THE CONCEPT OF α -CUTS IN MULTI Q-FUZZY SET

A. I. Isah

Department of Mathematical Sciences, Kaduna State University, Kaduna State - Nigeria

Author's Email Address: ahmed.isah@kasu.edu.ng

ABSTRACT

The purpose of this paper is to introduce the concept of α -Cuts and their properties in multi Q-fuzzy sets. In addition, both first and second decomposition theorems were established and proved. It is shown that any Multi Q-fuzzy Set can be represented as the union of its special α -cuts as well as its special strong α -

Keywords: Fuzzy multiset, multi Q-fuzzy set, α -Cut.

1. INTRODUCTION

A fuzzy set which is a generalized set of objects occurring with a continuum of degrees of membership was introduced by (Zadeh, 1965); he further showed the application of α -cuts to fuzzy sets. For the basics of fuzzy set and its applications refer to (Brown, 1971; Singh et al., 2015; Goguen, 1967; Wygralak, 1989; Chutia et al., 2010; Dutta et al., 2011; Klir and Yuan, 1995; Kreinovich, 2013). Singh et al. (2014) studied α-cuts and some of its properties in fuzzy multisets. Multi Q-fuzzy set was studied in various contexts in (Adam and Hassan, 2014a; Adam and Hassan, 2014b; Adam and Hassan, 2015; Adam and Hassan, 2016); were its relevant applications were shown.

In this paper, α -cuts and their properties in Multi Q-fuzzy sets were studied.

Preliminaries

Definition 2.1 Multiset

An mset A drawn from the set X is represented by a function Count A or C_A defined as $C_A: X \longrightarrow \mathbb{N}$. One way of representing a multiset A from X with x_1 appearing k_1 times, x_2 appearing k_2 times etc., is $A = \{k_1/x_1, k_2/x_2, \dots, k_n/x_n\}$, where $x_i \in X$.

Let A and B be two msets drawn from a set X. Then

$$A \subseteq B$$
 iff $C_A(x) \le C_B(x)$ for all $x \in X$.
 $A = B$ iff $C_A(x) = C_B(x)$ for all $x \in X$.
 $A \cup B = max\{C_A(x), C_B(x)\}$ for all $x \in X$.
 $A \cap B = min\{C_A(x), C_B(x)\}$ for all $x \in X$ (Jena et al., 2001)

Definition 2.2 Fuzzy Multiset

A fuzzy multiset A is a multiset of pairs, where the first part of each pair is an element of a universe set *X* and the second part is the degree to which the first part belongs to that fuzzy multiset. That is, $A: X \times I \longrightarrow \mathbb{N}$; where I = [0, 1] and \mathbb{N} is the set of positive integers including 0 (Syropoulos, 2012).

Let A and B be fuzzy multisets. Then, Lengths L(x; A) and L(x; A, B) are respectively defined as

$$L(x; A) = \max\{j: \mu_A^j(x) \neq 0\};$$
 and $L(x; A, B) = \max\{L(x; A), L(x; B)\}.$ For brevity, $L(x)$ for $L(x; A)$ or $L(x; A, B)$ is also used if no

confusion arises.

Note that for defining an operation between two fuzzy multisets A and B, the lengths of the membership sequences $\mu_A^1(x),\mu_A^2(x),\dots,\mu_A^p(x)$ and $\mu_B^1(x),\mu_B^2(x),\dots,\mu_B^p(x)$ need to be set equal.

Let *A*, *B* be fuzzy multisets. Then

Let
$$A,B$$
 be tuzzy mutusets. Then
$$A \cup B = \mu_{A \cup B}^j(x) = \mu_A^j(x) \vee \mu_B^j(x), j = 1, \dots, L(x), \forall x \in X.$$

$$A \cap B = \mu_{A \cap B}^j(x) = \mu_A^j(x) \wedge \mu_B^j(x), j = 1, \dots, L(x), \forall x \in X.$$

$$A \subseteq B \Leftrightarrow \mu_A^j(x) \leq \mu_B^j(x), j = 1, \dots, L(x), \forall x \in X.$$
 Thus, $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$

Definition 2.3 Multi Q-fuzzy Set

Let I be a unit interval [0,1], k be a positive integer, U be a universal set and Q be a non-empty set. A multi Q-fuzzy set A_Q in *U* and *Q* is a set of ordered sequences:

$$A_Q = \{((u,q), (\mu_1(u,q), \mu_2(u,q), ..., \mu_k(u,q))) : u \in U, q \in Q\}, \text{ Where } \mu_i(u,q) \in I \text{ for all } i = 1,2,... k.$$

The function $(\mu_1(u,q), \mu_2(u,q), ..., \mu_k(u,q))$ is called the membership function of multi Q-fuzzy set A_Q and $\mu_1(u,q)$ + $\mu_2(u,q) + \cdots + \mu_k(u,q) \le 1$, k is called the dimension of A_Q (Adam and Hassan, 2014a).

