{n}(F)\right) \circ\left(B_{n} \circ \operatorname{SLTR}_{n}(F)\right)=$
$\left(A_{n} \circ B_{n}\right) \circ \operatorname{SLTR}_{n}(F)$
Then the rhotrix coset multiplication is well -defined, since
$\left(A_{n} \circ \operatorname{SLTR}_{n}(F)\right) \circ\left(B_{n} \circ \operatorname{SLTR}_{n}(F)\right)$
$=A_{n} \circ\left(\operatorname{SLTR}_{n}(F) \circ B_{n}\right) \circ \operatorname{SLTR}_{n}(F)$
$=A_{n} \circ\left(B_{n} \circ \operatorname{SLTR}_{n}(F)\right) \circ \operatorname{SLTR}_{n}(F)$
$=\left(A_{n} \circ B_{n}\right) \circ\left(\operatorname{SLTR}_{n}(F) \circ \operatorname{SLTR}_{n}(F)\right)$
$=\left(A_{n} \circ B_{n}\right) \circ \operatorname{SLTR}_{n}(F)$
using the fact that $\operatorname{SLTR}_{n}(F)$ is a special left triangular normal subgroup of $S R_{n}(F)$, so
$\operatorname{SLTR}_{n}(F) \circ B_{n}=B_{n} \circ \operatorname{SLTR}_{n}(F) \quad$ and
$\left(\operatorname{SLTR}_{n}(F) \circ \operatorname{SLTR}_{n}(F)\right)=\operatorname{SLTR}_{n}(F)$.
Associativity of rhotrix coset multiplication follows from the fact that associativity holds in $S R_{n}(F)$. Notice that $\operatorname{SLTR}_{n}(F)$ is the identity element of $S R_{n}(F) / S L T R_{n}(F)$, since $\left(A_{n} \circ \operatorname{SLTR}_{n}(F)\right) \circ \operatorname{SLTR}_{n}(F)$
$=A_{n} \circ\left(\operatorname{SLTR}_{n}(F) \circ \operatorname{SLTR}_{n}(F)\right)=A_{n} \circ \operatorname{SLTR}_{n}(F)$
and

$$
\begin{aligned}
& \operatorname{SLTR}_{n}(F) \circ\left(A_{n} \circ \operatorname{SLTR}_{n}(F)\right) \\
& =\left(\operatorname{SLTR}_{n}(F) \circ A_{n}\right) \circ \operatorname{SLTR}_{n}(F) \\
& =\left(A_{n} \circ \operatorname{SLTR}_{n}(F)\right) \circ \operatorname{SLTR}_{n}(F)=A_{n} \circ \operatorname{SLTR}_{n}(F)
\end{aligned}
$$

Lastly, $\quad A_{n}^{-1} \circ \operatorname{SLTR}_{n}(F)$ is the inverse of $A_{n} \circ \operatorname{SLTR}_{n}(F)$, since

$$
\begin{aligned}
& \left(A_{n}^{-1} \circ \operatorname{SLTR}_{n}(F)\right) \circ\left(A_{n} \circ \operatorname{SLTR}_{n}(F)\right) \\
& =\left(A_{n}^{-1} \circ A_{n}\right) \circ \operatorname{SLTR}_{n}(F)=I_{n} \circ \operatorname{SLTR}_{n}(F) \\
& =\operatorname{SLTR}_{n}(F)
\end{aligned}
$$

and
$\left(A_{n} \circ \operatorname{SLTR}_{n}(F)\right) \circ\left(A_{n}^{-1} \circ \operatorname{SLTR}_{n}(F)\right)$
$=\left(A_{n} \circ A_{n}^{-1}\right) \circ \operatorname{SLTR}_{n}(F)=I_{n} \circ \operatorname{SLTR}_{n}(F)$
$=\operatorname{SLTR}_{n}(F)$
Hence, $\quad S R_{n}(F) / \operatorname{SLTR}_{n}(F)$ is a quotient group under operation of coset multiplication.

