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ABSTRACT

This paper proposes a new numerical solution of Black-Scholes
Partial Differential Equation using Direct solution of second-order
Ordinary Differential Equation ODE with two-step hybrid Block
Method of Order seven directly. The method is developed using
interpolation and collocation techniques. The use of the power
series approximate solution as an interpolation polynomial and its
second derivative as a collocation equation is considered in
deriving the method. Properties of the method such as zero
stability, order, consistency, convergence and region of absolute
stability are investigated The new method is then applied to solve
Black —Scholes equation after converting it to the system of
second-order ordinary differential equations and the accuracy is
better when compared with the existing methods in terms of
error.

Keywords: single-step; hybrid block method; system of second
order ordinary differential equations; collocation and Interpolation
method; direct solution.

INTRODUCTION

In the historical backdrop of option pricing model, the Black-
Mcholes  or Black -Scholes -Merton model is a standout
amongst the most generous model. This model shows the
significance role that the mathematics plays in the field of finance

The Black — Scholes model was first published by Black and
Scholes (1973) in their seminar paper “The Pricing of options and
corporate Liabilities” published in the Journal of political Economy
.In the same year, they derived a partial differential equation, now
called the Black —Scholes Equation, which estimates the price of
the option over time .
Let us consider S as the price of the stock, which we consider as
a random variable.V (s, t) be the value of an option as a function
of time and stock price,K, can be strike price,r be the risk —free
interest rate ,a be the volatility/the standard deviation of the stock
return ,and t be the time in years.Then the famous Black —
Scholes equation that was developed by Fisher Black and Myron
Scholes is
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The above equation is a second — order parabolic partial
differential equation known as Black - Scholes equation ,is
actually a variation of a famous equation in physics that models

the transfer of heat.

Simple Transformation of PDE to ODE
Black —Scholes equation is given by the following expression

Z+: Zszgs'j+ S -1V =0 )
where V(s,t) =price of option, o is the volatility of stock price S,
and V, t = period of time, r = interest rate (Company et al. , 2007).
Firstly, it is expedient to transform this partial differential equation
(PDE) into an ordinary differential equation (ODE) by proposing
the following solution: V(S,t) = V(S)e’t.
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Given that prie V(S) * Ae*t and 5= ¢

substituting these equations into the PDE, we get

by

V(S)Ae’” g2 §2 a V(S) /1t + 1S dV(S) At

V(s)e? = O 2

The next step is to rearrange the equation to get second order
ODE:

e[ o252 L 4 g MO yy)a-n)] =0, @)
The latter expressmn can be reduced to the following equahon;

dV(s)
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Where e’t = 0.

Ordinary differential equations (ODEs)

Ordinary differential equations (ODEs) are commonly used for
mathematical modelling in many diverse fields such as
engineering, operations research, industrial mathematics,
behavioural sciences, artificial intelligence, management and
sociology. Thus, mathematical modelling is the art of translating
problems from an application area into tractable mathematical
formulations whose theoretical and numerical analysis provide
insight, answers and guidance useful for the originating
application. This type of problem can be formulated either in
terms of first-order or higher-order ODEs.

In this Paper, the system of second — order ODEs of the following
form is considered. We are interested in solving nonlinear time
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dependant PDE of the form [Black — Scholes Equation].

Yo=Y () =3y Y (%) =hy
2y =210y V() =, CY (%) =hy

Ty =TEGCTYTY), TY(6) =3, MY (%) =D,

The method of solving higher-order ODEs by reducing them to a
system of first-order equation involves more functions evaluation
which to evaluate leads to computational burden as mentioned in
(Master, 2011) and (Jator & Li. , 2012). The multistep methods for
solving higher —order ODEs directly have been developed by
many scholars such as (Yusuph & Onumanyi, 2005). However,
these researchers only applied their methods to solve single initial
value problems of ODEs.

The aim of this paper is to develop a new numerical method for
solving single second — order ODEs and systems of second-order
ODEs directly.