In other words, if the sequences of the membership functions have only k-terms (finite number of terms) the multi Q-fuzzy set is a function from $U \times Q$ to I^k such that for all $(u, q) \in U \times Q$, $\mu_{A_0} = (\mu_1(u,q), \mu_2(u,q), ..., \mu_k(u,q))$. The set of all multi Q-fuzzy sets of dimension k in U and Q is denoted by $M^kQF(U)$

3. The Concept of a-cuts in Multi Q-fuzzy set

Definition 3.1 α-cuts in multi Q-fuzzy set

Let $A_Q \in M^kQF(U)$ and $\alpha \in [0,1]$. Then the α -cut of A_Q , denoted ${}^{\alpha}A_{Q}$ is defined as

$$\label{eq:AQ} \begin{split} {}^{\alpha}A_Q &= \Big\{(u,q) \colon \mu_{A_Q}(u,q) \geq \alpha \Big\}. \\ \text{The strong } \alpha - \text{cut of} \quad A_Q, \text{ denoted } {}^{\alpha+}A_Q \text{ is defined as} \\ {}^{\alpha+}A_Q &= \Big\{(u,q) \colon \mu_{A_Q}(u,q) > \alpha \Big\}. \end{split}$$

Theorem 3.2 Let A_Q , $B_Q \in M^kQF(U)$ and $\alpha \in [0,1]$. Then

$$\begin{array}{ll} \text{(i)} & \alpha^{+}A_{Q} \subseteq {}^{\alpha}A_{Q} \\ \text{(ii)} & \text{If } \alpha_{1} \leq \alpha_{2} \Longrightarrow {}^{\alpha_{2}}A_{Q} \subseteq {}^{\alpha_{1}}A_{Q} \\ \text{(iii)} & \alpha(A_{Q} \cup B_{Q}) = {}^{\alpha}A_{Q} \cup {}^{\alpha}B_{Q} \\ \text{(iv)} & \alpha(A_{Q} \cap B_{Q}) = {}^{\alpha}A_{Q} \cap {}^{\alpha}B_{Q} \\ \text{(v)} & \alpha^{+}(A_{Q} \cup B_{Q}) = {}^{\alpha^{+}}A_{Q} \cup {}^{\alpha^{+}}B_{Q} \\ \text{(vi)} & \alpha^{+}(A_{Q} \cap B_{Q}) = {}^{\alpha^{+}}A_{Q} \cap {}^{\alpha^{+}}B_{Q} \\ \end{array}$$

Published by Faculty of Science, Kaduna State University

Proof

- i). Observe from definition 3.1; α —cut always contains strong α —cut.
- ii). From definition 3.1; observe that whenever $\alpha_1 \le \alpha_2$ automatically $\alpha_1 A_0$ will contain $\alpha_2 A_0$.
- iii). Let $(u,q) \in {}^{\alpha}(A_Q \cup B_Q) \Longrightarrow \mu^i_{(A_Q \cup B_Q)}(u,q) \ge \alpha, i = 1,2,\dots,k$

$$\begin{split} & \Rightarrow \max \left[\mu_{A_Q}^i(u,q), \mu_{B_Q}^i(u,q) \right] \geq \alpha, i = 1,2,\dots,k \\ & \Rightarrow \mu_{A_Q}^i(u,q) \geq \alpha \quad \text{or} \quad \mu_{B_Q}^i(u,q) \geq \alpha, i = 1,2,\dots,k \\ & \Rightarrow (u,q) \in {}^{\alpha}A_Q \quad \text{or} \quad (u,q) \in {}^{\alpha}B_Q \\ & \Rightarrow (u,q) \in {}^{\alpha}A_Q \cup {}^{\alpha}B_Q \\ & \Rightarrow {}^{\alpha}(A_Q \cup B_Q) \subseteq {}^{\alpha}A_Q \cup {}^{\alpha}B_Q. \end{split}$$
 Suppose $(u,q) \in {}^{\alpha}A_Q \cup {}^{\alpha}B_Q \quad \Rightarrow (u,q) \in {}^{\alpha}A_Q \cup {}^{\alpha}B_Q \\ & \Rightarrow (u,q) \in {}^{\alpha}A_Q \quad \text{or} \quad (u,q) \in {}^{\alpha}B_Q \\ & \Rightarrow \mu_{A_Q}^i(u,q) \geq \alpha \quad \text{or} \quad \mu_{B_Q}^i(u,q) \geq \alpha, i = 1,2,\dots,k \\ & \Rightarrow \mu_{(A_Q \cup B_Q)}^i(u,q) \geq \alpha, i = 1,2,\dots,k \\ & \Rightarrow (u,q) \in {}^{\alpha}(A_Q \cup B_Q) \\ & \Rightarrow {}^{\alpha}A_Q \cup {}^{\alpha}B_Q \subseteq {}^{\alpha}(A_Q \cup B_Q). \end{split}$

Thus, the result follows.

