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ABSTRACT  
Due to the evolvement of large-scale parallel systems, they are 
mostly employed for mission critical applications. The anticipation 
and accommodation of failure occurrences is crucial to the 
design. A commonplace feature of these large-scale systems is 
failure, and they cannot be treated as exception. The system state 
is mostly captured through the logs. The need for proper 
understanding of these error logs for failure analysis is extremely 
important. This is because the logs contain the “health” 
information of the system. In this paper we design an approach 
that seeks to find similarities in patterns of these logs events that 
leads to failures. Our experiment shows that several root causes 
of soft lockup failures could be traced through the logs. We 
capture the behavior of failure inducing patterns and realized that 
the logs pattern of failure and non-failure patterns are dissimilar.  
 
Keywords: Failure Sequences; Cluster; Error Logs; HPC; 
Similarity 
 
INTRODUCTION 
High Performance Computer (HPC) systems have become the 
backbone for major tasks like weather forecasting, stocks trading, 
simulation etc. Its use has greatly exploded due to this reliance on 
it (Nagarajan et al., 2007). It posses great challenge to users not 
only for its high power dissipation due to size, but also in ensuring 
that these computers stay without failure (Zheng et al., 2010). In 
cloud, the servers or clusters that serve the clouds and other 
services are prone to failures too.  These days, almost all 
applications make use of cluster computers that are yet very 
prone to failure. And the challenge is how can these failures be 
detected and / or avoided since any small down time can be 
significantly costly (Zheng et al., 2010). 
This then means that cluster systems must be at their optimum 
performance and very effective. However, this is not always the 
case, the cluster nodes fail due to errors. The effects of a single 
node failure can be immense and propagate leading to failure of 
more nodes and eventually the whole cluster system if not 
corrected (Fu and Xu, 2007). 
The challenge is to identify these failures for proper or necessary 
steps to be taken to mitigate the effects or avoid the failures. Root 
cause analysis is an approach towards solving this problem, and 
research in this area seeks to study the cluster log files for failures 
and their probable cause (Yang, 2003). These log file contains 
systems’ health information and other activities going on within 
the cluster system.  However, root cause analysis only seeks to 
know or identify the failures that occur and the probable cause 
after the damage is done. The failure could lead to huge cost; 
therefore, it is better to know if a failure will occur before it actually 
happens (Fronza et al., 2013). This is called failure prediction.  A 
failure can be predicted from the initial symptoms or other means 

before it occurs; this will allow proactive or necessary corrective 
measures to be taken to avoid or prevent the failure (Gainaru et 
al., 2012). This is thought to go a long in helping not only the 
cluster system administrators, but also the businesses and other 
applications that runs on this (Cinque et al., 2014). 
One of the challenges for researchers trying to do root cause 
analysis or failure prediction is the understanding of log files to 
perform their analysis (Fronza et al., 2013). Failure prediction 
tend to make use of these log events, study the existing failures 
and understand the pattern in order to build models that can 
predict future ones (Samak et al., 2012; Bisandu et al., 2018).  
These log events tends to be chatty, huge and maybe, without 
any particular standard format in which they were logged (Liang et 
al., 2006). 
In this paper, we introduce an approach that seeks to find 
similarities in patterns of these logs events that leads to failures. 
Our contribution is as follows: 
i. Work has shown that so many of these log events are 

similar events occurring or logged at different times. These 
events can be reduced to foster easy analyses. We use a 
distance metric and cluster these events according to their 
similarity and assign a unique Id to them. These IDs can 
be easily used for analysis algorithms. 

ii. Message content of the events logs provides useful 
information to the errors that occurs. These English 
messages part of the events logs are extracted for every 
failure episode. We use Latent Semantic Indexing to 
perform dimensional reduction of our terms matrix for 
these failure sequences which can be easily used in our 
similarity metric algorithm. 

iii. In order to understand the patterns in which these events 
occur, we studied failures and observe if similar failure 
sequences contains the same pattern, and how long in 
terms of time can these similarities remain observable 
across the failure sequences. Our approach employs the 
Jenson – Shannon Distribution which as a metric captures 
the similarity in patterns of the failure sequences. 

