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ABSTRACT  
This paper presents a network security framework for containing 
the propagation of network worms. The framework employs a 
detection mechanism at the network layer to identify the presence 
of a network worm and a data-link containment solution to block 
the infected host. A prototype of the mechanism has been used to 
demonstrate the effectiveness of the developed framework. An 
empirical analysis of network worm propagation has been 
conducted to test the framework. The results show that the 
developed framework is effective in containing network worms 
with almost no false positives. 
 
Keywords: Containment, worm detection, malware, cyber 
defence. 
 
1. INTRODUCTION 

The Internet has provided a medium for communication and 
sharing of information amongst people, businesses, governments 
and organisations. Therefore, the Internet must be kept 
continuous and secured from any form of malicious activities such 
as unauthorised access to computer system and malware attacks. 
Malware can be classified under a number of headings, including 
viruses, worms, Trojans, spyware, adware, rootkits, drive-by 
downloads and other malicious and unwanted software (Jarno 
and Pirkka, 2013). Self-propagating malware, termed a worm, is a 
malicious software program that propagates across a network by 
infecting hosts and in some cases launching malicious activities. 
A scanning network worm propagates by probing pseudo-random 
addresses looking for vulnerable hosts, which makes the malware 
highly virulent in nature. Fast scanning network worms are a 
particularly dangerous sub-class of such software. 
 
The Internet has experienced a number of notable worm 
outbreaks that caused disruption of services (Ahmad and 
Woodhead, 2015), damage to targeted systems (Falliere et al., 
2011), cyber espionage (Boldizsár et al., 2012) and financial 
losses ranging from millions to billions of US Dollars (Craig, 
2005). Common countermeasures to worm infection are 
signature-based antivirus software, network intrusion detection 
systems and host intrusion detection systems. However, the 
ability of such systems to counter the effects of fast scanning 
network worms is limited because their high propagation and 
infection rates pose a significant security threat, with consequent 
damage to networks and the Internet. Thus it is important to 
effectively identify and counter the propagation of worms, 
particularly fast scanning network worms, using a mechanism that 
must first work without the need to rely on signatures (sequence 
of byte-stream), because methods which rely on content 
signatures are unlikely to detect zero-day network worms. 
Additionally, due to the high propagation rates of fast scanning 
network worms, the traditional approach of waiting for patches to 
be released by vendors to fix vulnerabilities is not viable. 
This article presents a cross-layer detection and containment 

technique as an improvement over the NEDAC mechanism 
reported by Ahmad and Woodhead (2015). The NEDAC 
mechanism uses datagram-header information at the network 
layer to detect the presence of fast scanning worms and a 
containment solution at data-link layer to block outgoing traffic 
from a host that has been identified as infected. The rest of the 
paper is organised as follows. Section 2 summarises related work 
on worm detection and containment systems. Section 3 presents 
a description of the NEDAC mechanism. Section 4 presents the 
evaluation method used to test the NEDAC mechanism. Section 5 
presents and discusses the experimental results. Section 6 
concludes this article and points out possible future work. 
 
