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ABSTRACT  
In this study, we propose a mathematical model for the 
transmission dynamics of malaria by incorporating behavioural 
change via education as a control strategy against the spread of 
malaria. Analytical study is carried out to investigate the local 
stability of the system, given a threshold parameter known as the 
basic reproduction number R ,

0
 which is obtained using the next 

generation matrix method. Result showed that disease-free 

equilibrium of the system is locally asymptotically stable if 10R  . 

Numerical simulation carried out on the system shows that 
behavioural change significantly alters the dynamics of malaria 
infection towards achieving a malaria-free society in finite time.  
 
Keywords: Education, behavioural change, Disease-Free 
Equilibrium, Basic reproduction number, Local stability 
 
INTRODUCTION 
Malaria is one of the most devastating infectious diseases in the 
world, infecting millions of people annually and is a major cause 
of mortality. The World Health Organization (WHO) reported that 
in 2016, there were 216 million cases of malaria and about 90% 
of reported cases occurred in Africa (WHO 2018). This life-
threatening disease is caused by the single-celled genus 
plasmodium parasites which are transmitted through bites of 
infected anopheles mosquitoes, biting mainly between dusk and 
dawn. Plasmodium vivax, plasmodium ovale, plasmodium 
malariae, plasmodium falciparum, and plasmodium knowlesi are 
five parasite species identified to cause malaria in humans. 
Plasmodium falciparum (P. falciparum) causes most of the severe 
diseases and deaths which is most prevalent in Sub-Saharan 
Africa. Children below age 5 and pregnant women are most 
susceptible to the disease. In particular, malaria claims the life of 
a child every 2 minutes. The major symptoms of malaria include 
fatigue, chill, headache, abdominal and back pain, diarrhoea, 
vomiting and fever. Severe malaria infection can result in serious 
complications affecting brain, lungs, kidneys and other organs 
(WHO, 2014). Despite global efforts to control malaria, the 
incidence of the disease is increasing in endemic regions such as, 
sub-Saharan Africa. While Africa accounts for 91%  of malaria 
deaths worldwide, Nigeria being the most populous country on the 
continent accounted for 24% of malaria deaths globally in 2016 
(WHO, 2018). 
Mathematical modelling has been used as a tool to understand 
the transmission dynamics of infectious diseases. From the year 
1911 till present, various mathematical models have been derived 
which take into account various possible scenarios of the 
transmission dynamics of malaria. Some of these include 

(Koella,1991), (Chitnis, 2005), (Tumwiine et al, 2007), (Tumwiine 
et al, 2008), (Peter, 2010), (Francis et al, 2012), (Adamu and 
Kimbir, 2013), (Xiongwei et al, 2014), (Bakare and Nwozo, 2015), 
(Adamu et al, 2015), (Sunisa et al, 2015), (Abadi and Harald, 
2015), (Bakary et al, 2017). In another attempt to alleviate the 
problem of malaria transmission, (Olaniyi and Obabiyi, 2013) 
developed a model that considered the impact of antibodies 
produced by both human and mosquito populations in response 
to the presence of malaria parasites. It has been observed that in 
many regions where the disease burden is high, very few people 
live above the poverty level. In other words, humans will be able 
to boost production of antibodies with the intake of the right food 
or supplements when hunger and poverty has been eradicated 
knowing that malaria affects some of the poorest regions of the 
world, with very limited resources (Chitnis, 2005). However, 
(Maliyoni et al, 2012) observed that when interventions such as 
education are introduced in the fight against infectious diseases, 
trends improve in the population.  
In this paper, we developed a mathematical model that 
incorporates an education-based behavioural change as an 
extension of (Olaniyi and Obabiyi, 2013) where the human 
population follows the susceptible-exposed-infectious-recovered 
(SEIR) pattern and the mosquito population follows susceptible-
exposed-infectious (SEI) pattern. Hence, our aim is to determine 
the effect of behavioural change as a control strategy against the 
spread of malaria. 
 
MATERIALS AND METHODS 
The model comprises of two interacting (human and mosquito) 
populations as developed by (Olaniyi and Obabiyi, 2013). And a 
modified version is presented which incorporates an additional 
class of humans called, protected humans. Thus, the human 
population follows the susceptible-protected-exposed-infectious-
recovered (SPEIR) pattern and the mosquito population follows 
susceptible-exposed-infectious (SEI) pattern. 
 