The paper is structured as follows. Section II explains some 
related works previously done. Section III describes our data and 
the failures. We explain our data pre-processing in section IV, 
which also involves clustering log events based on similarity. 
Section V contains our approach towards finding similarity in the 
failure sequences patterns.  We discuss our results in section VI 
and conclude in section VII. 
 
Related Work 
Over the years, logs have been considered as text files in human 
readable forms that are readable for administrators and 
developers. They signify one of the few mechanisms of gaining 
visibility of system behavior (Hadžiosmanović et al., 2012). 
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Because of this reason logs have been applied in many areas 
with different context of application domains in the last decades. A 
non-exhaustive list of such applications includes the following: 
mobile devices and control systems (Leveson, 2003), operating 
systems (Makanju et al., 2010), large-scale applications (Liang et 
al., 2006), and supercomputers (Gainaru et al., 2013). A 
significant understanding of failure mode of higher performance 
systems has been achieved due to the contributions made by 
these studies: Kang and Grimshaw, (2007), which made the 
possibility to improve the release of the systems successful. Data 
log models use many state-of-the-art techniques software 
packages for manipulating them, e.g. (Makanju et al., 2010; 
Barringer et al., 2010), ad-hoc algorithms and strategies for 
identifying failure logs in a failure-related entries to coalesce 
related entries of the same problem are needed (Goto et al., 
2007).  Achieving accurate measurements is the critical objective 
of the tasks which has been re-arranged in this area of research, 
such as, (Cotroneo et al., 2007), (Oliner and Stearley, 2007). 
Failure prediction approaches in relation to theory of reliability and 
preventive maintenance have been designed over the years 
(Dhiman et al., 2013).  Incorporating many factors into the 
distribution, for example complexity of code Stearley, (2004) has 
been one of the reasons for model evolving (Kalbfleisch and 
Prentice, 2002). These methods have been tailored more through 
long-term predictions and fail to appropriately work for prediction 
of failures that are online. 
More recent approaches for predicting short-term failures are 
based on runtime monitoring typically as the account of system 
current state is taking (Gurumdimma et al., 2016; Gurumdimma 
and Jhumka, 2017). The literatures have indicated two levels of 
predicting failures, they are: component level and system level. In 
the first level components are observed (mother board and hard-
disk) using parameters that are specific to them and the 
knowledge of their domain with each having different approaches 
given the best results for prediction (Sullivan and Chillarege, 
1991). Approaches that compare the execution of the failed 
components with good ones are an example. Several researches 
from different fields fitting this category are in (Bolander et al., 
2009; Patra et al., 2010). The community of Higher Performance 
Computing (HPC), an example is in Zheng et al., (2007), where 
the record of system performance matrices using matrices at all 
intervals. Outliers are detected by the algorithms afterwards by 
identifying majority nodes and nodes that are far from them. 
The second level which is the prediction of failures at the system 
level, different system parameters are observed by the monitoring 
daemons (scheduler logs, system logs, performance metrics, etc.) 
and the existence of correlation between different events are 
investigated. Significant number of researches has been 
proposed focusing on HPC systems prediction by analyzing them 
in the last couple of years. Most predictors however, uses 
information extracted in the phase of training for short span 
predictions which required a new phase of training. An example is 
the work done by the authors in Zheng et al., (2010) and Zhang et 
al., (2004) which for training it takes up to 3 months, and half 
month for the predictions, while the later authors make 
comparison of two approaches for predicting failure and the 
observation window influence on the results are also studied. The 
authors in Gu et al., (2008) applied meta-learning predictor in 
choosing between statistical and rule-based method pending on 
the predictor that give best result corresponding to the system 
state. Analogously the authors in Nakka et al., (2011) proposed 