Theorem 7

Let $\left(S R_{n}(F), \circ\right.$) be the non-commutative special rhotrix group and let $S D R_{n}(F)$ be a subset of $S R_{n}(F)$, consisting of all diagonal rhotrices with determinant as 1 , then $S D R_{n}(F)$ is a normal subgroup of $S R_{n}(F)$ and there exist the quotient group $S R_{n}(F) / S D R_{n}(F)$ under operation of coset multipication, defined by $\left(A_{n} \circ S D R_{n}(F)\right) \circ\left(B_{n} \circ S D R_{n}(F)\right)=$ $\left(A_{n} \circ B_{n}\right) \circ S D R_{n}(F)$.

Proof

First, it will be shown that $S D R_{n}(F)$ is a normal subgroup of $S R_{n}(F)$ and finally, show that the cosets of $\operatorname{SDR}_{n}(F)$ in $S R_{n}(F)$ forms a quotient group under multiplication of cosets. Let

$$
\operatorname{SDR}_{n}(F)=
$$

where $1 \leq i, j \leq t$,
$1 \leq l, k \leq t-1 ; t=\frac{n+1}{2}, n \in 2 Z^{+}+1$.
Since $\operatorname{det}\left(I_{n}\right)=1, I_{n}$ belongs to $\operatorname{SDR}_{n}(F)$. If A_{n} and B_{n} belong to $\operatorname{SDR}_{n}(F)$, then,

$$
\operatorname{det}\left(A_{n} \circ B_{n}\right)=\operatorname{det}\left(A_{n}\right) \circ \operatorname{det}\left(B_{n}\right)=(1) \circ(1)=1,
$$

$\Rightarrow A_{n} \circ B_{n} \in S D R_{n}(F)$. Associativity law holds in $S D R_{n}(F) \quad$ as \quad in $\quad S R_{n}(F)$ Also, $\operatorname{det}\left(A_{n}^{-1}\right)=\frac{1}{\operatorname{det}\left(A_{n}\right)}=\frac{1}{1}=1$.
$\Rightarrow A_{n}^{-1} \in S D R_{n}(F)$. Thus, $\operatorname{SDR}_{n}(F)$ is a subgroup of $S R_{n}(F)$.

Now, for any special rhotrix $X_{n} \in S R_{n}(F)$ and any special diagonal rhotrix $A_{n} \in S D R_{n}(F)$, we have $\operatorname{det}\left(X_{n}^{-1} \circ A_{n} \circ X_{n}\right)=1$. Hence, $X_{n}^{-1} \circ A_{n} \circ X_{n}$ belongs to $S D R_{n}(F)$. so, $\operatorname{SDR}_{n}(F)$ is a special diagonal normal subgroup of $S R_{n}(F)$.
Finally, to show that the cosets of $S D R_{n}(F)$ in $S R_{n}(F)$ forms a quotient group under multiplication of cosets is as follows: Let the operation of coset multiplication in $\operatorname{SDR}_{n}(F)$ be defined by

$$
\begin{aligned}
& \left(A_{n} \circ S D R_{n}(F)\right) \circ\left(B_{n} \circ S D R_{n}(F)\right) \\
& =\left(A_{n} \circ B_{n}\right) \circ S D R_{n}(F)
\end{aligned}
$$

Then the rhotrix coset multiplication is well -defined, since

$$
\begin{aligned}
& \left(A_{n} \circ S D R_{n}(F)\right) \circ\left(B_{n} \circ S D R_{n}(F)\right) \\
& =A_{n} \circ\left(S D R_{n}(F) \circ B_{n}\right) \circ S D R_{n}(F) \\
& =A_{n} \circ\left(B_{n} \circ S D R_{n}(F)\right) \circ S D R_{n}(F) \\
& =\left(A_{n} \circ B_{n}\right) \circ\left(S D R_{n}(F) \circ S D R_{n}(F)\right) \\
& =\left(A_{n} \circ B_{n}\right) \circ S D R_{n}(F)
\end{aligned}
$$

