
Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Understanding Error Log Event Sequence for Failure Analysis

UNDERSTANDING ERROR LOG EVENT SEQUENCE FOR FAILURE
ANALYSIS

Nentawe Gurumdimma1, Desmond Bala Bisandu2*

1,2Department of Computer Science, University of Jos, Nigeria

*Corresponding Author Email Address: yusufn@unijos.edu.ng / bisandud@unijos.edu.ng

ABSTRACT
Due to the evolvement of large-scale parallel systems, they are
mostly employed for mission critical applications. The anticipation
and accommodation of failure occurrences is crucial to the
design. A commonplace feature of these large-scale systems is
failure, and they cannot be treated as exception. The system state
is mostly captured through the logs. The need for proper
understanding of these error logs for failure analysis is extremely
important. This is because the logs contain the “health”
information of the system. In this paper we design an approach
that seeks to find similarities in patterns of these logs events that
leads to failures. Our experiment shows that several root causes
of soft lockup failures could be traced through the logs. We
capture the behavior of failure inducing patterns and realized that
the logs pattern of failure and non-failure patterns are dissimilar.

Keywords: Failure Sequences; Cluster; Error Logs; HPC;
Similarity

INTRODUCTION
High Performance Computer (HPC) systems have become the
backbone for major tasks like weather forecasting, stocks trading,
simulation etc. Its use has greatly exploded due to this reliance on
it (Nagarajan et al., 2007). It posses great challenge to users not
only for its high power dissipation due to size, but also in ensuring
that these computers stay without failure (Zheng et al., 2010). In
cloud, the servers or clusters that serve the clouds and other
services are prone to failures too. These days, almost all
applications make use of cluster computers that are yet very
prone to failure. And the challenge is how can these failures be
detected and / or avoided since any small down time can be
significantly costly (Zheng et al., 2010).
This then means that cluster systems must be at their optimum
performance and very effective. However, this is not always the
case, the cluster nodes fail due to errors. The effects of a single
node failure can be immense and propagate leading to failure of
more nodes and eventually the whole cluster system if not
corrected (Fu and Xu, 2007).
The challenge is to identify these failures for proper or necessary
steps to be taken to mitigate the effects or avoid the failures. Root
cause analysis is an approach towards solving this problem, and
research in this area seeks to study the cluster log files for failures
and their probable cause (Yang, 2003). These log file contains
systems’ health information and other activities going on within
the cluster system. However, root cause analysis only seeks to
know or identify the failures that occur and the probable cause
after the damage is done. The failure could lead to huge cost;
therefore, it is better to know if a failure will occur before it actually
happens (Fronza et al., 2013). This is called failure prediction. A
failure can be predicted from the initial symptoms or other means

before it occurs; this will allow proactive or necessary corrective
measures to be taken to avoid or prevent the failure (Gainaru et
al., 2012). This is thought to go a long in helping not only the
cluster system administrators, but also the businesses and other
applications that runs on this (Cinque et al., 2014).
One of the challenges for researchers trying to do root cause
analysis or failure prediction is the understanding of log files to
perform their analysis (Fronza et al., 2013). Failure prediction
tend to make use of these log events, study the existing failures
and understand the pattern in order to build models that can
predict future ones (Samak et al., 2012; Bisandu et al., 2018).
These log events tends to be chatty, huge and maybe, without
any particular standard format in which they were logged (Liang et
al., 2006).
In this paper, we introduce an approach that seeks to find
similarities in patterns of these logs events that leads to failures.
Our contribution is as follows:
i. Work has shown that so many of these log events are

similar events occurring or logged at different times. These
events can be reduced to foster easy analyses. We use a
distance metric and cluster these events according to their
similarity and assign a unique Id to them. These IDs can
be easily used for analysis algorithms.

ii. Message content of the events logs provides useful
information to the errors that occurs. These English
messages part of the events logs are extracted for every
failure episode. We use Latent Semantic Indexing to
perform dimensional reduction of our terms matrix for
these failure sequences which can be easily used in our
similarity metric algorithm.

iii. In order to understand the patterns in which these events
occur, we studied failures and observe if similar failure
sequences contains the same pattern, and how long in
terms of time can these similarities remain observable
across the failure sequences. Our approach employs the
Jenson – Shannon Distribution which as a metric captures
the similarity in patterns of the failure sequences.

The paper is structured as follows. Section II explains some
related works previously done. Section III describes our data and
the failures. We explain our data pre-processing in section IV,
which also involves clustering log events based on similarity.
Section V contains our approach towards finding similarity in the
failure sequences patterns. We discuss our results in section VI
and conclude in section VII.

Related Work
Over the years, logs have been considered as text files in human
readable forms that are readable for administrators and
developers. They signify one of the few mechanisms of gaining
visibility of system behavior (Hadžiosmanović et al., 2012).