an approach that analyzed logs by investigating both failure logs 
and usage. 
The authors in Rouillard, (2004) presented their study making 
difference between application and system failures. Job logs and 
RAS logs to filter out failures having no effect on system running 
jobs, allowing them to make couple of observations that are 
interesting and could be helpful in future failure predictors. An 
approach more general was proposed by the authors in 
Rajachandrasekar et al., (2012) which is based on solution of 
middleware between various application and analysis modules. 
Decision-making engines and failure predictors relying on the 
information of distributed failure are to facilitate fault tolerance 
mechanisms such as preemptive job migration from either their 
framework. Differently authors in Lou et al., (2010a) and Xu et al., 
(2009) proposed approaches by investigating parameter 
correspondence among various log messages of application to 
extract dependencies between system components. Time-series 
analysis also have been used for the implementation of different 
methods of processing, such as subspace method and spike 
detection in finding patterns among outliers which shows 
anomalies in monitored systems. Author in Liang et al., (2006) 
analyze BlueGene/L system logs by combining spatial and 
temporal filtering, specifically, designed predictive methods for 
failure which was tested to be effective with about 80% of network 
and memory failures. Five supercomputer systems logs were 
analyzed in Oliner and Stearley, (2007), by providing an optimized 
algorithm of the algorithm proposed by the authors in Liang et al., 
(2006). However, the filtering algorithm proposed might remove 
alerts that are independent by coincidence, happening at same 
time on different nodes. 
 
LOG DATA 
A. Error Logs 
Log files are mostly the only means and source of information 
about the workings of any computer systems. It is system 
administrator's guide to diagnosing faults in computer systems. 
Computer systems grow more complex and this means increased 
in the logs also. The task of the system's administrators become 
complex also or maybe impossible using the large log messages 
(Barringer et al., 2010; Janbeglou et al., 2010; Lou et al., 2010b). 
Log messages have become the main source of information for 
Root Cause Analysis of failures of systems.  
Event log  files which contains logs with basic information about 
the state of the system, the activities going on and the system's 
health related information is what we will focus on for this work. 
The challenge with the log file data is that they are generally 
unstructured, often incomplete, not clearly understood, and most 
times has no particular message structure. This is often the 
challenge with the logs; therefore, we process our data to give it 
some structure. Formatting our data into a structure that is 
uniform and can give us the necessary information we need for 
our analysis. A careful investigation of the log messages showed 
that there is a pattern of occurrence of these errors before a 
failure (Pecchia et al., 2011). Therefore we decided to analyze 
further to find patterns and the relationship of the events to 
failures. 
 
B. Failure Identification 
It is necessary we know that our data contain failure events; and 
that these failures did take place at the super computing system 
where the log files are recorded. 
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Soft Lockup Failures: These occur when requests are not 
attended to maybe due to resource unavailability and also, a 
process of reconnection initiated is also refused. This repeated 
process may lead to deadlock processes or the nodes or servers 
may hang. Eventually, this will lead to loss of data or service 
access and causes termination of jobs. These soft lockups can be 
either node soft lockups or server soft lockups. The occurrence of 
the failure, soft lock is of interest to us. We want to know the kinds 
of events that would likely lead to this failure. 
A study of the log files and the expert's knowledge has shown that 
Soft lockups are some of commonly occurring failure found in the 
Cluster or HPC systems. Yuan et al., (2014) has shown that 
Machine Check Exceptions causes soft lockup in computer 
systems and also, Evict/RPC events. 
Machine Check Exception (MCE) is a way the Computer's 
hardware reports about an error that the hardware cannot correct. 
When the kernel logs an uncorrected hardware error, measures 
can be taken by the cluster software to rectify the problem, re-
running the job on another node and/or reporting the failure to the 
administrator (Janbeglou et al., 2010). Therefore, MCE error 
makes it possible to predict failures early. Soft lockups led by 
Evict/RPC Events are characterized by evict and recovery events 
preceding the failure. Cotroneo et al., (2007) have verified these 
hypotheses using a correlation and regression technique and 
obtained a high correlation between the MCE and Evict/RPC 
events and the soft lockup failure events. 
Log pre-processing 
In this section we present the detail steps involved in processing 
the log files into the format we can easily use for our analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Log Pre-processing steps 
 
C. Error log Tokenization and Parsing 
The inconsistency in the format of error log entries means more 
challenge in dealing with the logs, especially when all information 
carried by the logs is important in the analysis (Liang et al., 2006). 
It becomes very difficult to automatically analyze/process log files 
because of the differences in the formats, system's information 
contained in the reports. These systems information can be 
proprietary in formats and contains so many messages that are 
not needed. See Figure 2. 