using the fact that $S D R_{n}(F)$ is a special diagonal normal subgroup of $S R_{n}(F)$, so
$S D R_{n}(F) \circ B_{n}=B_{n} \circ S D R_{n}(F)$ and
$\left(\operatorname{SDR}_{n}(F) \circ \operatorname{SDR}_{n}(F)\right)=\operatorname{SDR}_{n}(F)$.
Associativity of rhotrix coset multiplication follows from the fact that associativity holds in $S R_{n}(F)$. Notice that $S D R_{n}(F)$ is the identity element of $S R_{n}(F) / S D R_{n}(F)$, , ince

$$
\left(A_{n} \circ S D R_{n}(F)\right) \circ S D R_{n}(F)=
$$

$A_{n} \circ\left(\operatorname{SDR}_{n}(F) \circ S D R_{n}(F)\right)=A_{n} \circ S D R_{n}(F)$
and
$S D R_{n}(F) \circ\left(A_{n} \circ S D R_{n}(F)\right)$
$=\left(\operatorname{SDR}_{n}(F) \circ A_{n}\right) \circ S D R_{n}(F)$

$$
=\left(A_{n} \circ S D R_{n}(F)\right) \circ S D R_{n}(F)=A_{n} \circ S D R_{n}(F)
$$

Lastly, $A_{n}^{-1} \circ S D R_{n}(F)$ is the inverse of $A_{n} \circ S D R_{n}(F)$,

$$
\begin{aligned}
& \text { since } \\
& \left(A_{n}^{-1} \circ S D R_{n}(F)\right) \circ\left(A_{n} \circ S D R_{n}(F)\right) \\
& =\left(A_{n}^{-1} \circ A_{n}\right) \circ S D R_{n}(F)=I_{n} \circ S D R_{n}(F)=S D R_{n}(F)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(A_{n} \circ S D R_{n}(F)\right) \circ\left(A_{n}^{-1} \circ S D R_{n}(F)\right) \\
& =\left(A_{n} \circ A_{n}^{-1}\right) \circ S D R_{n}(F)=I_{n} \circ S D R_{n}(F)=\operatorname{SDR}_{n}(F)
\end{aligned}
$$

Hence, $S R_{n}(F) / S D R_{n}(F)$ is a quotient group under operation of coset multiplication.

Theorem 8

Let $\left(S R_{n}(F), \circ\right)$ be the non-commutative special rhotrix group and let $S K R_{n}(F)$ be a subset of $S R_{n}(F)$, consisting of all scalar rhotrices with determinant as 1 , then $S K R_{n}(F)$ is a normal subgroup of $S R_{n}(F)$ and there exist the quotient group $S R_{n}(F) / S K R_{n}(F)$ under operation of coset multiplication, defined by

$$
\begin{aligned}
& \left(A_{n} \circ S K R_{n}(F)\right) \circ\left(B_{n} \circ S K R_{n}(F)\right) \\
& =\left(A_{n} \circ B_{n}\right) \circ S K R_{n}(F)
\end{aligned}
$$

Proof
First, it will be shown that $S K R_{n}(F)$ is a normal subgroup of $S R_{n}(F)$ and finally, show that the cosets of $\operatorname{SKR}_{n}(F)$ in $S R_{n}(F)$ forms a quotient group under multiplication of cosets. Let