Table 1: Description of the state variables of the models 
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Table 2: Description of the parameters of the models 

 
 
Epidemiological Flow Diagrams 

 
Figure 1: Epidemiological flow diagram for the existing model by 
(Olaniyi and Obabiyi, 2013) 
 

 
Figure 2: Epidemiological flow diagram of the model with 
behavioural change (modified model) 
 
Model formulation 
From the epidemiological flow diagram in Figure 1, Olaniyi and 
Obabiyi (2013) obtained the model equations (1) – (7) given 
below; 
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Together with the initial conditions: 

hh SS 0)0( 
, hh EE 0)0( 

, hh II 0)0( 
, 

hh RR 0)0( 
, mm SS 0)0( 

, mm EE 0)0( 
, 

mm II 0)0( 
 

 
But, Figure 2 shows an additional compartment in the human 

population called the protected compartment, denoted by ( )hP t . 

We assume that susceptible humans can be protected from 

contacts with mosquitoes at a rate e  when they exhibit positive 
behavioural change. Thus, equation of the modified model for the 
transmission dynamics of the disease is given by the following 
system of ordinary differential equations 

( ) ( )

1 ( )

( ) ( ) ( )

h h h m
h

h m

h h h h

dS b S t I t

dt I t

S t eS t R t





 

  


  

    (8) 

 

( ) ( )h
h h h

dP
eS t P t

dt
      (9) 

 

( ) ( )
( ) ( )

1 ( )

h h h m
h h h

h m

dE b S t I t
E t

dt I t


 


  


  (10) 

 

( ) ( ) ( )h
h h h h h

dI
E t r I t

dt
         (11) 

 

( ) ( ) ( )h
h h h

dR
rI t R t

dt
        (12) 

 

( ) ( )
( )

1 ( )

m m m h
m m m

m h

dS b S t I t
S t

dt I t





   


  (13) 

2 

http://www.scienceworldjournal.org/


Science World Journal Vol 13(No 4) 2018 
www.scienceworldjournal.org 
ISSN 1597-6343 
Published by Faculty of Science, Kaduna State University 

 

Modelling the Effect of Education-Based Intervention in the Control of Malaria 

 

( ) ( )

1 ( )

( ) ( )

m m m m

m h

m m m

dE b S t I t

dt I t

E t





 




 

    (14) 

 

( ) ( ) ( )m
m m m m m

dI
E t I t

dt
       (15) 

 
Together with the initial conditions: 

0(0)h hS S , (0) ,h ohP P  0(0)h hE E , 

0(0)h hI I , 0(0)h hR R , 0(0)m mS S , 

0(0)m mE E ,  0(0)m mI I  

 
RESULTS 
Existence of Disease-free Equilibrium Point 

The disease free equilibrium point 
,0E

of the system (8) - (15) is 
obtained by setting the right hand side of (8)-(15) equal to zero 

when 0,hE   0,hI   0,hR   0,mE  0mI 

and is given by  
* * * * * * * *

0 ( , , , , , , , )

( , ,0,0,0, ,0,0)
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           (16) 

 
Basic Reproduction Number 

The basic reproduction number denoted by, 0R , is an important 

parameter which is used to study the behaviour of epidemiological 
models. (Diekmann et al, 1990), defined the basic reproduction 
number as the the expected number of secondary cases 
produced, in a completely susceptible population, by a typical 
infective individual. It is an important threshold parameter that 
determines whether or not, an infection will spread through a 
given population. We apply the next generation matrix technique 
by (Diekmann and Heesterbeek, 2000) to obtain the basic 

reproduction number, 0R , by considering the diseased 

compartments of the system (8) - (15) and is given by  
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Local Stability of Disease-free Equilibrium 
The basic reproduction number (16) is used to analyse the local 
stability of the equilibrium point of the system (8)-(15). 
 