Ranger (syslog) 
Mar 31 15:56:57 i149-405 kernel: [9155992.130789] Machine 
check events logged  
Mar 31 15:57:07 i144-110 kernel: [9155996.614494] Machine 
check events logged  
Mar 31 15:58:07 i102-406 kernel: [414646.585574] BUG: soft 
lockup detected on CPU#2, pid:22297, uid:0, comm:ldlm_bl_24  
Mar 31 15:58:07 i102-406 kernel: [414646.689471] spurious soft 
lockup detection on CPU#2 

Blue Gene/L 
1117838702 2005.06.03 R02-M1-N0-C:J12-U11 2005-06-03-
15.45.02.981210 R02-M1-N0-C:J12-U11 RAS KERNEL INFO 
instruction cache parity error corrected 
1117838703 2005.06.03 R02-M1-N0-C:J12-U11 2005-06-03-
15.45.03.145256 R02-M1-N0-C:J12-U11 RAS KERNEL INFO 
instruction cache parity error corrected 
1117838704 2005.06.03 R02-M1-N0-C:J12-U11 2005-06-03-
15.45.04.007681 R02-M1-N0-C:J12-U11 RAS KERNEL INFO 
instruction cache parity error corrected 

Figure 2: Log events for RANGER syslog and BUE GENE/L 
 
In an attempt towards overcoming these challenges, Fronza et al 
(Fronza et al., 2013) proposed that log files should not be written 
for systems administrators, who have a good understanding of the 
systems alone, but the logs should contain extra information in a 
well-structured format. In their proposal, the log file format 
standard must clearly define the type of information to be 
contained in the logs and must be uniquely represented. As long 
as information about structure, environment, error event's unique 
features are not captured in general formats, log pre-processing 
will always be a necessity for failure prediction purposes (Eason 
et al., 1995). 
 We use the standard Linux syslog error events obtained from 
Ranger supercomputer. Though this data has been given some 
structure or formats as shown Figure 2 above. The logs were 
recorded in 2010. In our work, some of the fields are considered 
not needed for the purpose of this prediction, and hence can be 
discarded. For example, a field like protocol is not necessary. We 
also remove all the unnecessary tokens from the messages, for 
example, tokens containing symbols. The message part, which 
contains the sequence of English words, explains the error, and 
this is important to us since we can use text mining techniques to 
analyze the data. The error message is broken down into tokens 
and fields that we consider important to our research. 
 
D. Message Extraction 
The message is considered as one of the key part of the error 
event in our research. In our observation, the message contains 
English words and alphanumeric tokens. The English tokens 
show a pattern from our observation; and it provides us with clues 
regarding what an error message is all about or what is going on 
with the system. The alphanumeric tokens, according to experts, 
suggest the interacting components or software functions within 
involved. These component do not occur frequently and shows 
less or no pattern, hence it become less important in the message 
and is extracted out (Yuan et al., 2014) 
 
E. Log Event Clustering and  ID Assignment 
Error log messages need to be labeled with a unique ID for every 
error event with different and unique message. It is based on the 
cluster similarity of the events. These messages, which are 

 

 Log file-Containing events from the cluster 

Tokenization and Parsing 

Message Extraction 

Unique Event ID assignment 

Removing Similar Events 
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basically natural language texts providing more insights to the 
error logs are used for this ID assignment. In our algorithm to 
perform this, we use the well-known Levenshtein distance, which 
measures the difference between our message strings, to 
automatically assign an ID to the error events (Janbeglou et al., 
2010). Messages with metric less than a threshold are regarded 
as similar hence the events will be assigned same ID as seen in 
Figure 3. The essence is to enable us identify unique events and 
the pattern in which they occur throughout the whole error log 
data. 

