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ABSTRACT  
In this paper, we merge homotopy perturbation method with He’s 
polynomials and Laplace transformation method to produce a 
highly effective algorithm for finding approximate solutions for 
generalized Hirota-Satsuma Coupled KdV equations. This 
technique is called the Homotopy Perturbation Transform Method 
(HPTM). With this technique, the solutions are obtained without 
any discretization or restrictive assumptions, and devoid of round-
off errors. This technique solved a generalized Hirota-Satsuma 
Coupled KdV equation without using Adomian’s polynomials 
which can be considered as a clear advantage over the 
decomposition method. MAPLE software was used to calculate 
the series generated from the algorithm. The results reveal that 
the homotopy perturbation transform method (HPTM) is very 
efficient, simple and can be applied to other nonlinear problems.  
 
Keywords: Coupled KdV equations, Homotopy perturbation 
transform method, Laplace transform method, Maple software, 
He’s polynomial 
 
INTRODUCTION 
The Korteweg-de Vries equation is a mathematical model of 
waves on shallow water surfaces. It is mostly notable as the 
prototypical example of a differential equation whose solution can 
be precisely specified. 
The Coupled Kortweg-de Vries (Ckdv) equation describes 
interaction of two long waves with different dispersion relations. It 
is connected with most types of long waves with weak dispersion, 
internal acoustic and planetary waves in geophysical 
hydrodynamics. The CKdv equation has several connections to 
physical problems. It approximately describes the evolution of 
long, one dimensional waves in many physical settings such as 
ion acoustic waves in a plasma, shallow-water waves with weakly 
non-linear restoring forces, long internal waves in a density-
stratified ocean and acoustic waves on a crystal lattice.  
Here, we consider a generalized Hirota-Satsuma coupled KdV 
equation which was one of the equations introduced by Wu et al. 

(1999). They introduced a 44  matrix spectral problem with 
three potentials and proposed a corresponding hierarchy of 
nonlinear equations; one of the typical equations in hierarchy is 
generalized Hirota-Satsuma coupled KdV equation. 
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Equations (1) - (3) above are reduced, respectively, to a new 
complex coupled KdV Equation (Wu et al., 1999) and Hirota-
Satsuma Equation (Hirota & Satsuma, 1981) 
Several methods have been used recently for solving equations 
(1) - (3) simultaneously with different solutions presented as well. 
Recently, Dalal (2012) considered the homotopy perturbation 
method (HPM) to obtain the exact solution of Hirota-Satsuma 
Coupled KdV equation using MATLAB. Some other authors that 
solved equations (1) – (3) include, Jacobi elliptic function method 
by Yu et al. (2005), the projective Riccati equations method by 
Yong et al. (2005), the algebraic method by Zayed et al. (2004), 
Adomian’s decomposition method by Kaya (2004), homotopy 
perturbation method by Ganji & Rafei (2006), variational iteration 
method by He & Wu (2006) and Assas (2008), homotopy analysis 
method by Abbasbandy (2007), homogenous balance method by 
Yong et al. (2003), differential transform method by Figen & 
Fatma (2010), the trigonometric function transform method by 
Cao et al. (2002) and Jacobian and rational methods by Zayed et 
al. (2007). 
He (2003) developed the homotopy perturbation method (HPM) 
by merging the standard homotopy and perturbation for solving 
various physical problems. HPM can be applied to linear and 
nonlinear problems without any discretization, restrictive 
assumption or transformation and is free from round off errors. 
The Laplace transform cannot handle nonlinear equations 
because of the difficulties that are caused by the nonlinear terms. 
Various ways have been proposed recently to deal with these 
nonlinearities such as the Adomian decomposition method 
(Biazar et al., 2010) and the Laplace decomposition algorithm 
(Khuri, 2001; Yusufoglu, 2006; Islam et al., 2010). 
Here, the homotopy perturbation method was combined with the 
He’s polynomials and  well-known Laplace transformation method 
(Madan & Fathizadeh, 2010)  to produce a highly effective 
algorithm and technique for handling a generalized Hirota-
Satsuma Coupled KdV equation. This technique called homotopy 
perturbation transform method (HPTM) provides the solution in a 
rapid convergent series which may lead to the solution in a closed 
form. The advantage of this method is its capability of combining 
two powerful methods for obtaining exact solutions for Hirota-
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Satsuma Coupled KdV equations. 
Moreover, contrary to the conservative methods which require the 
initial and boundary conditions, the HPTM provide an exact 
solution by using only the initial conditions. The boundary 
conditions can be used only to justify the obtained result. A 
comparison will be made to show that the method is equally able 
to arrive at exact solutions of Hirota-Satsuma Coupled KdV 
equations obtained in Dalal (2012). 
 