F
u

ll
L

en
g

th
 R

es
ea

rc
h

 A
rt

ic
le

8

http://www.scienceworldjournal.org/
mailto:yusufn@unijos.edu.ng

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Understanding Error Log Event Sequence for Failure Analysis

Because of this reason logs have been applied in many areas
with different context of application domains in the last decades. A
non-exhaustive list of such applications includes the following:
mobile devices and control systems (Leveson, 2003), operating
systems (Makanju et al., 2010), large-scale applications (Liang et
al., 2006), and supercomputers (Gainaru et al., 2013). A
significant understanding of failure mode of higher performance
systems has been achieved due to the contributions made by
these studies: Kang and Grimshaw, (2007), which made the
possibility to improve the release of the systems successful. Data
log models use many state-of-the-art techniques software
packages for manipulating them, e.g. (Makanju et al., 2010;
Barringer et al., 2010), ad-hoc algorithms and strategies for
identifying failure logs in a failure-related entries to coalesce
related entries of the same problem are needed (Goto et al.,
2007). Achieving accurate measurements is the critical objective
of the tasks which has been re-arranged in this area of research,
such as, (Cotroneo et al., 2007), (Oliner and Stearley, 2007).
Failure prediction approaches in relation to theory of reliability and
preventive maintenance have been designed over the years
(Dhiman et al., 2013). Incorporating many factors into the
distribution, for example complexity of code Stearley, (2004) has
been one of the reasons for model evolving (Kalbfleisch and
Prentice, 2002). These methods have been tailored more through
long-term predictions and fail to appropriately work for prediction
of failures that are online.
More recent approaches for predicting short-term failures are
based on runtime monitoring typically as the account of system
current state is taking (Gurumdimma et al., 2016; Gurumdimma
and Jhumka, 2017). The literatures have indicated two levels of
predicting failures, they are: component level and system level. In
the first level components are observed (mother board and hard-
disk) using parameters that are specific to them and the
knowledge of their domain with each having different approaches
given the best results for prediction (Sullivan and Chillarege,
1991). Approaches that compare the execution of the failed
components with good ones are an example. Several researches
from different fields fitting this category are in (Bolander et al.,
2009; Patra et al., 2010). The community of Higher Performance
Computing (HPC), an example is in Zheng et al., (2007), where
the record of system performance matrices using matrices at all
intervals. Outliers are detected by the algorithms afterwards by
identifying majority nodes and nodes that are far from them.
The second level which is the prediction of failures at the system
level, different system parameters are observed by the monitoring
daemons (scheduler logs, system logs, performance metrics, etc.)
and the existence of correlation between different events are
investigated. Significant number of researches has been
proposed focusing on HPC systems prediction by analyzing them
in the last couple of years. Most predictors however, uses
information extracted in the phase of training for short span
predictions which required a new phase of training. An example is
the work done by the authors in Zheng et al., (2010) and Zhang et
al., (2004) which for training it takes up to 3 months, and half
month for the predictions, while the later authors make
comparison of two approaches for predicting failure and the
observation window influence on the results are also studied. The
authors in Gu et al., (2008) applied meta-learning predictor in
choosing between statistical and rule-based method pending on
the predictor that give best result corresponding to the system
state. Analogously the authors in Nakka et al., (2011) proposed

an approach that analyzed logs by investigating both failure logs
and usage.
The authors in Rouillard, (2004) presented their study making
difference between application and system failures. Job logs and
RAS logs to filter out failures having no effect on system running
jobs, allowing them to make couple of observations that are
interesting and could be helpful in future failure predictors. An
approach more general was proposed by the authors in
Rajachandrasekar et al., (2012) which is based on solution of
middleware between various application and analysis modules.
Decision-making engines and failure predictors relying on the
information of distributed failure are to facilitate fault tolerance
mechanisms such as preemptive job migration from either their
framework. Differently authors in Lou et al., (2010a) and Xu et al.,
(2009) proposed approaches by investigating parameter
correspondence among various log messages of application to
extract dependencies between system components. Time-series
analysis also have been used for the implementation of different
methods of processing, such as subspace method and spike
detection in finding patterns among outliers which shows
anomalies in monitored systems. Author in Liang et al., (2006)
analyze BlueGene/L system logs by combining spatial and
temporal filtering, specifically, designed predictive methods for
failure which was tested to be effective with about 80% of network
and memory failures. Five supercomputer systems logs were
analyzed in Oliner and Stearley, (2007), by providing an optimized
algorithm of the algorithm proposed by the authors in Liang et al.,
(2006). However, the filtering algorithm proposed might remove
alerts that are independent by coincidence, happening at same
time on different nodes.