 
Figure 3:  Algorithm for event clustering and ID labeling 
 
F. Time Conversion 
Our error log messages contain date and time in which these 
errors are reported. This is very useful to us and for any 
meaningful failure prediction or analysis. However, this time 
format is not good for us to use for manipulation. The formats of 
the timestamps 2010 Mar 31 15:56:57 is for an error that 
occurred at 15th hour, 56th minute and 57th second on March 31, 
2010. We convert this to epoch timestamp format. The equivalent 
epoch timestamp for the above is 1270051017 which can be 
manipulated easily. 
 
G. Removing Similar Events 
There are several seemingly same error events reported 
frequently in the logs, according to our observation. We also 
observed that these errors are sometimes reported by same 
cluster node and within a small time difference. Some are 
reported by different cluster nodes but same error message and 
at same time or within a small time difference. According to 
authors in Kornack and Rakic, (2001) and Heien et al., (2011), 
occurrence of similar or same events' errors within same time or 
small time difference might likely be caused by same fault. 
Therefore, removing the redundant messages is necessary. In 
another sense, one would say leaving the `redundant' events 
could be useful in understanding the behaviour of a particular fault 
in terms of the frequency of the event log generated within the 
period. However in our case, we consider this not wise, since it is 
not always the case in a cluster system that this behaviour is 
observed. Therefore, we reduce these redundant error events 
which we considered having the following properties: 
i. Similar error events that are reported in sequence by same 

node within a small time threshold. This is because nodes 

can logs several similar messages that are triggered by 
same fault. 

ii. Similar error events that are reported by different nodes in 
a sequence and within a time threshold. 

 
This could be triggered by same fault resulting in similar 
misbehaviour by affected cluster nodes. 
Time threshold is a time from the first similar event in a sequence. 
It is pertinent to note that it is possible that same error messages 
logged by different nodes are caused by different faults and at 
different times, hence the time threshold is necessary. Also, our 
error event similarity is obtained as explained earlier in the 
section. The process of identifying and grouping the error events 
exhibiting the above properties is done using a combination of 
both tupling and time grouping heuristics (Salfner, 2005; 
Kalbfleisch and Prentice, 2002; El-Sayed and Schroeder, 2013). 
We define some heuristics that captured the properties outlined in 
Section IV. It becomes easier to manipulate the data with reduced 
size. One of the aims of this research is to determine if there is 
pattern of occurrence of events leading up to a particular failure, 
and if so, does these patterns have some similarity?   The 
challenge now is that we cannot work with the whole data to find 
patterns within the log events, hence leading to next section, error 
pattern and window size estimation (Fu and Xu, 2007). 
 
Error pattern and window size estimation 
Error log events are quite large as millions of them are logged 
within long period. This makes it difficult to handle. Given a series 
of events that occur before a failure, we want to understand the 
pattern of occurrence of these events and identify any signature. 
In an attempt to obtain failure pattern, it is necessary to note that 
different failures with different signatures or pattern can occur and 
all the error events are logged together (El-Sayed and Schroeder, 
2013). Therefore it becomes necessary to know the time window 
that can adequately capture a particular failure pattern. From 

Figure 4, we want to know the best minimum time window wt  
that can be considered 'good enough' to give us a pattern that led 

to failure 1f . 

 
Figure 4: Error events sequence in time 
 
We considered all messages within time window tw, of 1 - 6 hours 
for some failure events that occurred within a period of time. We 
studied the events within the months of March to May 2010. In 
this section, we explain our attempt towards obtaining a pattern 
leading to failure. The workflow is as shown in Figure 5. 

 
.    .   . e1 e2 e3 ek en ek+1 

f2 f1 

ek+j 

time 

Time Window 

.    .   . 