- iv). The proof follows similarly from (iii).
- v). The proof follows similarly from (iv).

vi). Let
$$(u,q) \in {}^{\alpha+}(A_Q \cap B_Q) \Longrightarrow \mu^i_{(A \cap B)_Q}(u,q) > \alpha, i = 1, 2, \dots, k$$

$$\begin{array}{l} \Longrightarrow \min \left[\mu_{A_Q}^i(u,q), \mu_{B_Q}^i(u,q) \right] > \alpha, i = 1,2,...,k \\ \Longrightarrow \mu_{A_Q}^i(u,q) > \alpha, i = 1,2,...,k \text{ and} \\ \mu_{B_Q}^i(u,q) > \alpha, i = 1,2,...,k \\ \Longrightarrow (u,q) \in {}^{\alpha+}A_Q \text{ and } (u,q) \in {}^{\alpha+}B_Q \\ \Longrightarrow (u,q) \in {}^{\alpha+}A_Q \cap {}^{\alpha+}B_Q \\ \Longrightarrow (u,q) \in {}^{\alpha+}A_Q \cap {}^{\alpha+}B_Q \\ \Longrightarrow {}^{\alpha+}(A_Q \cap B_Q) \subseteq {}^{\alpha+}A_Q \cap {}^{\alpha+}B_Q . \end{array}$$
 Also, let $(u,q) \in {}^{\alpha+}A_Q \cap {}^{\alpha+}B_Q$
$$\Longrightarrow (u,q) \in {}^{\alpha+}A_Q \text{ and } (u,q) \in {}^{\alpha+}B_Q \\ \Longrightarrow \mu_{A_Q}^i(u,q) > \alpha \text{ and } \mu_{B_Q}^i(u,q) > \alpha, i = 1,2,...,k \\ \Longrightarrow \mu_{(A_Q \cap B_Q)}^i(u,q) > \alpha, i = 1,2,...,k \\ \Longrightarrow (u,q) \in {}^{\alpha+}(A_Q \cap B_Q) \\ \Longrightarrow {}^{\alpha+}A_Q \cap {}^{\alpha+}B_Q \subseteq {}^{\alpha+}(A_Q \cap B_Q). \end{array}$$
 Hence, ${}^{\alpha+}A_Q \cup {}^{\alpha+}B_Q = {}^{\alpha+}(A_Q \cap B_Q).$

Definition 3.3 Decomposition of Multi Q-fuzzy Soft Set

Let have the following distinct α -cuts defined by characteristic functions viewed as special membership functions:

$$0.1A_Q = \{ ((u_1, p), 1, 1, 1), ((u_1, q), 1, 1, 0), ((u_1, r), 1, 1, 1), ((u_2, p), 1, 1, 1), ((u_2, q), 0, 1, 1), ((u_2, r), 1, 1, 1)\}, \alpha \ge 0.1.$$

$$^{0.2}A_{Q} = \{((u_{1},p),1,1,1),((u_{1},q),1,1,0),\\ ((u_{1},r),0,1,1),((u_{2},p),1,0,1),((u_{2},q),0,1,1),\\ ((u_{2},r),1,1,0)\}, \alpha \geq 0.2.$$

$$^{0.3}A_{Q} = \{((u_{1},p),1,0,1),((u_{1},q),0,1,0),\\ ((u_{1},r),0,1,1),((u_{2},p),1,0,0),((u_{2},q),0,1,1),\\ ((u_{2},r),0,1,0)\}, \alpha \geq 0.3.$$

$$^{0.5}A_{Q} = \{((u_{1},p),0,0,1),((u_{1},q),0,1,0),\\ ((u_{1},r),0,1,0),((u_{2},p),0,0,0),((u_{2},q),0,0,1),\\ ((u_{2},r),0,0,0)\}, \alpha \geq 0.5.$$

$$^{0.7}A_{Q} = \{((u_{1},p),0,0,0),((u_{1},q),0,1,0),\\ ((u_{1},r),0,0,0),((u_{2},p),0,0,0),((u_{2},q),0,0,1),\\ ((u_{2},r),0,0,0)\}, \alpha \geq 0.7.$$

$$^{0.8}A_{Q} = \{\{((u_{1},p),0,0,0),((u_{1},q),0,1,0),\\ ((u_{1},r),0,0,0),((u_{2},p),0,0,0),((u_{2},q),0,0,0),\\ ((u_{1},r),0,0,0),((u_{2},p),0,0,0),((u_{2},q),0,0,0),\\ ((u_{2},r),0,0,0)\}, \alpha \geq 0.8.$$