LOG DATA
A. Error Logs
Log files are mostly the only means and source of information
about the workings of any computer systems. It is system
administrator's guide to diagnosing faults in computer systems.
Computer systems grow more complex and this means increased
in the logs also. The task of the system's administrators become
complex also or maybe impossible using the large log messages
(Barringer et al., 2010; Janbeglou et al., 2010; Lou et al., 2010b).
Log messages have become the main source of information for
Root Cause Analysis of failures of systems.
Event log files which contains logs with basic information about
the state of the system, the activities going on and the system's
health related information is what we will focus on for this work.
The challenge with the log file data is that they are generally
unstructured, often incomplete, not clearly understood, and most
times has no particular message structure. This is often the
challenge with the logs; therefore, we process our data to give it
some structure. Formatting our data into a structure that is
uniform and can give us the necessary information we need for
our analysis. A careful investigation of the log messages showed
that there is a pattern of occurrence of these errors before a
failure (Pecchia et al., 2011). Therefore we decided to analyze
further to find patterns and the relationship of the events to
failures.

B. Failure Identification
It is necessary we know that our data contain failure events; and
that these failures did take place at the super computing system
where the log files are recorded.

9

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Understanding Error Log Event Sequence for Failure Analysis

Soft Lockup Failures: These occur when requests are not
attended to maybe due to resource unavailability and also, a
process of reconnection initiated is also refused. This repeated
process may lead to deadlock processes or the nodes or servers
may hang. Eventually, this will lead to loss of data or service
access and causes termination of jobs. These soft lockups can be
either node soft lockups or server soft lockups. The occurrence of
the failure, soft lock is of interest to us. We want to know the kinds
of events that would likely lead to this failure.
A study of the log files and the expert's knowledge has shown that
Soft lockups are some of commonly occurring failure found in the
Cluster or HPC systems. Yuan et al., (2014) has shown that
Machine Check Exceptions causes soft lockup in computer
systems and also, Evict/RPC events.
Machine Check Exception (MCE) is a way the Computer's
hardware reports about an error that the hardware cannot correct.
When the kernel logs an uncorrected hardware error, measures
can be taken by the cluster software to rectify the problem, re-
running the job on another node and/or reporting the failure to the
administrator (Janbeglou et al., 2010). Therefore, MCE error
makes it possible to predict failures early. Soft lockups led by
Evict/RPC Events are characterized by evict and recovery events
preceding the failure. Cotroneo et al., (2007) have verified these
hypotheses using a correlation and regression technique and
obtained a high correlation between the MCE and Evict/RPC
events and the soft lockup failure events.
Log pre-processing
In this section we present the detail steps involved in processing
the log files into the format we can easily use for our analysis.

Figure 1: Log Pre-processing steps

C. Error log Tokenization and Parsing
The inconsistency in the format of error log entries means more
challenge in dealing with the logs, especially when all information
carried by the logs is important in the analysis (Liang et al., 2006).
It becomes very difficult to automatically analyze/process log files
because of the differences in the formats, system's information
contained in the reports. These systems information can be
proprietary in formats and contains so many messages that are
not needed. See Figure 2.

Ranger (syslog)
Mar 31 15:56:57 i149-405 kernel: [9155992.130789] Machine
check events logged
Mar 31 15:57:07 i144-110 kernel: [9155996.614494] Machine
check events logged
Mar 31 15:58:07 i102-406 kernel: [414646.585574] BUG: soft
lockup detected on CPU#2, pid:22297, uid:0, comm:ldlm_bl_24
Mar 31 15:58:07 i102-406 kernel: [414646.689471] spurious soft
lockup detection on CPU#2

Blue Gene/L
1117838702 2005.06.03 R02-M1-N0-C:J12-U11 2005-06-03-
15.45.02.981210 R02-M1-N0-C:J12-U11 RAS KERNEL INFO
instruction cache parity error corrected
1117838703 2005.06.03 R02-M1-N0-C:J12-U11 2005-06-03-
15.45.03.145256 R02-M1-N0-C:J12-U11 RAS KERNEL INFO
instruction cache parity error corrected
1117838704 2005.06.03 R02-M1-N0-C:J12-U11 2005-06-03-
15.45.04.007681 R02-M1-N0-C:J12-U11 RAS KERNEL INFO
instruction cache parity error corrected

Figure 2: Log events for RANGER syslog and BUE GENE/L

In an attempt towards overcoming these challenges, Fronza et al
(Fronza et al., 2013) proposed that log files should not be written
for systems administrators, who have a good understanding of the
systems alone, but the logs should contain extra information in a
well-structured format. In their proposal, the log file format
standard must clearly define the type of information to be
contained in the logs and must be uniquely represented. As long
as information about structure, environment, error event's unique
features are not captured in general formats, log pre-processing
will always be a necessity for failure prediction purposes (Eason
et al., 1995).
 We use the standard Linux syslog error events obtained from
Ranger supercomputer. Though this data has been given some
structure or formats as shown Figure 2 above. The logs were
recorded in 2010. In our work, some of the fields are considered
not needed for the purpose of this prediction, and hence can be
discarded. For example, a field like protocol is not necessary. We
also remove all the unnecessary tokens from the messages, for
example, tokens containing symbols. The message part, which
contains the sequence of English words, explains the error, and
this is important to us since we can use text mining techniques to
analyze the data. The error message is broken down into tokens
and fields that we consider important to our research.