Derivation of the method

We shall be considering a two—step hybrid block method with five

off step point, x, 1, x, .2, Xny1,%, 2 ,x, s and x,,, for
3 3 3 3

solving equation (5) is derived.
Let us consider the power series of the form

Y0 =35 e () k=1m @

For x € [xy xp41] Wwheren=12,..,N—1, a; are real
coefficients, r = the number of collocating points, s= the number
of interpolating points and h = x,,,; — x,, is a constant step
size of the partition of the interval [a ,b] which is given by a <
x<ba=xy<x1 <Xy <" ,Xy_1 =Db

Differentiating equation (6) twice give us

" _1 ii-Da; [(x—xn i-2
Y= iR AED (B (7)

Equation (6) can be resolved in form of approximate solution

thus;
r+s-1

Y@= ax
i=o0
r+s—-1
y/® = Z ia; xi-1
i=o0
also,
r+s—1

Y= ) (= Dig; x
i=o0
wherer+s—1=74+2-1=8
Hence, '
ky(x) = Z?:o a; x*
and
Ky (%) = Nicoli — Di a; 7% = f(x,y,y")h?
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Now let us consider the point of interpolation at x

aand x 2
3 3

. Also, points of collocation belong to the interval [0, 2] i.e. x,,,
xn+1;, xn+§, Xnt1» xn+§, x5 and xp,;.

3

Gives the following system of non -linear equation of the form:
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Solving equation (8) gives the coefficients a;, i =0,...,8.
Those values are then substitutes into equation (6) to gives
Continuous hybrid multistep method of the form.

y(X) = Zai (X)yn+i + Zavy +

Zﬂi:o(x) fn+l + Zﬂv fn+v

where k =2, v = 31351 ,31 35 yield the parameter «; and
Bi,i=0,v,1as
a,,2=-3t+2
3
a,,2=3t—-1
3
where ¢ =12z
So we have
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Differentiating (11) yields

+ -
896 224 160 320 16 8 120960 181440

' 13 1 1
Bs :hz[ﬂt8+£t7_l771t5+£t5_ﬂﬁ+§t3_£t+£} y (X) = _Zai (X) Yosi +_ZaV Yoev T+
° 2240 35 80 40 40 5 12096 90720 h < h< (16)
B :hz[its—ﬂﬂ+Et6—£t5+£t“—it3+ a9 221 }
2 4480 224 160 64 480 12 120960 544320

h[z Bt S f]

Evaluating the above continuous coefficients at ¢t = 0,1,%,2,2

(non-interpolating points), we obtain ' . -3 ' . 3
whee o, (1) =—, a, (t) = —
. . . 45 3 h 3 h
Evaluating the above continuous coefficients at t = 0,1,5,5,2
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Equation (9) is evaluated at non-interpolating points, i.e, x,,
xn+1;, xn+§, Xn+1, xn+§, xn+§ and x,.,, while Equation

(16) is evaluated at all points, and this yields the following
equation in matrix form:

Ay, =BR, +CR, + DR, (19)
Where
-2 1 0O 0O 0O 0O 0O O OO0 O0 O
1 -2 1 0 0O 0O 0 O 0 O O O
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A _|h h
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=~ = 0 0 0 01 O 0 0 0 O
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Multiplying equation (19) by A~!

as shown below

Iy =B'R +C'R,+D'R,
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gives the hybrid Block method

(22)
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The above blocked method
(7,7,7,7,7,7,7)T with an error constant ¢, ,

Analysis of the method

Zero stability
The two step hybrid block method (Jator, 2013) is said to be zero o 0 0 O
stabile if no root of the first characteristic equation p(R) has
modulus greater than one ,i.e |Rm|< 1 and if Rm =1,then the

is of uniform order P =
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10000000000 0] L 2688
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multiplicity of Rmmust not exceed 2.