Input = log events  
LD= Levenshtein Distance 
Int i=0; 
For  i=1 to N { 
  Sim(event(i)) = LD(event(1),event(i)); 
  
} 
All events with close value of Sim are clustered together 
as similar events 
For  j = 1 to N { 
   ID = getID(EventCluster(j)) 
 
//Assign ID to events according to their cluster. 
    For each event in EventCluster(j){ 

 Assign ID to events. 
    }       
 }   
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Figure 5: Failure sequences similarity and window estimation 
workflow 
 
H. Data Transformation 
Since we are considering only the message part of the error 
events for our analysis, the unstructured messages were 
extracted as explained in preprocessing. Hence, we can apply 
some text analysis techniques to obtain some form of relationship 
between the contents of the error messages and correlate 
semantically related terms in the messages. However, this is not 
just possible without transforming our data to the format that can 
easily be used by the analysis algorithms. 
The messages from each failure sequences are transformed into 
term - frequency matrix. The rows of the matrix contains the terms 
while the columns are the failure sequences. A failure sequence 
consists of events that precedes the failure event within a given 
time window (Singh et al., 2012). The transformation of data to 
matrix format is because matrix format can be used easily by our 
pattern analysis algorithm. Hence we considered this a wise 
choice. 
Consider event logs of a cluster system containing a particular 

failure
if  , and 1...i n , we extracts all the events that occurred 

before the failure within a time window
wt ; (in our experiment, we 

use
wt : 1hr - 6 hrs). For example, given n number of soft lockup 

failures, with 
wt  = 1 hour, the matrix M, for this will contain m 

rows of terms and n columns of failures as shown in Figure 6: 
 

1 1 1 2 1

2 1

1 2

. . .

.

.

.

. . .

n

m m m n

t f t f t f

t f

M

t f t f t f

 
 
 
 

  
 
 
  
   

Figure 6: Data matrix M for n failure sequences 
 

Matrix Normalization: Consider having many failure sequences 
with similar terms between them; the term frequency matrix may 
contain the combination of all the terms in the failure episode, for 
example, when we have 100 thousand terms, it means the 
covariance matrix will have be of dimension 100,000 by 100,000. 
This is quite high dimension. This high dimension data is reduced 
using Latent Semantic Indexing, LSI. LSI performs dimensional 
reduction just like PCA, the difference is that in LSI, pre-
processing of data, which involve vector normalization to zero 
mean and normalization to unit variance is not done. Normalizing 
the feature data to unit variance will unnecessarily scale the 
weight of rarely occurring terms in the failure sequences. Some 
relationship between terms vectors which were not clearly known, 
LSI expressed this by reducing the noisy relationships (Nagarajan 
et al., 2007; Goto et al., 2007; Samak et al., 2012; Pecchia et al., 
2011). It performs this by decomposing the raw matrix M into 

three reduced matrices, USV . Obtaining a k-dimension 
reduced matrix Mk as in Equation 1. 
 
Mk = UkSkVT

k               (1) 
   
Where U = term vector, S = computed diagonal matrix of 
decreasing singular values, V = failure sequences vector. 
The term weights or frequency across the failure sequences are 
normalized to a value within 0 and 1 as in Equation 2.  

1

( )

( )

t i

t n

t i

i

w f
n

w f





                       (2) 

Where tn
  is normalized term weight, 

( )tw f
  is weight of 

term t in failure episode f. 
 
I. Failure Pattern Similarity Measure Using Jenson – 

Shannon Divergence metric 
After identifying different soft lockup failures, this section seeks to 
know how similar these failure patterns or the error events of each 
failure sequences are to the other. From section II, we established 
that soft lockup failures can be caused by either Machine Check 
Exception events (MCE) or Evict/RPC events. The similarities 
between these failures are obtained to be sure if MCE or 
Evict/RPC led soft lockups contain similar failure pattern. 

The Jenson – Shannon Divergence (JSD), measures the 

divergence or similarity between two or more probability 
distributions (Kalbfleisch and Prentice, 2002; Rouillard, 2004). 
Messages from the failure sequences that are similar, yet 
semantically unrelated are not expected to be considered similar; 
however most of the metrics do not take that into consideration. 
JSD does this by considering the entropies of these messages, 
hence our choice for it (Makanju et al., 2010). 
Consider failure sequences containing several log events having 
information regarding the likely cause of failure. We want to 
establish that failures led by the same events should not vary 
much. 

Given distribution of failures sequences
1 2

{ , ,..., }
n

F f f f , 

and 
1

{ ,..., }
i k

f t t   contains events’ term-frequency 

  

Create failure episodes from the pre-processed 

event logs. Failure episodes with time windows 

of 1hr -6hrs. 