D. Message Extraction
The message is considered as one of the key part of the error
event in our research. In our observation, the message contains
English words and alphanumeric tokens. The English tokens
show a pattern from our observation; and it provides us with clues
regarding what an error message is all about or what is going on
with the system. The alphanumeric tokens, according to experts,
suggest the interacting components or software functions within
involved. These component do not occur frequently and shows
less or no pattern, hence it become less important in the message
and is extracted out (Yuan et al., 2014)

E. Log Event Clustering and ID Assignment
Error log messages need to be labeled with a unique ID for every
error event with different and unique message. It is based on the
cluster similarity of the events. These messages, which are

 Log file-Containing events from the cluster

Tokenization and Parsing

Message Extraction

Unique Event ID assignment

Removing Similar Events

10

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Understanding Error Log Event Sequence for Failure Analysis

basically natural language texts providing more insights to the
error logs are used for this ID assignment. In our algorithm to
perform this, we use the well-known Levenshtein distance, which
measures the difference between our message strings, to
automatically assign an ID to the error events (Janbeglou et al.,
2010). Messages with metric less than a threshold are regarded
as similar hence the events will be assigned same ID as seen in
Figure 3. The essence is to enable us identify unique events and
the pattern in which they occur throughout the whole error log
data.

Figure 3: Algorithm for event clustering and ID labeling

F. Time Conversion
Our error log messages contain date and time in which these
errors are reported. This is very useful to us and for any
meaningful failure prediction or analysis. However, this time
format is not good for us to use for manipulation. The formats of
the timestamps 2010 Mar 31 15:56:57 is for an error that
occurred at 15th hour, 56th minute and 57th second on March 31,
2010. We convert this to epoch timestamp format. The equivalent
epoch timestamp for the above is 1270051017 which can be
manipulated easily.

G. Removing Similar Events
There are several seemingly same error events reported
frequently in the logs, according to our observation. We also
observed that these errors are sometimes reported by same
cluster node and within a small time difference. Some are
reported by different cluster nodes but same error message and
at same time or within a small time difference. According to
authors in Kornack and Rakic, (2001) and Heien et al., (2011),
occurrence of similar or same events' errors within same time or
small time difference might likely be caused by same fault.
Therefore, removing the redundant messages is necessary. In
another sense, one would say leaving the `redundant' events
could be useful in understanding the behaviour of a particular fault
in terms of the frequency of the event log generated within the
period. However in our case, we consider this not wise, since it is
not always the case in a cluster system that this behaviour is
observed. Therefore, we reduce these redundant error events
which we considered having the following properties:
i. Similar error events that are reported in sequence by same

node within a small time threshold. This is because nodes

can logs several similar messages that are triggered by
same fault.

ii. Similar error events that are reported by different nodes in
a sequence and within a time threshold.

This could be triggered by same fault resulting in similar
misbehaviour by affected cluster nodes.
Time threshold is a time from the first similar event in a sequence.
It is pertinent to note that it is possible that same error messages
logged by different nodes are caused by different faults and at
different times, hence the time threshold is necessary. Also, our
error event similarity is obtained as explained earlier in the
section. The process of identifying and grouping the error events
exhibiting the above properties is done using a combination of
both tupling and time grouping heuristics (Salfner, 2005;
Kalbfleisch and Prentice, 2002; El-Sayed and Schroeder, 2013).
We define some heuristics that captured the properties outlined in
Section IV. It becomes easier to manipulate the data with reduced
size. One of the aims of this research is to determine if there is
pattern of occurrence of events leading up to a particular failure,
and if so, does these patterns have some similarity? The
challenge now is that we cannot work with the whole data to find
patterns within the log events, hence leading to next section, error
pattern and window size estimation (Fu and Xu, 2007).

Error pattern and window size estimation
Error log events are quite large as millions of them are logged
within long period. This makes it difficult to handle. Given a series
of events that occur before a failure, we want to understand the
pattern of occurrence of these events and identify any signature.
In an attempt to obtain failure pattern, it is necessary to note that
different failures with different signatures or pattern can occur and
all the error events are logged together (El-Sayed and Schroeder,
2013). Therefore it becomes necessary to know the time window
that can adequately capture a particular failure pattern. From

Figure 4, we want to know the best minimum time window wt
that can be considered 'good enough' to give us a pattern that led

to failure 1f .

Figure 4: Error events sequence in time

We considered all messages within time window tw, of 1 - 6 hours
for some failure events that occurred within a period of time. We
studied the events within the months of March to May 2010. In
this section, we explain our attempt towards obtaining a pattern
leading to failure. The workflow is as shown in Figure 5.