where $k_{i j}, k_{l k} \in F, 1 \leq i, j \leq t$,
$1 \leq l, k \leq t-1 ; t=\frac{n+1}{2}, n \in 2 Z^{+}+1$.
Since $\operatorname{det}\left(I_{n}\right)=1, I_{n}$ belongs to $\operatorname{SKR}_{n}(F)$. If A_{n} and B_{n} belong to $S K R_{n}(F)$, then,
$\operatorname{det}\left(A_{n} \circ B_{n}\right)=\operatorname{det}\left(A_{n}\right) \circ \operatorname{det}\left(B_{n}\right)=(1) \circ(1)=1$,
$\Rightarrow A_{n} \circ B_{n} \in \operatorname{SKR}_{n}(F)$.
Also, $\operatorname{det}\left(A_{n}^{-1}\right)=\frac{1}{\operatorname{det}\left(A_{n}\right)}=\frac{1}{1}=1$.
$\Rightarrow A_{n}^{-1} \in S K R_{n}(F)$. Thus, associativity law holds in $S K R_{n}(F)$ as in $S R_{n}(F)$. So $S K R_{n}(F)$ is a subgroup of $S R_{n}(F)$.
Now, for any special rhotrix $X_{n} \in S R_{n}(F)$ and any special scalar rhotrix $A_{n} \in \operatorname{SKR}_{n}(F)$, we have $\operatorname{det}\left(X_{n}{ }^{-1} \circ A_{n} \circ X_{n}\right)=1$. Hence, $X_{n}{ }^{-1} \circ A_{n} \circ X_{n}$ belongs to $\operatorname{SKR}_{n}(F)$. so, $\operatorname{SKR}_{n}(F)$ is a special scalar normal subgroup of $S R_{n}(F)$.
Finally, to show that the cosets of $S K R_{n}(F)$ in $S R_{n}(F)$ forms a quotient group under multiplication of cosets is as follows: Let the operation of coset multiplication in $S K R_{n}(F)$ be defined by
$\left(A_{n} \circ S K R_{n}(F)\right) \circ\left(B_{n} \circ S K R_{n}(F)\right)$
$=\left(A_{n} \circ B_{n}\right) \circ S K R_{n}(F)$
Then the rhotrix coset multiplication is well -defined, since

$$
\begin{aligned}
& \left(A_{n} \circ S K R_{n}(F)\right) \circ\left(B_{n} \circ S K R_{n}(F)\right) \\
& =A_{n} \circ\left(\operatorname{SKR}_{n}(F) \circ B_{n}\right) \circ \operatorname{SKR}_{n}(F) \\
& =A_{n} \circ\left(B_{n} \circ \operatorname{SKR}_{n}(F)\right) \circ \operatorname{SKR}_{n}(F) \\
& =\left(A_{n} \circ B_{n}\right) \circ\left(\operatorname{SKR}_{n}(F) \circ \operatorname{SKR}_{n}(F)\right) \\
& =\left(A_{n} \circ B_{n}\right) \circ \operatorname{SKR}_{n}(F)
\end{aligned}
$$

using the fact that $\operatorname{SKR}_{n}(F)$ is a special scalar normal subgroup of $S R_{n}(F)$, so
$\operatorname{SKR}_{n}(F) \circ B_{n}=B_{n} \circ S K R_{n}(F)$ and $\left(S K R_{n}(F) \circ S K R_{n}(F)\right)=S K R_{n}(F)$.
Associativity of rhotrix coset multiplication follows from the fact that associativity holds in $S R_{n}(F)$. Notice that $S_{K}(F)$ is
the identity element of $S R_{n}(F) / S K R_{n}(F)$, since

$$
\begin{aligned}
& \left(A_{n} \circ \operatorname{SKR}_{n}(F)\right) \circ S K R_{n}(F) \\
& =A_{n} \circ\left(\operatorname{SKR}_{n}(F) \circ \operatorname{SKR}_{n}(F)\right)=A_{n} \circ \operatorname{SKR}_{n}(F)
\end{aligned}
$$

and
$\operatorname{SKR}_{n}(F) \circ\left(A_{n} \circ S K R_{n}(F)\right)$
$=\left(S K R_{n}(F) \circ A_{n}\right) \circ S K R_{n}(F)$
$=\left(A_{n} \circ \operatorname{SKR}_{n}(F)\right) \circ S K R_{n}(F)=A_{n} \circ \operatorname{SKR}_{n}(F)$
Lastly, $\quad A_{n}{ }^{-1} \circ S K R_{n}(F)$ is the inverse of $A_{n} \circ S K R_{n}(F)$, since