Thus, converting each of the above α -cuts to a special Multi Q-fuzzy Set $_{\alpha}A_{Q}$ defined for each $(u,q)\in A_{Q}$ as

$$_{\alpha}A_{Q}=\alpha.\,(^{\,\alpha}A_{Q})$$
(1) We get

$$\begin{array}{l} _{0.1}A_Q = \{ \big((u_1,p),0.1,0.1,0.1\big), \big((u_1,q),0.1,0.1,0\big), \\ & \big((u_1,r),0.1,0.1,0.1\big), \big((u_2,p),0.1,0.1,0.1\big), \\ & \big((u_2,q),0,0.1,0.1\big), \big((u_2,r),0.1,0.1,0.1\big), \\ & \big((u_2,q),0,0.1,0.1\big), \big((u_2,r),0.1,0.1,0.1\big)\}, \\ & _{0.2}A_Q = \{ \big((u_1,p),0.2,0.2,0.2\big), \big((u_1,q),0.2,0.2,0\big), \\ & \big((u_1,r),0,0.2,0.2\big), \big((u_2,p),0.2,0.2,0\big), \\ & \big((u_2,q),0,0.2,0.2\big), \big((u_2,r),0.2,0.2,0\big)\}, \\ & _{0.3}A_Q = \{ \big((u_1,p),0.3,0.3\big), \big((u_1,q),0.0.3,0\big), \\ & \big((u_1,r),0,0.3,0.3\big), \big((u_2,p),0.3,0.0\big), \\ & \big((u_2,q),0,0.3,0.3\big), \big((u_2,p),0.3,0.0\big), \\ & \big((u_2,q),0,0.5,0\big), \big((u_2,p),0,0.3,0\big)\}, \\ & _{0.5}A_Q = \{ \big((u_1,p),0,0.5,0\big), \big((u_2,p),0,0.0\big), \\ & \big((u_2,q),0,0.0.5\big), \big((u_2,p),0,0.0\big), \\ & \big((u_2,q),0,0.0,0\big), \big((u_2,p),0,0.0\big), \\ & \big((u_2,p),0,0.0\big), \big((u_2,q),0,0.0.7\big), \\ & \big((u_2,p),0,0.0\big), \big((u_1,q),0,0.8,0\big), \big((u_1,r),0,0.0\big), \\ & \big((u_2,p),0,0.0\big), \big((u_2,q),0,0.0\big), \\ & \big((u_2,p),0,0.0\big), \big((u_2,q),0,0.0\big), \\ \end{array}$$

It is easy to see that $_{0.1}A_Q\cup{}_{0.2}A_Q\cup{}_{0.3}A_Q\cup{}_{0.5}A_Q\cup{}_{0.5}A_Q\cup{}_{0.7}A_Q\cup{}_{0.8}A_Q=A_Q.$

 $((u_2,r),0,0,0)$.

In other words, any Multi Q-fuzzy Set A_Q can be represented as the union of its special α -cuts $_{\alpha}A_Q$, and this representation is usually referred to as Decomposition of A_Q .

Published by Faculty of Science, Kaduna State University

Theorem 3.4 First Decomposition Theorem

Let $A_Q \in M^k QF(U)$, then $A_Q = \bigcup_{\alpha \in [0,1]} {}_{\alpha} A_Q$, where ${}_{\alpha} A_Q$ is as defined in (1).

Proof

For each
$$(u,q)\in A_Q$$
, let $y=\mu^i_{A_Q}(u,q), i=1,2,\ldots,k$
Then for every $\alpha\in (y,1]$ we have $\mu^i_{A_Q}(u,q)=y<\alpha, i=1,2,\ldots,k$. Thus, ${}_{\alpha}A_Q=0$.

On the other hand, for every $\alpha \in (0,y]$ we have $\mu_{A_Q}^i(u,q)=y\geq \alpha, i=1,2,\ldots,k.$

Thus,
$$_{\alpha}A_{O}=\alpha$$
.