. . . e1 e2 e3 ek en ek+1

f2 f1

ek+j

time

Time Window

. . .

Input = log events
LD= Levenshtein Distance
Int i=0;
For i=1 to N {
 Sim(event(i)) = LD(event(1),event(i));

}
All events with close value of Sim are clustered together
as similar events
For j = 1 to N {
 ID = getID(EventCluster(j))

//Assign ID to events according to their cluster.
 For each event in EventCluster(j){

 Assign ID to events.
 }
 }

11

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Understanding Error Log Event Sequence for Failure Analysis

Figure 5: Failure sequences similarity and window estimation
workflow

H. Data Transformation
Since we are considering only the message part of the error
events for our analysis, the unstructured messages were
extracted as explained in preprocessing. Hence, we can apply
some text analysis techniques to obtain some form of relationship
between the contents of the error messages and correlate
semantically related terms in the messages. However, this is not
just possible without transforming our data to the format that can
easily be used by the analysis algorithms.
The messages from each failure sequences are transformed into
term - frequency matrix. The rows of the matrix contains the terms
while the columns are the failure sequences. A failure sequence
consists of events that precedes the failure event within a given
time window (Singh et al., 2012). The transformation of data to
matrix format is because matrix format can be used easily by our
pattern analysis algorithm. Hence we considered this a wise
choice.
Consider event logs of a cluster system containing a particular

failure
if , and 1...i n , we extracts all the events that occurred

before the failure within a time window
wt ; (in our experiment, we

use
wt : 1hr - 6 hrs). For example, given n number of soft lockup

failures, with
wt = 1 hour, the matrix M, for this will contain m

rows of terms and n columns of failures as shown in Figure 6:

1 1 1 2 1

2 1

1 2

. . .

.

.

.

. . .

n

m m m n

t f t f t f

t f

M

t f t f t f

Figure 6: Data matrix M for n failure sequences

Matrix Normalization: Consider having many failure sequences
with similar terms between them; the term frequency matrix may
contain the combination of all the terms in the failure episode, for
example, when we have 100 thousand terms, it means the
covariance matrix will have be of dimension 100,000 by 100,000.
This is quite high dimension. This high dimension data is reduced
using Latent Semantic Indexing, LSI. LSI performs dimensional
reduction just like PCA, the difference is that in LSI, pre-
processing of data, which involve vector normalization to zero
mean and normalization to unit variance is not done. Normalizing
the feature data to unit variance will unnecessarily scale the
weight of rarely occurring terms in the failure sequences. Some
relationship between terms vectors which were not clearly known,
LSI expressed this by reducing the noisy relationships (Nagarajan
et al., 2007; Goto et al., 2007; Samak et al., 2012; Pecchia et al.,
2011). It performs this by decomposing the raw matrix M into

three reduced matrices, USV . Obtaining a k-dimension
reduced matrix Mk as in Equation 1.

Mk = UkSkVT

k (1)

Where U = term vector, S = computed diagonal matrix of
decreasing singular values, V = failure sequences vector.
The term weights or frequency across the failure sequences are
normalized to a value within 0 and 1 as in Equation 2.

1

()

()

t i

t n

t i

i

w f
n

w f

 (2)

Where tn
 is normalized term weight,

()tw f
 is weight of

term t in failure episode f.

I. Failure Pattern Similarity Measure Using Jenson –

Shannon Divergence metric
After identifying different soft lockup failures, this section seeks to
know how similar these failure patterns or the error events of each
failure sequences are to the other. From section II, we established
that soft lockup failures can be caused by either Machine Check
Exception events (MCE) or Evict/RPC events. The similarities
between these failures are obtained to be sure if MCE or
Evict/RPC led soft lockups contain similar failure pattern.

The Jenson – Shannon Divergence (JSD), measures the

divergence or similarity between two or more probability
distributions (Kalbfleisch and Prentice, 2002; Rouillard, 2004).
Messages from the failure sequences that are similar, yet
semantically unrelated are not expected to be considered similar;
however most of the metrics do not take that into consideration.
JSD does this by considering the entropies of these messages,
hence our choice for it (Makanju et al., 2010).
Consider failure sequences containing several log events having
information regarding the likely cause of failure. We want to
establish that failures led by the same events should not vary
much.

Given distribution of failures sequences
1 2

{ , ,..., }
n

F f f f ,

and
1

{ ,..., }
i k

f t t contains events’ term-frequency

Create failure episodes from the pre-processed

event logs. Failure episodes with time windows

of 1hr -6hrs.

Message Extraction: messages of each failure

episodes are extracted.

Data Transformation to obtain term frequency

matrix of failure episodes and normalization.

Failure episode similarity measurement using

Jenson Shannon Divergence metric.