$$
\begin{aligned}
& \left(A_{n}^{-1} \circ S K R_{n}(F)\right) \circ\left(A_{n} \circ S K R_{n}(F)\right) \\
& =\left(A_{n}^{-1} \circ A_{n}\right) \circ S K R_{n}(F)=I_{n} \circ \operatorname{SKR}_{n}(F)=\operatorname{SKR}_{n}(F)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(A_{n} \circ \operatorname{SKR}_{n}(F)\right) \circ\left(A_{n}^{-1} \circ S K R_{n}(F)\right) \\
& =\left(A_{n} \circ A_{n}^{-1}\right) \circ \operatorname{SKR}_{n}(F)=I_{n} \circ \operatorname{SKR}_{n}(F)=\operatorname{SKR}_{n}(F)
\end{aligned}
$$

Hence, $S R_{n}(F) / S K R_{n}(F)$ is a quotient group under operation of coset multiplication.

Theorem 9

Let $\left(S R_{n}(F), \circ\right.$) be the non-commutative special rhotrix group and let $I_{n}(F)$ be a subset of $S R_{n}(F)$, consisting of identity rhotrix which has determinant as 1 , then $I_{n}(F)$ is a trivial normal subgroup of $S R_{n}(F)$ and there exist the quotient group $S R_{n}(F) / I_{n}(F)$ under operation of coset multiplication, defined by

$$
\left(A_{n} \circ I_{n}(F)\right) \circ\left(B_{n} \circ I_{n}(F)\right)=\left(A_{n} \circ B_{n}\right) \circ I_{n}(F) .
$$

Proof

First, it will be shown that $I_{n}(F)$ is a normal subgroup of $S R_{n}(F)$ and finally, show that the cosets of $I_{n}(F)$ in $S R_{n}(F)$ forms a quotient group under multiplication of cosets. Let

where $1 \leq i, j \leq t$,
$1 \leq l, k \leq t-1 ; t=\frac{n+1}{2}, n \in 2 Z^{+}+1$.
Since $\operatorname{det}\left(I_{n}\right)=1, I_{n}$ belongs to $I_{n}(F)$. If A_{n} and B_{n} belong to $I_{n}(F)$, then,
$\operatorname{det}\left(A_{n} \circ B_{n}\right)=\operatorname{det}\left(A_{n}\right) \circ \operatorname{det}\left(B_{n}\right)=(1) \circ(1)=1$,
$\Rightarrow A_{n} \circ B_{n} \in I_{n}(F)$.
Also, $\operatorname{det}\left(A_{n}^{-1}\right)=\frac{1}{\operatorname{det}\left(A_{n}\right)}=\frac{1}{1}=1$.
$\Rightarrow A_{n}^{-1} \in I_{n}(F)$. Associativity holds in $I_{n}(F)$ as in $S R_{n}(F)$. Thus, $I_{n}(F)$ is a subgroup of $S R_{n}(F)$.
Now, for any special rhotrix $X_{n} \in S R_{n}(F)$ and any identity rhotrix $A_{n} \in I_{n}(F)$, we have $\operatorname{det}\left(X_{n}^{-1} \circ A_{n} \circ X_{n}\right)=1$. Hence, $X_{n}^{-1} \circ A_{n} \circ X_{n}$ belongs to $I_{n}(F)$. So, $I_{n}(F)$ is a trivial normal subgroup of $S R_{n}(F)$.
Finally, to show that the cosets of $I_{n}(F)$ in $S R_{n}(F)$ forms a quotient group under multiplication of cosets is as follows: Let the operation of coset multiplication in $I_{n}(F)$ be defined by

$$
\left(A_{n} \circ I_{n}(F)\right) \circ\left(B_{n} \circ I_{n}(F)\right)=\left(A_{n} \circ B_{n}\right) \circ I_{n}(F)
$$