Message Extraction: messages of each failure 

episodes are extracted. 

Data Transformation to obtain term frequency 

matrix of failure episodes and normalization. 

Failure episode similarity measurement using 

Jenson Shannon Divergence metric. 

Pre-processed logs 
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distribution, where 

1

1
k

i

i

t


   and 0 1
i

t    for all  

1,2,...,i k  . 

Let the weights of the distributions of failure sequences be 
i

 , 

then the JSD for fi is given by Equation 3: 

1 1

( ) ( ) ( )
n n

i i i i i

i i

JSD f H f H f 
 

               (3) 

Where ( )
i

H f  is Shannon entropy for the distribution if  and 

1;
i

 
 
0 1i 

 . 
Now for two failure sequences, f1 and  f2,  

   1 2 1 2 1 2
1 1( , ) ( ) ( ) ( )

2 2
JSD f f H f f H f H f   

;   where 
1 2

1

( ) log
k

i

i

H f f f


     is the Shannon entropy and  

1
2

   . 

Hence, the similarity between the two failure sequences is given 
by Equation 4: 

1 2 1 2( , ) 1 ( , )Sim f f JSD f f                                       (4) 

With similarity value ranging between 0 and 1. 
 
RESULTS AND DISCUSSION 
The result of our experiment with error log events was carried out 
on logs from Ranger supercomputer of Texas Advanced 
Computing Centre (TACC), University of Texas, Austin.  The logs 
are for the period March 2010 and June 2010. In performing this 
experiment, we manually study the logs and identify soft lockup 
failure events within the stipulated time (March - June 2010). 
Figure 7 shows the distribution of soft lockup, interrupt, rpc/evict 
events within these months. These events are highly correlated to 
soft lockup failures, which are regarded as events that like 
precedes these failures. 
There are several root causes of soft lockup failures but we want 
to focus on machine check events and RPC/Evict events led soft 
lockups. These events formed the failure sequences. The events 
preceding these failures are obtained within time window of 1 -6 

hours. From Figure 8, MCE events led failures, 1f  , 
2

f  and 

failures led by RPC/evict events 
4

f  , 
6

f  shows some form of 

variations in the similarity of the patterns. This is as expected. 
Within time window of 1 – 3 hours, the similarity in pattern seems 
to be clearer than for time window 4 - 6 hours, which suggests 
that for large time window, it is possible that different other 
failures would have occurred and led by different other events. 
Again, removing redundant events greatly improve the clarity of 
failure patterns. This suggests that, preprocessing is an important 
step in understanding logs for failure analysis. Some researchers 
argue that the redundant events also constitute integral part of the 
failure patterns, however, we realized that it is not always the 
case. 
 
 

 
Figure 7: Distributions of some events 
 

 
Figure 8: Failure sequences Similarity Across time 
windows with no redundant events 
 

 
Figure 9: Failure sequences Similarity Across time 
windows with redundant events 
 
Conclusion 
Accurate detection of failure patterns in logs of supercomputers, 
understanding behavior of the systems with their generated logs 
is crucial. As the sizes of application scales and increase, the 
failure tends to occur more often within short range of time. The 
failure’s impact on the system performance becomes more 
pronounced, making the task of analyzing and quantifying the 
extent of the failure impact difficult. The failure traces from large-
scale systems are mostly unavailable. Our approach seeks to find 
similarities in patterns of these logs events that leads to failures. 
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We use latent semantic indexing for reducing the dimension of the 
data before finding the similarity between the patterns by knowing 
the time, locations, and the down time failure. The failure traces 
generated by the model is used to understand the behavior of 
certain failures in the system. The result of the experiment has 
revealed some insightful knowledge: we discovered that from 
logs, system failure behavior could be traced. Traditional failure 
correction methods such as regular checkpoints would be 
properly done if failure behaviours can be detected early.  Finally, 
removing redundant event logs provides better understanding the 
sequence of event logs for which failure inducing patterns can be 
traced. 
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