2. Related Works 

A range of anomaly-based network intrusion detection systems 
have been developed to identify the presence of worms using 
datagram header information and payload information (Faisal et 
al., 2009). 
Guofei et al. (2004) developed an algorithm, termed DSC, that 
correlates incoming and outgoing traffic, i.e., if a host received a 
datagram on port i, and then starts sending datagrams destined 
for port i, it becomes a suspect. Jung et al. (2004) proposed an 
algorithm, termed TRW, which identifies a remote host attempt to 
establish a new TCP connection to a local destination as normal if 
there is a corresponding TCP reply. On the other hand, failure to 
establish a successful TCP connection is considered suspicious. 
Nicholas et al. (2004) simplified the TRW scheme by considering 
all new connections to be a failure until a response is received. 
The algorithm drops a datagram if it does not match an existing 
and successfully-established connection after a predefined 
threshold count. These techniques only slow worm infections. 
David et al. (2005) used DNS-based rate limiting to suppress 
scanning worms in an enterprise network by identifying the 
absence of DNS resolution before a new connection as 
anomalous. Shahzad and Woodhead (2014) proposed a scheme 
that uses the absence of DNS lookup action prior to an outgoing 
TCP SYN or UDP datagram to a new destination IP address to 
detect worm propagation, and a protocol termed Friends to 
spread reports of an identified worm event to potentially 
vulnerable and uninfected peer networks within the scheme. Li 
and Stafford (2014) proposed a worm detector, which they termed 
SWORD. SWORD comprises two main modules; a Burst Duration 
Detector (BDD) and a Quiescent Period Detector (QPD). The 
BDD module encompasses a burst detection algorithm to prevent 
fast scanning worms by creating a window for every different size 
of first-contact connections. The QPD module ensures that 
quiescent periods in network activity do not disappear because of 
constant worm scanning. These techniques consume resources 
in order to keep track of distinct connection and host information, 
especially in large networks (Pele et al., 2008) and they can only 
slow worm infections. 
Additionally, Wang and Salvatore (2004) and Kim et al. (2012) 
proposed payload-based anomaly detection schemes. Wang 
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Salvatore (2004) proposed a detection scheme known as PAYL to 
detect and generate signatures for zero-day worms. PAYL uses a 
training phase to create a profile during normal operation, and 
produces a byte frequency distribution as a model for normal 
payloads. Based on this information, a centroid model is created 
and then during the detection phase, the Mahalanobis distance of 
each datagram payload from the centroid model is calculated. A 
datagram is considered to be anomalous based on its distance 
from the normal behaviour. Kim et al. (2012) proposed a detection 
scheme using a standalone device. The scheme employed the 
detection method reported by in Kim and Nnamdi (2008). During 
the training phase, the mean and standard deviation scores for all 
datagrams are computed. In the detection phase, a score is 
computed by counting the number of datagram bytes that fall 
outside the range defined for each byte. These above mentioned 
mechanisms have limitations such as computational complexity 
(Jyothsna, 2011), management overhead (Garcia-Teodoro et al., 
2009), high rates of false positives (Pele et al., 2008) and incur 
significant delays in deployment and detection Kim et al. (2012). 
 
3. The NEDAC Mechanism  

The NEDAC mechanism comprises a network layer detection 
system and a containment system at the data-link layer that work 
together to provide a countermeasure solution, with a connection 
maintained between the two systems to enable continuous data 
transmission. The detection system detects anomalies from client 
hosts and server hosts in a network using different techniques. 
The detection system maintains a list of server IP addresses in 
order to differentiate client and server hosts in a network. Client 
hosts are defined as network hosts which typically consume 
Internet services (e.g. workstations, laptops, tablets, smart-
phones, etc.) while server hosts are network hosts used to serve 
client requests (e.g. web servers and email servers).  
The detection system keeps track of inbound and outbound TCP 
SYN and UDP datagrams for a window of time with value T to 
determine anomalies that exceed a threshold. The threshold is a 
maximum allowable count of anomalous datagrams a host can 
send before T has elapsed. The containment system receives the 
MAC address of an identified infected host from the detection 
system and then blocks all traffic originating from the host using 
MAC address access control. The working mechanism of NEDAC 
is presented in Listing 1. 
 
Listing 1: The NEDAC Algorithm 

11: Begin 

2: /* Initialize tables */ 

3: initializeTable(inboundTable) 

4: initilaizeTable(resolutionTable) 

5: initilaizeTable(noResolutionTable) 

6: /* initialize exempt table*/ 

7: initializeTable(exemptTable) 

8: /* Set timer */ 

9: T = SetTimerSignal() 

10: /* open interface */ 

11: openInterface(interface) 

12: /* do in parallel */ process 1 

13: while (there are datagrams to process) do 

14: getDatagram() 

15: uniqueMAC = getMACAddress(datagram) 

16: headerInfo = getHeaderInfo(srcIP,dstIP,sPort,dPort) 

17: if datagram is inbound then 

18: if packet is DNS reply then 

19: updateResolutionTable() 

20: else 

21: updateInboundTable(dstIP) 

22: updateInboundTable(dPort) 

23: end if 

24: else 

25: if headerInfo is not found in exemptTable[] then 

26: if source host not a server then 

27: if IP addresses not in resolutionTable then 

28: updateNoResolutionTable(headerInfo) 

29: if (dPortCounter > threshold) then 

30: containHost(MAC) 

31: if dPort in inboundTable then 

32: blockInbound(dPort) 

33: end if 

34: end if 

35: else 

36: getNextDatagram() 

37: end if 

38: else 

39: correlate(headerInfo) 

40: if dport in inboundTable then 

41: updateInboundTable(headerInfo) 

42: end if 

43: if (dPortCounter > threshold) then 

44: containHost(MAC) 

45: if dport in inboundTable then 

46: blockInbound(dPort) 

47: end if 

48: end if 

49: end if 

50: else 

51: getNextDatagram() 