The characteristic function of the new derived method is given as

below;

(R) =

1
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Thus, .A1°(A = 1)2 = 0 (25)
(0if i=1(1)10
Where 2; -{1 Fioiinn (.26)

Hence, the developed method is zero stable.

Order of the method.

According to  Yusuph & Onumanyi (2005) the order of the new
method in equation Leentvaar (1973) is obtained by using the
Taylor series and it is found that the developed scheme has an
order of (7,7,7,7,7,7,7)T with an error constant vector of;
[1.732063 x1077,4.1014112 x1077,6.582812 x1
077,-1.745322 x1076,

1.531063 x1077,1.732063 x107°, —1.666063 x1075]

Consistency

Hybrid block method is said to be consistent if it has an order that
is more than or equal to one. The order is order two. Therefore,
the method is consistent.

Convergence

Zero stability and consistency are sufficient conditions for a linear
multistep method to be convergent (Onumanyi, 1981). Since the
new hybrid block method is zero stable and consistent, it can be
concluded that the method is convergent.

Implementation of the Method

The initial starting value at each block is obtained by using Taylor
series method. Then, the outcomes are calculated and corrected
using the new scheme. For the next block ,the same technique

are repeated to compute the approximate values of x 1,x
3

s until the end of the integrated intervals
3

2
n+z’
3

Xni1r xn% and x,

.During the calculations of the iteration, the final value of yn+1 are
taken as the initial values for the next iteration.

Numerical Experiment/Result
In this section, the performance of the developed two step hybrid
block scheme is examined. The tables below shows the numerical
results of the new developed scheme with exact solution for
solving the problem and the result of the developed scheme are
more accurate than that of Dura & Osneagu (2010) which was
executed by six step method for solving the equation

Problem: Consider for purposes solving for the value of call
option with strike price k=100. The risk — free interest rate r =
0.12, the time to expiration is T = 1 measured in years, and the
volatility is = 0.10.The value of the call option can have a range of
70< s < 130.

Table 1. Comparison between the explicit method and Hybrid
method

Stock Price  Explicit method  Hybrid method Exact method
4 1.631276e-06 1.168607c-06 1.067322e-06
2 0.148176 0.145236 0.145335

10 0.906372 0.916099 0.916291

16 §.236436 §.252284 G.252287

20 10.223892 10.246903 10.247014

Table 2. .Approximate value by hybrid method and the exact
value

Stock Price Hybrid method Exact method
4 1.168607e-06 1067322206
8 0.149236 0.148335

10 0.816099 0.816291

16 5.252286 5252287

20 10.246904 10.247014

Comparison with Other Numerical Scheme

In this part, a comparison is made between our Hybrid Scheme
with another scheme that was used in finding the approximate
solution of Black- Scholes model which is explicit method

For a European call option with 0 < § < 20, T = 0.25,k =
10,7 = 0.1,0 = 0.4, with temporal grid size of N= 2000 and
spatial grid size M = 200, the explicit method and Hybrid
method were used to set the table above.

From Table 1,it is seen that hybrid scheme gives better results
than explicit method .But the results obtained by the scheme that
was developed here are not much close to the exact value .But
the good news is that if the temporal grid points are increased up
to N = 41000, spatial grid points up to M = 1000 and set the
other parameters value as above, then the following value (Table
2) were found much more better for different stock prices.

The numerical result confirm that the proposed scheme produces
a better accuracy if compared with the existing methods

Conclusions

In this article, a two-step block method with five off-step points is
derived via the interpolation collocation approach. The developed
method is consistent, Zero Stable, Convergent and of order
seven. The relative error of the hybrid scheme was estimated by
comparing the numerical solution with the analytical solution in Li-
norms. The numerical simulation results are seen in good
agreement with well- known qualitative behavior of the Black
Scholes PDE .Also,a comparison is presented between the hybrid
method and the result obtained by another work using the explcit
method where our result is found more accurate than that of the
explicit method.
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