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ABSTRACT  
The aim of this paper is to apply Variational Iteration Method 
(VIM) to solve typhoid fever model for a given constant 
population. This mathematical model is described by nonlinear 
first order ordinary differential equations. First, we find the solution 
of this model by using Variational Iteration Method (VIM). In order 
to show the efficiency of the method we compare the solutions 
obtained by VIM and RK4. The validity of the VIM in solving the 
model is established by using the computer in-built classical 
fourth-order Runge-Kutta method. We illustrated the profiles of 
the solutions of each of the compartments, from which we 
speculate that the VIM and RK4 solutions agreed well. 
 
Keywords: Typhoid Fever, Variational Iteration Method, Runge-
Kutta Method. 
 
INTRODUCTION 
Typhoid fever is one of the infectious disease which is endemic in 
most part of the world. It is systemic infection caused by 
Salmonella enterica serotype typhi (S typhi). It is spread through 
contaminated food, water or drink. Merrell andFalkow, 2004).  
 
Typhoid fever infects 21 million people and kills 200,000 
worldwide every year. Asymptomatic carriers are believed to play 
a major role in the evolution and global transmission dynamics of 
Typhoid fever, and their presence greatly hinders the eradication 
of Typhoid fever using treatment and vaccination. (Naresh et al., 
2008). 
“Typhoid fever has continue to be a health problem in developing 
countries where there is poor sanitation, poor standard of 
personal hygiene and prevalence of contaminated food. It is 
endemic in many parts of the developing world, illness do occur 
around the world in span of a day”.  (Lifshitz, 1996). 
 
Several mathematical models on the transmission dynamics of  
typhoid fever disease have been developed these includes 
(Adetunde,  2008), ( Date et al, 2015), (Cvjetanovic et al, 2014), 
(Kalajdzievska, 2011), (Lauria et al 2009), (Moatlhodl  and 
Gosaamang, 2017),(Moffact, 2014),(Muhammad, et al 
2015),(Mushayabasa, 2011), (Mushayabasa, 2017), (Nthiiri,  
2016), (Virginia et al, 2014),(Watson and Edmunds, 2015), (Peter 
and Ibrahim, 2017), (Ibrahim et al, 2017) but none has 
incorporated both direct and indirect transmission dynamics in 
typhoid fever. We will like to complement and extend the existing 
works in the literature. We assume the existence of both direct 
transmission of typhoid from infected individuals to susceptible 

and indirect transmission of bacteria from the environment to the 
susceptible individuals 
The aim of this paper is to present the application of Variational 
Iteration Method to the proposed model and to verify the validity 
of Variational Iteration Method in solving the model using 
computer in-built Maple 18 classical fourth-order Runge-Kutta 
method as a base. 
“The concept of variational iteration method was first proposed by 
(He, 1998). VIM which is a modified general Lagrange multiplier 
method (Abbasbandy and Shivanian, 2009), (Abdou and Soliman, 
2005), (Momani and Abuasad, 2006) has been shown to solve 
effectively, easily and accurately, a large class of nonlinear 
problems with approximations which converge quickly to accurate 
solutions. 
In this study, we employ the Variational Iteration Method (VIM) to 
the system of non-linear differential equations which describe our 
model and approximating the solutions in a sequence of time 
intervals. In other to illustrate the accuracy of the VIM, the 
obtained results are compared with classical fourth-order Runge-
Kutta Method. 
 
MATERIALS AND METHODS 
The model subdivides the human population into four 
compartments: susceptible S(t), infected I(t), infected carrier Ic(t), 
and recovered R(t). The  model assume direct transmission of 
typhoid from infected individuals to susceptible individuals. 
However, typhoid is largely contacted from environmental bacteria 
through contaminated water or food and drinks and transmission 
of typhoid through. To incorporate this real biological 
phenomenon, we consider an additional compartment, W(t), 
which represents bacteria in the environment. We assume that 
susceptible individuals get infected with typhoid fever at a rate 
proportional to the susceptible population, Individuals in the 

infected class, can recover from typhoid at the rate  . The 

Infected carrier and infected individuals both excrete bacteria into 
the environment. However, the rate of excretion by the infectious 

group 
2  is higher than that of the carrier group 

1  this is 

because infectious carrier do not show any signs of infection. The 
constant recruitment rate into the susceptible human is 

represented by   , while the natural death rate of human is 

represented by  . 

 
Model Equations 
From the assumptions, descriptions of the model, we formulate 
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the following system of differential equations 
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Substituting the value of force of infection 
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Table  1: Description of Variables and Parameters for Model 

 
 
Variational Iteration Method 
To illustrate the basic idea of variational iteration method, 
(Abbasbandy, and Shivanian 1999), (Abdou and Soliman 2005; 
Akinboro et al ,2014) gave the analysis of VIM as follows: Given 
the general differential equation of the form: 

)(= xgLyNy    (3) 

 Where N is a non-linear operator, L is a linear operator where 
g(x) is a non-homogenous term of the differential equations. The 
construction of correctional function for the equation is given as: 
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Where   is a Lagragian multiplier which can be express as: 
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where n  is the highest order of the differential equation. 

Subject to the initial conditions S0=60, Ic0=40, I0=20, R0=10, 
W(0)=200. 
 
Solution of the Model Using Variational Iteration Method 
We present the analysis of the system of equations governing the 
model using variation iteration method. In this section. Following 
the same approach (Momani, and Abuasad, 2006), we obtain the 
correctional function as: 
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Subject to the initial conditions S0=60, Ic0=40, I0=20, R0=10, 
W(0)=200. Using the initial conditions and the parameter values in 
the table and with the help of Mapple 18, we obtain the iterated 
values for each compartment. 
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RESULTS 
Numerical simulation which illustrate the analytical results for the 
proposed  Model was demostrated. This is achieved by using 
some set of values given in the table (2) below and whose source 
are mainly from literature and well as assumptions . We 
considered different initial conditions for the human populations.

60=(0)S , 40=(0)cI , 20=(0)I , 10=(0)R  

and that of bacterial populations 200=)(tW  The VIM is 

demostrated against mapple buit-in fourth order Runge-Kutta 
Procedure for the solution of the model. Figure (1) to (5) shows 

the combined plots of the solutions of )(tS , )(tIc , )(tI , 

)(tR  and )(tW  by VIM and RK4 

 
Table 2: Parameters values for model 

 
 

 
Figure 1: Solution of Infected Population by VIM and RK4 
 
 

 
Figure 2: Solution of Infected Population by VIM and RK4 
 

 
Figure 3: Solution of Recovered Population by VIM and RK4 
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Figure 4: Solution of Infected Population by VIM and RK4 

 
Figure 5: Solution of Concentration Bacteria Population by VIM 
and RK4 

DISCUSSION 
The solutions obtained by using Variational Iteration Method with 
given initial conditions compared favourably with the solution 
obtained by using classical fouth-order Runge-Kuta method. The 
solutions of the two methods follows the same pattern and 
behaviour.This shows that Variational Iteration Method is suitable 
and efficient to conduct the analysis of typhoid models.  
 
Conclusion 
We present a deterministic model on the analysis of direct and 
indirect transition dynamics of typhoid fever model. Variational 
Iteration Method is employed to attempt the series solution of the 
model. Numerical simulations were carried out to compare the 
results obtained by VIM with the result of classical fourth-order 
Runge-Kutta method. The results of the simulations were 
displayed graphically. Based on the results obtained from this 
study, we may conclude that VIM is very effective in predicting the 
solution of modern epidemics. 
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