Hence,
$$(\bigcup_{\alpha \in [0,1]} {}_{\alpha}A_{Q})(u,q) = \int_{\alpha \in (0,y]}^{Sup} \alpha = y = \mu_{A_{Q}}^{i}(u,q), i = 1,2,...,k.$$

As the same argument is valid for each $(u,q)\in A_Q$, it follows that each multi Q-fuzzy set can be uniquely represented as the family of all its α —cuts.

Theorem 3.5 Second Decomposition Theorem

Let $A_Q \in M^k QF(U)$, then $A_Q = \bigcup_{\alpha \in [0,1]} {\alpha + A_Q}$, where ${\alpha + A_Q}$ is as defined in (2).

Proof

The proof is analogous to that of the above theorem.

For each
$$(u,q) \in A_Q$$
, let $y = \mu^i_{A_Q}(u,q), i = 1,2,...,k$. Then, $(\bigcup_{\alpha \in [0,1]} {}_{\alpha +}A_Q) \ (u,q) = \int_{\alpha \in (0,1]}^{Sup} {}_{\alpha +}A_Q = \max[\int_{\alpha \in (0,y]}^{Sup} {}^{\alpha +}A_Q, \int_{\alpha \in (y,1]}^{Sup} {}^{\alpha +}A_Q].$ Hence, $(\bigcup_{\alpha \in [0,1]} {}_{\alpha +}A_Q) \ (u,q) = \int_{\alpha \in (0,y]}^{Sup} {}_{\alpha \in (0,y]} \ \alpha = y = \mu^i_{A_Q}(u,q), i = 1,2,...,k.$

As the same argument is valid for each $(u,q) \in A_Q$, it follows that each multi Q-fuzzy set can be uniquely represented as the family of all its strong α —cuts.

Conclusion

The idea of α -Cuts which was first applied to fuzzy set is extended to Multi Q-fuzzy set. It is shown among others that the α -Cut of the union of two multi Q-fuzzy set is the same as the union of their α -Cuts, and the α -Cut of the intersection of two multi Q-fuzzy set is the same as the intersection of their α -Cuts. It is further shown that, the same result is obtained with strong α -Cuts.

REFERENCES

- Adam F. and Hassan, N. (2014a). Multi Q-fuzzy parameterized soft set and its application. Journal of Intelligent and Fuzzy Systems 27 (1), 419-424.
- Adam F. and Hassan, N. (2014b). Q-fuzzy soft matrix and its application. AIP Conference Proceedings, 1602, 772-778
- Adam F. and Hassan, N. (2015). Multi Q- fuzzy soft set and its application. Far East Journal of Mathematical Sciences, 97 (7) 871-881.
- Adam F. and Hassan, N. (2016). Multi Q-fuzzy soft expert set and its application. Journal of Intelligent and Fuzzy Systems, 30(2) 943-950.
- Brown, J. G. (1971). A note on Fuzzy sets. Information and Control, 18, 32-39.
- Chutia, R., Mahanta S. and Baruah, H. K. (2010). An alternative method of finding the membership of a fuzzy number. International Journal of Latest Trends in Computing 1 (2), 69-72.
- Dutta, P., Boruah, H. and Ali, T. (2011). Fuzzy arithmetic with and without using α -cut method: A comparative study, International Journal of Latest Trends in Computing 2 (1), 99-107.
- Goguen, J. A. (1967). L-fuzzy Sets. Journal of Mathematical Analysis and Applications, 18, 145 – 174.
- Jena, S. P., Ghosh, S. K. and Tripathy, B. K. (2001). On the theory of bags and lists, Inform. Sci. 132 241-254.
- Klir, G. J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall.
- Kreinovich, V. (2013). Membership functions or α-cuts? Algorithmic (constructivist) analysis justifies an interval approach. Appl. Math. Sci. (Ruse) 7(5), 217-228.
- Singh, D., Alkali, A. J. and Isah, A. I. (2014). Some applications of α -cuts in fuzzy multiset theory. Journal of Emerging Trends in Computing and Information Sciences 5 (4), 328-335.
- Singh, D., Alkali, A. J. and Isah, A. I. (2015). An extension of the properties of inverse α -cuts to fuzzy multisets. Annals of Fuzzy Mathematics and Informatics, 9 (6), 917-923.
- Syropoulos, A. (2012). On generalized fuzzy multisets and their use in computation. Iranian Journal of Fuzzy Systems 9(2), 113-125
- Wygralak, M. (1989). Rough Sets and Fuzzy Sets Some Remarks on Interrelations. Fuzzy Sets and Systems, 29, 241 – 243.
- Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338 353.