52: end if 

53: end if 

54: end while 

55: /* do in parallel */ process 2 

56: while true do 

57: if (T generates timeout signal) then 

58: for entries in resolutionTable do 

59: if (TTL >= 86400) then 

60: delete entry 

61: end if 

62: end for 

63: for entries in noResolutionTable and inboundTable do 

64: if (TTL >= 60) then 

65: delete entry 

66: end if 

67: halveThresholds() 

68: end for 

69: end if 

70: end while 

71: End 
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The NEDAC algorithm monitors TCP SYN and UDP datagrams 
from hosts in a network. For client hosts, the algorithm observes 
DNS resolution datagrams and records the IP address of the host 
that made the resolution and the resolved address in the 
resolution table. The destination IP address and port of an 
inbound datagram (excluding a DNS reply) is recorded in the 
inbound table for both client and server hosts. Outgoing datagram 
header information (source IP addresses and ports) is associated 
to entries in an exempt table. The exempt table comprises a list of 
IP addresses and ports that are exempt from the algorithm. If the 
header information results in a miss, the algorithm determines 
whether there is a recent DNS query by a client host for the 
destination IP address prior to sending the datagram by checking 
the resolution cache. If there is a miss, the algorithm records the 
destination port in the no-resolution cache, increments its counter 
and then determines excess using the threshold with value V.  
For server hosts, the algorithm checks the presence of the 
destination port of outbound TCP SYN and UDP datagrams in the 
inbound table. If there is a hit, a counter for such entry is 
incremented for TCP datagrams. An additional verification of the 
destination IP address is made to determine a reply UDP 
datagram, and if the destination IP address does not match the IP 
address recorded for such entry in the inbound table, its counter 
is incremented and then excess in threshold is also determined.  
Upon a host exceeding the set threshold by a server or client 
host, the algorithm invokes the containment system and then 
checks the presence of the suspect port in the inbound cache. If 
there is a hit, an additional countermeasure is applied at the 
network layer using an access control list (ACL) to block all 
inbound datagrams destined for the suspect port in the network 
segment. A time-to-live (TTL) is provided for entries in all the 
caches. The default TTL value for DNS (86400 seconds) is 
applied to the resolution cache and 60 seconds is applied to the 
no-resolution and inbound caches. Furthermore, the algorithm 
decrements the counters in the no-resolution and inbound tables 
by half after the expiration of a timing window of T, and then 
checks all caches to determine and remove entries with expired 
TTL values. 
The improvements of the countermeasure mechanism on the 
previous technique (Ahmad and Woodhead, 2015) are (1) 
separate detection techniques for client and server hosts to 
improve effectiveness of the system (2) an additional 
countermeasure mechanism for inbound worm traffic to block 
remote to local worm infection and (3) time-to-live for records 
maintained in caches to reduce excessive resource consumption. 
 
4. Evaluation Procedure 

To evaluate the proposed mechanism, a software prototype was 
developed and tested using worm propagation experiments in a 
controlled environment. The NEDAC mechanism was tested 
along with two previously reported worm detection techniques 
namely DSC and DNS-based detection schemes. The schemes 
were also implemented in software based on the description 
provided by their authors. The DNS-based scheme was termed 
DNS-RL. 
 
The testing environment used for the evaluation process is a 
virtualised testbed reported Ahmad et al. (2015). The testbed 
contains four virtualised enterprise networks comprising a number 
of virtual network cells. The testbed has a scale of 1200 virtual 
machines, supports the use of worm daemons and has utilities for 

replaying network traces as background traffic. To generate 
background traffic during the worm propagation experiments, the 
evaluation used the DARPA 1999 evaluation dataset (Lippmann 
et al., 2000) The “inside” traces of weeks 1 and 3 of the dataset 
meet the requirements of the evaluation because they are attack 
free traces that contain payload information for the variety of 
protocols needed. Additionally, the traces include a wide range of 
collected traffic from 31 network hosts. 
 
The evaluation process used two contemporary pseudoworms 
that were developed based on the Microsoft RDP (CVE-2012-
0002) vulnerability (CVEa, 2014) of 2012 and the ShellShock 
vulnerability (CVEb, 2014) of 2014. Ahmad and Woodhead (2015) 
reported the likely susceptible population values and potential 
datagram sizes of the Microsoft RDP and ShellShock 
vulnerabilities as circa 16.5 M and 3800 bytes and 42.5 k and 
2000 bytes respectively. 
 
Additionally, the bandwidth available for an infected host and the 
worm datagram size determine how fast a worm can send 
datagrams. The average Internet connection speed was 
estimated to be within the range 10 Mbps to 1000 Mbps 
(NetIndex, 2014). Although it is impossible for a host to achieve 
the maximum speed of a network card, the vast majority of 
Internet connected hosts are capable of transmitting data at 60 
Mbps to 120 Mbps (Marshini et al., 2011). Thus based on the 
assumption that the Internet connected hosts exhibit an average 
data transmission rate of 90 Mbps, the scan rate S, required for a 
single worm instance to transmit a datagram of size M (in bytes), 
over a C megabits Internet connection per second can be 
determined using equation 1. 