Pre-processed logs

12

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Understanding Error Log Event Sequence for Failure Analysis

distribution, where

1

1
k

i

i

t

 and 0 1
i

t for all

1,2,...,i k .

Let the weights of the distributions of failure sequences be
i

 ,

then the JSD for fi is given by Equation 3:

1 1

() () ()
n n

i i i i i

i i

JSD f H f H f

 (3)

Where ()
i

H f is Shannon entropy for the distribution if and

1;
i

0 1i

 .
Now for two failure sequences, f1 and f2,

 1 2 1 2 1 2
1 1(,) () () ()

2 2
JSD f f H f f H f H f

; where
1 2

1

() log
k

i

i

H f f f

 is the Shannon entropy and

1
2

 .

Hence, the similarity between the two failure sequences is given
by Equation 4:

1 2 1 2(,) 1 (,)Sim f f JSD f f (4)

With similarity value ranging between 0 and 1.

RESULTS AND DISCUSSION
The result of our experiment with error log events was carried out
on logs from Ranger supercomputer of Texas Advanced
Computing Centre (TACC), University of Texas, Austin. The logs
are for the period March 2010 and June 2010. In performing this
experiment, we manually study the logs and identify soft lockup
failure events within the stipulated time (March - June 2010).
Figure 7 shows the distribution of soft lockup, interrupt, rpc/evict
events within these months. These events are highly correlated to
soft lockup failures, which are regarded as events that like
precedes these failures.
There are several root causes of soft lockup failures but we want
to focus on machine check events and RPC/Evict events led soft
lockups. These events formed the failure sequences. The events
preceding these failures are obtained within time window of 1 -6

hours. From Figure 8, MCE events led failures, 1f ,
2

f and

failures led by RPC/evict events
4

f ,
6

f shows some form of

variations in the similarity of the patterns. This is as expected.
Within time window of 1 – 3 hours, the similarity in pattern seems
to be clearer than for time window 4 - 6 hours, which suggests
that for large time window, it is possible that different other
failures would have occurred and led by different other events.
Again, removing redundant events greatly improve the clarity of
failure patterns. This suggests that, preprocessing is an important
step in understanding logs for failure analysis. Some researchers
argue that the redundant events also constitute integral part of the
failure patterns, however, we realized that it is not always the
case.

Figure 7: Distributions of some events

Figure 8: Failure sequences Similarity Across time
windows with no redundant events

Figure 9: Failure sequences Similarity Across time
windows with redundant events

Conclusion
Accurate detection of failure patterns in logs of supercomputers,
understanding behavior of the systems with their generated logs
is crucial. As the sizes of application scales and increase, the
failure tends to occur more often within short range of time. The
failure’s impact on the system performance becomes more
pronounced, making the task of analyzing and quantifying the
extent of the failure impact difficult. The failure traces from large-
scale systems are mostly unavailable. Our approach seeks to find
similarities in patterns of these logs events that leads to failures.

13

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Understanding Error Log Event Sequence for Failure Analysis

We use latent semantic indexing for reducing the dimension of the
data before finding the similarity between the patterns by knowing
the time, locations, and the down time failure. The failure traces
generated by the model is used to understand the behavior of
certain failures in the system. The result of the experiment has
revealed some insightful knowledge: we discovered that from
logs, system failure behavior could be traced. Traditional failure
correction methods such as regular checkpoints would be
properly done if failure behaviours can be detected early. Finally,
removing redundant event logs provides better understanding the
sequence of event logs for which failure inducing patterns can be
traced.

REFERENCES
Barringer, H., Groce, A., Havelund, K., Smith, M., 2010. Formal

Analysis of Log Files. J. Aerosp. Comput. Inf. Commun. 7,
365–390.

Bisandu, D.B., Prasad, R. and Liman, M.M. 2018. Clustering
news articles using efficient similarity measure and N-
grams, Int. J. Knowledge Engineering and Data
Mining,Vol. 5, No. 4, pp.333–348.

Bolander, N., Qiu, H., Eklund, N., Hindle, E., Rosenfeld, T., 2009.
Physics-based remaining useful life prediction for aircraft
engine bearing prognosis, in: Annual Conference of the
Prognostics and Health Management Society.

Cinque, M., Cotroneo, D., Della Corte, R., Pecchia, A., 2014.
Assessing direct monitoring techniques to analyze failures of
critical industrial systems, in: Software Reliability
Engineering (ISSRE), 2014 IEEE 25th International
Symposium On. IEEE, pp. 212–222.

Cotroneo, D., Pietrantuono, R., Mariani, L., Pastore, F., 2007.
Investigation of failure causes in workload-driven reliability
testing, in: Fourth International Workshop on Software
Quality Assurance: In Conjunction with the 6th ESEC/FSE
Joint Meeting. ACM, pp. 78–85.