Then the rhotrix coset multiplication is well -defined, since

$$
\begin{aligned}
& \left(A_{n} \circ I_{n}(F)\right) \circ\left(B_{n} \circ I_{n}(F)\right) \\
& =A_{n} \circ\left(I_{n}(F) \circ B_{n}\right) \circ I_{n}(F) \\
& =A_{n} \circ\left(B_{n} \circ I_{n}(F)\right) \circ I_{n}(F) \\
& =\left(A_{n} \circ B_{n}\right) \circ\left(I_{n}(F) \circ I_{n}(F)\right)
\end{aligned}
$$

$$
=\left(A_{n} \circ B_{n}\right) \circ I_{n}(F)
$$

using the fact that $I_{n}(F)$ is a trivial normal subgroup of $S R_{n}(F)$, so
$I_{n}(F) \circ B_{n}=B_{n} \circ I_{n}(F)$ and $\left(I_{n}(F) \circ I_{n}(F)\right)=I_{n}(F)$.
Associativity of rhotrix coset multiplication follows from the fact that associativity holds in $S R_{n}(F)$. Notice that $I_{n}(F)$ is the identity element of $S R_{n}(F) / I_{n}(F)$, since
$\left(A_{n} \circ I_{n}(F)\right) \circ I_{n}(F)$
$=A_{n} \circ\left(I_{n}(F) \circ I_{n}(F)\right)=A_{n} \circ I_{n}(F)$
and
$I_{n}(F) \circ\left(A_{n} \circ I_{n}(F)\right)=\left(I_{n}(F) \circ A_{n}\right) \circ I_{n}(F)$
$=\left(A_{n} \circ I_{n}(F)\right) \circ I_{n}(F)=A_{n} \circ I_{n}(F)$
Lastly, $A_{n}^{-1} \circ I_{n}(F)$ is the inverse of $A_{n} \circ I_{n}(F)$, since
$\left(A_{n}^{-1} \circ I_{n}(F)\right) \circ\left(A_{n} \circ I_{n}(F)\right)$
$=\left(A_{n}^{-1} \circ A_{n}\right) \circ I_{n}(F)=I_{n} \circ I_{n}(F)=I_{n}(F)$
and

$$
\begin{aligned}
& \left(A_{n} \circ I_{n}(F)\right) \circ\left(A_{n}^{-1} \circ I_{n}(F)\right) \\
& =\left(A_{n} \circ A_{n}^{-1}\right) \circ I_{n}(F)=I_{n} \circ I_{n}(F)=I_{n}(F)
\end{aligned}
$$

Hence, $S R_{n}(F) / I_{n}(F)$ is a quotient group under operation of coset multiplication.

Remark

It will be interesting to notice the following compositions of subnormal series:

$$
\begin{equation*}
\{I\} \triangleright \triangleright\left(S D R_{n}(F), \circ\right) \triangleright \triangleright\left(S R T R_{n}(F), \circ\right) \triangleright \triangleright \tag{i}
\end{equation*}
$$

$$
\left(S R_{n}(F), \circ\right) \triangleright \triangleright\left(G R_{n}(F), \circ\right)
$$

$$
\{I\} \triangleright \triangleright\left(S D R_{n}(F), \circ\right) \triangleright \triangleright\left(\operatorname{SLTR}_{n}(F), \circ\right) \triangleright \triangleright
$$

$$
\begin{equation*}
\left(S R_{n}(F), \circ\right) \triangleright \triangleright\left(G R_{n}(F), \circ\right) \tag{ii}
\end{equation*}
$$

$$
\begin{align*}
& \left(G R_{n}(F), \circ\right) /\{I\} \triangleright \triangleright\left(G R_{n}(F), \circ\right) /\left(\operatorname{SDR}_{n}(F), \circ\right) \triangleright \triangleright \tag{iii}\\
& \left(G R_{n}(F), \circ\right) /\left(\operatorname{SLTR}_{n}(F), \circ\right) \triangleright \triangleright\left(G R_{n}(F), \circ\right) /\left(\operatorname{SR}_{n}(F), \circ\right)
\end{align*}
$$