 𝑠 =  
𝐶

𝑀∗8
                                         (1) 

 
Therefore, the likely scan rates for the RDP and ShellShock 

pseudo-worms are (
9,000,000

3800∗8
) = 2960  and (

9,000,000

2000∗8
) =

5625   datagrams per second respectively. 

 
The scan rates of the pseudo-worms were scaled down by a 
factor of 24 and 45 for the RDP and ShellShock pseudoworms 
respectively to avoid overloading server resources. The resulting 
scan rates employed in the experiments are 125 “infectious” 
datagrams per second for RDP and ShellShock. Furthermore, the 
results of the experiments were scaled up by a factor of 24 and 45 
for the RDP and ShellShock pseudoworms respectively. 
 
Ahmad and Woodhead (2015) reported the number of susceptible 
hosts per million Internet hosts for RDP and ShellShock pseudo-
worms as 4454 and 12 respectively. Thus, due to the scale of the 
testbed used, which has a maximum number of 1200 hosts, four 
class B size 216 networks were used for RDP and five class A size 
224 networks were used for ShellShock. Thus, the resulting values 

were [(216) ∗ 4 ∗ (
4454

1,000,000
)] = 1168 and [(224) ∗ 5 ∗

(
12

1,000,000
)] = 1007 susceptible hosts respectively, within the 

relevant network address space. 
 
A. Experimentation Setup 

The evaluation experiments were conducted using the software 
prototypes of NEDAC DSC and DNS-RL. During the evaluation, a 
prototype of a detection scheme was positioned on the gateways 
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of each network, and for NEDAC, the containment system was 
positioned on the switches as depicted in Fig. 1.   
The RDP and ShellShock worm propagation experiments were 
conducted using random and then hit-list scanning behaviours for 
each detection scheme. The random scanning technique probes 
IPv4 addresses within the routable address space. The hit-list 
scanning technique infects a list of pre-compiled vulnerable hosts 
and then each infected host uses random scanning. For each 
pseudo-worm experiment, a number of hosts (1168 for RDP and 
1007 for ShellShock) were configured with the correct daemon to 
make them vulnerable to worm attack datagrams while other 
hosts were configured to replay the DARPA traces as background 
traffic. The worm attack and traffic replay events were executed 
concurrently in each experiment. The experiments were 
conducted without any countermeasures in place, then repeated 
with the countermeasures and the DARPA dataset as background 
traffic using threshold values of 100 through 400 anomalous 
datagrams sent by a host in a timing window of 10 seconds. The 
worm infection event was initiated by sending a UDP datagram to 
one of the vulnerable hosts. 
 
RDP Pseudo-worm 
The RDP pseudo-worm experiment was conducted using 1160 
client hosts and 8 server hosts. The pseudo-worm daemon was 
configured to listen on UDP port 3389 and then transmit UDP 
datagrams to port 3389 at a scan rate of 125 “infectious” 
datagrams per second, once “infected”. Five RDP pseudo-worm 
experiments were conducted using one initially infected host. The 
RDP-based worm experiment was repeated with a hitlist [25] of 
10 and 20 hosts. 
 
ShellShock Pseudo-worm 
The ShellShock pseudo-worm experiment was conducted using 
996 client hosts and 10 server hosts. The pseudo-worm daemon 
was configured to listen on UDP port 8080 and then transmit UDP 
datagrams to port 8080 at a scan rate of 125 “infectious” 
datagrams per second, once “infected”. Five ShellShock pseudo-
worm experiments were conducted using one initially infected 
host. As with RDP, the ShellShock worm experiment was 
repeated with a hit-list (Staniford, 2002) of 10 and 20 hosts. 
 
5. RESULTS 

This section discusses the results of the experiments conducted 

using the candidate pseudo-worms for random and hit-list 
scanning and the false positives observed during the 
experiments. The results of the worm propagation and detection 
performance are presented in Fig. 2 through Fig. 9. 
 