Proposition 

The disease-free equilibrium,
0E , is locally asymptotically stable 

if 
0 1R   and unstable if 

0 1R   

 
Proof: 
The Jacobian of the system (8)–(15) evaluated at the disease-free 

equilibrium point,
0E , is obtained as: 
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 Where,  
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The characteristic equation of (17) is given as 
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We need to show that all the eigenvalues of the characteristic 
equation (18) are negative. Thus, evaluating the equation and 
simplifying (18) yields  

( )( )( ( ) )( ( ) ) 0h m h he                  

So that, 1 ,h    2 ,m    3 ( ),h e     
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Therefore, simplifying (19) further we obtain 
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By expanding and simplifying (21), we get 
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Thus, applying the Routh-Hurwitz criterion which states that all 
roots of the polynomial (22) have negative real parts if and only if 

the coefficients, iA , are positive and the determinants of the 

matrices, 0iH  . For 0,1,2,3,4i  . Therefore, from 

equation (23), we see that 1 0,A  2 0,A  3 0,A  and

4 0A  , since 1 2 3 4, , ,B B B B are all positive. That is, 
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Therefore, all the eigenvalues of the polynomial (22) have 

negative real parts, implying that 5 0,   6 0,   

7 0,   8 0  . Hence, since all the values of 0,i  for 

1,2,3,4,5,6,7,8i   when 0 1R   we conclude that the 

disease-free equilibrium point is locally asymptotically stable. 

However, if 0 1R  , we observe that 0 0A   and by 

Descartes’ rule of signs, (Polyanin and Manzhirov, 2007), there is 
exactly one sign change in the sequence, 

4 3 2 1 0, , , , .A A A A A  of the coefficients of the polynomial 

(22), implying that, there exists one eigenvalue with positive real 
part. Hence, the disease-free equilibrium point will be unstable. 
 
Numerical Experiments 
Numerical experiments were performed using MATLAB to study 
and compare the behaviour of the Olaniyi and Obabiyi (2013) 
model and the model with behavioural change given by the 
system (8)-(15) on the human populations. 
 
Table 3: Parameter values and initial variables 

 
Two approaches were deployed in conducting the numerical the 
experiments. First, we considered a case where no antibody is 
produced as a form of immune response to the presence of 
malaria parasites while varying the rate of behavioural change. 
Figures 3, 4, and 5 show the varying effect of  behavioural change 
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on the infected human populations while parameter values in 

Table 3 remained unchanged and 
0 1R  . 

 
Secondly, we considered implementing the proportions of 
antibodies produced by susceptible humans and mosquitoes in 
response to the presence of malaria parasites at 50% and varied 
the proportion of behavioural change of protected humans as 
shown in Figures 6, 7, and 8 
 

 

Figure 3: The behaviour of the models when 0.25e   

 

 

Figure 4: The behaviour of the models when 0.5e   

 

 
Figure 5: The behaviour of the models when 0.75e   
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Figure 6: The behaviour of the models when 0.25e   

 

 

Figure. 7: The behaviour of the models when 0.5e   

 

 

Figure. 8: The behaviour of the models when 0.75e   

 
DISCUSSION 
The disease-free equilibrium for the system (8)-(15) was 
established. The next generation matrix method was used to 

derive an explicit formula the basic reproduction number, 
0R . 

Further studies was carried out using Routh-Hurwitz criteria and 
results showed that the disease-free equilibrium point is locally 

asymptotically stable when
0 1R  , indicating that malaria 

eradication is possible within the population. 
The numerical experiment showed that when the production of 
antibody is suspended in both susceptible humans and 
mosquitoes, and varying the rate of behavioural change results in 
further decrease in the population of infectious humans as shown 
in Figures 3–5. Similarly, results indicate that when we combine 
the intervention of antibodies and behavioural change as 
illustrated in Figures 6-8, there is a greater improvement in 
controlling the spread of the disease in the entire human 
population compared to single intervention as illustrated in 
Figures 3-5. In other words, the combined intervention yields 
greater improvement in the population and hastens the time at 
which malaria is eradicated from the population. 
 
Conclusion 
Incorporating an education-based intervention strategy into the 
model due to (Olaniyi and Obabiyi, 2013) yields better 
performance of the modified model. Stability analysis of the 
modified model revealed an asymptotically stable Disease free 
equilibrium under specified conditions. Malaria can be eradicated 
in finite time when 

0 1R  . Otherwise, it persists in the population. 

Furthermore, behavioural change will drastically reduce the 
disease burden in regions where the level of education is high 
unlike areas with poor education where the disease continues to 
thrive. Therefore, massive and continuous health education is 
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highly recommended as an intervention alongside other forms of 
intervention for all members of communities invaded with malaria. 
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