HOMOTOPY PERTURBATION TRANSFORM METHOD (HPTM) 
To illustrate the basic concept of HPTM, we consider a general 
nonlinear partial differential equation. This is given as introduced 
by Khan & Wu (2011) by combining the HPM and the LTM for 
solving various types of linear and nonlinear partial differential 
equations. Consider the general equations with the initial 
conditions given by 
 

),(),(),(),( txgtxNutxRutxDu 
          (4) 

)()0,( xhxu 
, 

)(),( xftxu 
              (5) 

where D is the nth order ordinary differential and
nn dxdD 

. R  is the linear differential operator of less 
order than D.  N represents the general non-linear differential 

operator and 
),( txg

 is the source term.  

Taking the Laplace transform (denoted in the paper by L ) on 
both sides of the equation (4) 
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Operating with the Laplace inverse on both sides of (7) gives   
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where 
).( txG

 represents the term arising from the source term 
and the prescribed initial conditions. 
Now, we apply the homotopy perturbation method;  
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And the nonlinear term can be decomposed as  
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For some He’s polynomial 
)(uH n  (Madani & Fathizadeh, 

2010) that are given by;  
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Substituting (9) - (11) in Eq. (8), we get  
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which is the coupling of the Laplace transform and the homotopy 
perturbation method using He’s polynomials. Comparing the 

coefficients of like powers of
p

, the following are obtained:    
0
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The best approximations for the solutions are 
 

1

0 1 2 3

( , ) ( , )

( , ) ( , ) ( , ) ( , )

n

n
p

u x t Lim p u x t

u x t u x t u x t u x t


 

   

    (18) 

 
Experimental Evaluation 
To illustrate the basic concepts of HPTM, we consider the system 
of Equations. (1-3) with the initial conditions as following: 
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Taking the Laplace transform on both sides of equations (1) – (3) 
subject to the initial condition (19) – (21) , we have 
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The inverse of Laplace transform of equations (22)-(24) implies 
that  
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Suppose the solution of equations (25)-(27) has the form 
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Now, applying the homotopy perturbation method to equations 
(25)-(27) and substituting equations  
(28)-(30) in to equations (25)-(26) 
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By expanding equation (31) and comparing the coefficients of like 

powers of 
p

, we have 
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Expanding equation (32) and comparing the coefficients of like 
powers of p , we have 
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Also expanding equation (33) and comparing the coefficients of 

like powers of 
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, we have  
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Solving the system of equations (34)-(38) above accordingly with 
the use of Maple 18.0, we obtain, 
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and so on for other components. The solution after third iteration 
is given by 
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Also, solving the system of equations (39)-(43) above accordingly 
with the use of Maple 18.0, we obtain, 
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and so on for other components. The solution after third iteration 
is given as 
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Solving the system of equations (44)-(48) above accordingly with 
the use of  Maple 18.0, we obtain, 
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and so on for other components. The solution after third iteration 
is given as 
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RESULTS AND DISCUSSION 
An approximate solution is obtained of equations (1) - (3) and 
compared with the exact solution to accentuate the accuracy of 
the present method.  To illustrate the convergence of the HPTM, 
the results of the numerical example are presented and only few 
terms are required to obtain accurate solutions. The accuracy of 
the HPTM for the generalized Hirota-Satsuma Coupled KdV 
equation is controllable, and absolute errors are very small with 

the present choice of t and x . These results are listed in Tables 1 

and 2, it is seen that the method achieves a minimum accuracy of 
three and maximum accuracy of nine significant figures for 
equations (1) - (3) for the first two approximations. It is also 
evident that when more terms for the HPTM are computed the 
numerical results get much closer to the corresponding exact 
solutions. 
 
Table 1: Maximum pointwise error obtained between HPTM 

results and exact solutions in Dalal (2012)   when 
0

1,c 
1

1,c 

0.1,k  1   and 0.5x  at various value of  t   

 
 
Table 2: Maximum pointwise error obtained between HPTM 

results and exact solutions in Dalal (2012) when 
0

1,c 
1

1,c 

0.1,k  1  and 1x   at various value of t  

 
 
Conclusion 
In this research, solutions of Generalized Hirota-Satsuma 
Coupled KdV equations are obtained by applying homotopy 
perturbation transform method with specific initial conditions. The 
results show that the homotopy perturbation transform method 
(HPTM) is powerful and efficient technique in finding approximate 
solutions for Generalized Hirota-Satsuma Coupled KdV 
equations. The numerical results obtain for nth approximation are 
compared with the known exact solutions and the results show 
excellent approximation to the actual solutions of the equations by 
using only three iterations. 
  
It is worth mentioning that HPTM is capable of reducing the 
volume of the computational work considerably compared to the 
classical methods while still maintaining the high accuracy of the 
numerical result; the size reduction amounts to an improvement of 
the performance of the approach. Hence the method can be 
considered as a good refinement of existing numerical technique 
and might find wide application in different fields of science. 
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