A. Random Scanning Infection 

The results of random infection behaviours for the RDP and 
ShellShock pseudo-worms using a threshold value of 100 are 
presented in Fig. 2 and Fig. 5. When no countermeasure solution 
was in place, the RDP pseudo-worm infected 95% (1110) of the 
hosts in eight seconds as shown in Fig. 2. Additionally, the 
ShellShock pseudo-worm infected 95% (956) of its susceptible 
hosts in 145 seconds as shown in Fig. 5. When the detection 
schemes were applied, the infections were delayed and 
suppressed by DSC and DNS-RL and blocked completely by 
NEDAC. With DSC and DNS-RL, the RDP pseudo-worm infection 
was delayed by 12 seconds and suppressed to 44% (510) and 
50% (580) respectively. The worm infections were detected by the 
DSC and DNS-RL schemes and the countermeasure solution was 
applied, but the initially infected host continued sending infectious 
datagrams, which infected a large number of hosts. However, with 
NEDAC, the initially infected host, for each pseudo-worm 
experiment, was detected and then blocked from sending out 
datagrams at the data-link layer, which stopped the infection 
completely for each of the two worm outbreak scenarios. 
Additionally, the NEDAC scheme blocked inbound traffic destined 
for the destination port used by the identified worm infection at the 
network layer, which also enable the mechanism to contain the 
worm infection quickly. 
 
B. Hit-list Scanning Infection 

Fig. 3 and Fig. 6 show the results of the worm experiments 
conducted with a hit-list of 10 hosts. When no countermeasure 
was in place, the RDP pseudo-worm infected 95% (1110) of the 
hosts in 6 seconds as shown in Fig. 3. The ShellShock pseudo-
worm attained 95% (956) infection in 55 seconds as shown in Fig. 
6. With the DSC and DNS-RL scheme, the RDP pseudoworm 
infection attained 95% in 19 and 15 seconds respectively 
 
 
  

                                     

 
Fig. 1: Prototype setup 
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The ShellShock pseudo-worm attained 95% infection in 150 and 
100 seconds with DSC and DNS-RL respectively. Furthermore, 
nine further infections were observed with NEDAC during the 
RDP pseudo-worm propagation and no further infections were 
observed during the propagation of the ShellShock pseudo-worm. 
Fig. 4 and Fig. 7 show the results of the worm experiments 
conducted with a hit-list of 20 hosts. When no countermeasure 
was in place, the RDP pseudo-worm infected 95% (1004) of the 
hosts in 5 seconds as shown in Fig. 4. The ShellShock pseudo-
worm attained 95% infection in 40 seconds as shown in Fig. 7. 
Furthermore, with the DSC and DNS-RL scheme, the RDP 
pseudo-worm infection attained 95% in 11 and 9 seconds 
respectively. The ShellShock pseudo-worm attained 95% 
infection in 90 and 75 seconds with DSC and DNSRL 
respectively. For NEDAC, 56 further infections were observed 
during the RDP pseudo-worm propagation and no further 
infections were observed during the propagation of the 
ShellShock pseudo-worm. 
 
C. Detection Performance 

The false positive rates observed by the three detection schemes 
are presented in Fig. 8 and Fig. 9 for the RDP and ShellShock 
pseudo-worm experiments respectively. The schemes detected 
all real pseudo-worm datagrams in all the experiments conducted 
and therefore the true positive (TP) rates are 100%. However, the 
DSC and DNS-RL schemes incurred higher rates of false 
positives (FP) than NEDAC. NEDAC has very low FP rates using 
100 and 200 as thresholds and zero FP rates using 300 and 400 
as thresholds. Generally, the false positive rate diminishes with 
rising threshold values. NEDAC raised one false positive with 
threshold values of 100 and 200, which was caused by a 
multicast UDP datagram sent by a host to port 520, that is, a RIP 
advertisement. Additionally, the rate at which RIP sends updates 
to neighbouring routers is not similar to fast scanning worm 
behaviour because RIP routers exchange update every 30 
seconds by default. Nevertheless, the RIP port can be added into 
the exempt list in NEDAC to avoid false positives. Across the 
whole experimental data set, NEDAC has a better performance in 
terms of false positives compared to the DNS-RL scheme. 
 

6. Conclusion and Future Work 

This paper has presented a countermeasure solution against fast 
scanning network worms. A software prototype of the worm 
countermeasure solution was used to evaluate the scheme using 
a set of experiments. The results of the experiments showed that 
the countermeasure solution is sensitive in detecting and 
containing an identified worm infection with almost no false 
positives. The results of a comparative analysis showed that the 
countermeasure solution has a better performance compared to 
two previously reported detection schemes. 
 
As for future work, it is desirable to evaluate the mechanism using 
different background traffic. The aim of improving the detection 
system to use dynamic threshold policy and the speed of 
containment will also be investigated. Furthermore, the effect of 
timing window size and volume of background traffic will be 
investigated 
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