Dhiman, M.P., Anand, D., Singh, E., Grover, K., 2013. PC based
speed control of induction motor. Int. J. Emerg. Trends
Electr. Electron. IJETEE–ISSN 2320-9569 2, 81–84.

Eason, G., Noble, B., Sneddon, I.N., 1995. On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions.
Phil Trans R Soc Lond 247, 529–551.

El-Sayed, N., Schroeder, B., 2013. Reading between the lines of
failure logs: Understanding how HPC systems fail, in:
Dependable Systems and Networks (DSN), 2013 43rd
Annual IEEE/IFIP International Conference On. IEEE, pp. 1–
12.

Fronza, I., Sillitti, A., Succi, G., Terho, M., Vlasenko, J., 2013.
Failure prediction based on log files using random indexing
and support vector machines. J. Syst. Softw. 86, 2–11.

Fu, S., Xu, C.-Z., 2007. Exploring event correlation for failure
prediction in coalitions of clusters, in: Proceedings of the
2007 ACM/IEEE Conference on Supercomputing. ACM, p.
41.

Gainaru, A., Cappello, F., Snir, M., Kramer, W., 2013. Failure
prediction for HPC systems and applications: Current
situation and open issues. Int. J. High Perform. Comput.
Appl. 27, 273–282.
https://doi.org/10.1177/1094342013488258

Gainaru, A., Cappello, F., Snir, M., Kramer, W., 2012. Fault
prediction under the microscope: A closer look into hpc
systems, in: High Performance Computing, Networking,

Storage and Analysis (SC), 2012 International Conference
For. IEEE, pp. 1–11.

Goto, H., Hasegawa, Y., Tanaka, M., 2007. Efficient scheduling
focusing on the duality of MPL representation, in:
Computational Intelligence in Scheduling, 2007. SCIS’07.
IEEE Symposium On. IEEE, pp. 57–64.

Gu, J., Zheng, Z., Lan, Z., White, J., Hocks, E., Park, B.-H., 2008.
Dynamic meta-learning for failure prediction in large-scale
systems: A case study, in: Parallel Processing, 2008.
ICPP’08. 37th International Conference On. IEEE, pp. 157–
164.

Gurumdimma, N., Jhumka, A., 2017. Detection of Recovery
Patterns in Cluster Systems Using Resource Usage Data,
in: 2017 IEEE 22nd Pacific Rim International Symposium on
Dependable Computing (PRDC). Presented at the 2017
IEEE 22nd Pacific Rim International Symposium on
Dependable Computing (PRDC), pp. 58–67.

Gurumdimma, N., Jhumka, A., Liakata, M., Chuah, E., Browne, J.,
2016. CRUDE: Combining Resource Usage Data and Error
Logs for Accurate Error Detection in Large-Scale Distributed
Systems, in: 2016 IEEE 35th Symposium on Reliable
Distributed Systems (SRDS). Presented at the 2016 IEEE
35th Symposium on Reliable Distributed Systems (SRDS),
pp. 51–60.

Hadžiosmanović, D., Bolzoni, D., Hartel, P.H., 2012. A log mining
approach for process monitoring in SCADA. Int. J. Inf.
Secur. 11, 231–251.

Heien, E., Kondo, D., Gainaru, A., LaPine, D., Kramer, B.,
Cappello, F., 2011. Modeling and tolerating heterogeneous
failures in large parallel systems, in: Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, p. 45.

Janbeglou, M., Zamani, M., Ibrahim, S., 2010. Redirecting
network traffic toward a fake DNS server on a LAN, in:
Computer Science and Information Technology (ICCSIT),
2010 3rd IEEE International Conference On. IEEE, pp. 429–
433.

Kalbfleisch, J.D., Prentice, R.L., 2002. The statistical analysis of
failure time data, 2. ed. ed, Wiley series in probability and
statistics. Wiley, Hoboken, NJ.

Kang, W., Grimshaw, A., 2007. Failure prediction in computational
grids, in: Simulation Symposium, 2007. ANSS’07. 40th
Annual. IEEE, pp. 275–282.

Kornack, D.R., Rakic, P., 2001. Cell proliferation without
neurogenesis in adult primate neocortex. Science 294,
2127–2130.

Leveson, N., 2003. A new accident model for engineering safer
systems. Saf. Sci. 42, 237–270.

Liang, Y., Zhang, Y., Sivasubramaniam, A., Jette, M., Sahoo, R.,
2006. Bluegene/l failure analysis and prediction models, in:
Dependable Systems and Networks, 2006. DSN 2006.
International Conference On. IEEE, pp. 425–434.

Lou, J.-G., Fu, Q., Wang, Y., Li, J., 2010a. Mining dependency in
distributed systems through unstructured logs analysis.
ACM SIGOPS Oper. Syst. Rev. 44, 91–96.