(iv)

$$
\begin{aligned}
& \left(G R_{n}(F), \circ\right) /\{I\} \triangleright \triangleright\left(G R_{n}(F), \circ\right) /\left(S D R_{n}(F), \circ\right) \triangleright \triangleright \\
& \left(G R_{n}(F), \circ\right) /\left(\operatorname{SRTR}_{n}(F), \circ\right) \triangleright \triangleright\left(G R_{n}(F), \circ\right) /\left(S R_{n}(F), \circ\right)
\end{aligned}
$$

purpose of reducing abstractions during teaching and learning of these concepts in abstract algebra. In the future, it may be interesting to consider extension of isomorphism theorems to subgroups of non-commutative general rhotrix group of size n over an arbitrary field F.

REFERENCES

Ajibade, A. O. (2003). The Concept of Rhotrix in Mathematical Enrichment.International Journal of Mathematical Education in Science and Technology, 34, 175-179.
Aminu, A., Aminu, M., Ringim, M. Z.(2017). Permanent of a Rhotrix. Afrika Matematika, 28 (3), 481-491.
Atanassov, K. T., Shannon, A. G., (1998). Matrix-Tertions and Matrix Noitrets: Exercises In Mathematical Enrichment. International Journal of Mathematical Education in Science and Technology, 29, 898-903.
Fraleigh, J. B.(2003). A First Course in Abstract Algebra. Pearson Educational Publishing, Seventh Edition.
Mohammed, A. (2007a). Enrichment Exercises Through Extension To Rhotrices.International Journal of Mathematical Education in Science and Technology, 131136.

Mohammed, A. (2007b). A Note on Rhotrix Exponent Rule and Its Applications to Special Series and Polynomial Equations Defined over Rhotrices.Notes on NumberTheory and Discrete Mathematics, 13 (1), 1-15.
Mohammed, A., Sani, B., (2011).On Construction of Rhomtrees as Graphical Representation of Rhotrices.Notes on Number Theory and Discrete Mathematics, 17(1), 21-29.
Mohammed, A., Balarabe, M., Imam, A. T., (2014). On Construction of Rhotrix Semi-group. Journal of the Nigerian Association of Mathematical Physics, 27(3), 6976.

Mohammed, A. and Okon, U. E., (2016). On Subgroups of NonCommutative General Rhotrix Group, Notes on Number Theory and Discrete Mathematics, 22 (2), 72-90.
Mohammed, A. and Balarabe, M., (2017). Formulation of the Cardinality of Green's Relations in Semigroup of All Rhotrices Over Finite Field of Prime Order. Journal of the Mathematical Association of Nigeria, 44 (1), 87-93.
Sani, B., (2004). An Alternative Method for Multiplication of Rhotrices. International Journal of Mathematical Education in Science and Technology, 35, 777-781.
Sani, B., (2007). The Row-Column Multiplication For High Dimensional Rhotrices. International Journal of Mathematical Education in Science and Technology, 38, 657-662.
Seymour Lipschutz and Marc Lars Lipson, M.S., Discrete Mathematics, Tata McGraw-Hill, New Delhi, (2005).
below.

${ }^{\circ}$	$\{R 1, R 2, R 4\}$	$\{R 3, R 6, R 6\}$
$\{R 1, R 2, R 4\}$	$\{R 1, R 2, R 4\}$	$\{R 3, R 6, R 6\}$
$\{R 3, R 6, R 6\}$	$\{R 3, R 6, R 6\}$	$\{R 1, R 2, R 4\}$

Conclusion

A presentation of the concept of normal subgroups and quotient groups having rhotrix set as underlying set. Concrete examples had also been given in this work, so that it can further serve the