Lou, J.-G., Fu, Q., Yang, S., Xu, Y., Li, J., 2010b. Mining
Invariants from Console Logs for System Problem
Detection., in: USENIX Annual Technical Conference. pp.
1–14.

Makanju, A., Zincir-Heywood, A.N., Milios, E.E., 2010. An
evaluation of entropy based approaches to alert detection in

14

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Understanding Error Log Event Sequence for Failure Analysis

high performance cluster logs, in: Quantitative Evaluation of
Systems (QEST), 2010 Seventh International Conference
on The. IEEE, pp. 69–78.

Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L., 2007.
Proactive fault tolerance for HPC with Xen virtualization, in:
Proceedings of the 21st Annual International Conference on
Supercomputing. ACM, pp. 23–32.

Nakka, N., Agrawal, A., Choudhary, A., 2011. Predicting node
failure in high performance computing systems from failure
and usage logs, in: 2011 IEEE International Symposium on
Parallel and Distributed Processing, Workshops and Phd
Forum, IPDPSW 2011. Presented at the 25th IEEE
International Parallel and Distributed Processing
Symposium, Workshops and Phd Forum, IPDPSW 2011,
pp. 1557–1566.

Oliner, A., Stearley, J., 2007. What supercomputers say: A study
of five system logs, in: Dependable Systems and Networks,
2007. DSN’07. 37th Annual IEEE/IFIP International
Conference On. IEEE, pp. 575–584.

Patra, A.P., Bidhar, S., Kumar, U., 2010. Failure prediction of rail
considering rolling contact fatigue. Int. J. Reliab. Qual. Saf.
Eng. 17, 167–177.

Pecchia, A., Cotroneo, D., Kalbarczyk, Z., Iyer, R.K., 2011.
Improving log-based field failure data analysis of multi-node
computing systems, in: Dependable Systems & Networks
(DSN), 2011 IEEE/IFIP 41st International Conference On.
IEEE, pp. 97–108.

Rajachandrasekar, R., Besseron, X., Panda, D.K., 2012.
Monitoring and predicting hardware failures in HPC clusters
with FTB-IPMI, in: Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2012
IEEE 26th International. IEEE, pp. 1136–1143.

Rouillard, P.J., 2004. Real-time Log File Analysis Using the
Simple Event Correlator (SEC), in: Proceedings of LISA ’04:
Eighteenth Systems Administration Conference, (Atlanta,
GA: USENIX Association, November, 2004). Presented at
the LISA, pp. 133–150.

Salfner, F., 2005. Predicting failures with hidden Markov models,
in: Proceedings of 5th European Dependable Computing
Conference (EDCC-5). pp. 41–46.

Samak, T., Gunter, D., Goode, M., Deelman, E., Juve, G., Silva,
F., Vahi, K., 2012. Failure analysis of distributed scientific
workflows executing in the cloud, in: Proceedings of the 8th
International Conference on Network and Service
Management. International Federation for Information
Processing, pp. 46–54.

Singh, V.P., Vaibhav, K., Chaturvedi, D.K., 2012. Solar power
forecasting modeling using soft computing approach, in:
Engineering (NUiCONE), 2012 Nirma University
International Conference On. IEEE, pp. 1–5.

Stearley, J., 2004. Towards informatic analysis of syslogs, in:
Cluster Computing, 2004 IEEE International Conference On.
IEEE, pp. 309–318.

Sullivan, M., Chillarege, R., 1991. Software defects and their
impact on system availability: A study of field failures in
operating systems, in: FTCS. pp. 2–9.

Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M., 2009.
Online system problem detection by mining patterns of
console logs, in: Data Mining, 2009. ICDM’09. Ninth IEEE
International Conference On. IEEE, pp. 588–597.

Yang, S.K., 2003. A condition-based failure-prediction and
processing-scheme for preventive maintenance. IEEE
Trans. Reliab. 52, 373–383.

Yuan, D., Luo, Y., Zhuang, X., Rodrigues, G.R., Zhao, X., Zhang,
Y., Jain, P., Stumm, M., 2014. Simple Testing Can Prevent
Most Critical Failures: An Analysis of Production Failures in
Distributed Data-Intensive Systems., in: OSDI. pp. 249–265.

Zhang, Y., Squillante, M.S., Sivasubramaniam, A., Sahoo, R.K.,
2004. Performance implications of failures in large-scale
cluster scheduling, in: Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, pp. 233–252.

Zheng, Z., Lan, Z., Gupta, R., Coghlan, S., Beckman, P., 2010. A
practical failure prediction with location and lead time for
blue gene/p, in: Dependable Systems and Networks
Workshops (DSN-W), 2010 International Conference On.
IEEE, pp. 15–22.

Zheng, Z., Li, Y., Lan, Z., 2007. Anomaly localization in large-
scale clusters, in: Cluster Computing, 2007 IEEE
International Conference On. IEEE, pp. 322–330.

15

http://www.scienceworldjournal.org/

