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ABSTRACT  
This paper discusses the new computational technique referred to 
as the asymptotic iteration method (AIM), and presents numerical 
computations of exact energy eigenvalues of the Schrödinger 
equation assuming the Morse potential for some diatomic 
molecules. The method is used to compute the numerical 
energies of bound vibrational levels of the 7Li2, H2, and N2 

diatomic molecules in the 𝐴1Σu
+, 11Σu

+ and 𝐴3Σu
+ electronic 

states.  
 
Keywords: Asymptotic iteration method, differential equations, 
vibrational states, diatomic molecule 
 
INTRODUCTION 
Asymptotic Iteration Method (AIM) was developed by Hakan 
Ciftci, and his co-workers (Ciftci et al, 2003; Ciftci et al, 2005) for 
solving second-order homogeneous linear differential equations 
that could be put in the form:  𝑦′′ = 𝜆0𝑦′ + 𝑠0𝑦. The 
coefficients 𝜆0 and 𝑠0 are generally functions of the independent 

variable, subject to conditions: 𝜆0 ≠ 0; and 𝑠0 ∈ 𝐶∞. Basically, 

the method involves finding asymptotic ratio 𝑠𝑛 𝜆𝑛 = ⁄  

𝑠𝑛−1 𝜆𝑛−1 ≅ ⁄  α, for some large n. The coefficients 𝑠𝑛 and 𝜆𝑛 

are generated by successive differentiation of 𝒚′′, and putting the 

𝑛𝑡ℎ derivative in the form λny′ + sny. This asymptotic relation is 
then used to write down a solution for 𝑦. It was recognized very 

early that the AIM method would be useful for solving very 
important differential equations of mathematical physics such as 
Hermite, Laguerre, Legendre and Bessel, hence the focus on 
solution of Schrodinger equation, with important potentials. The 
method was first used to find exact solutions for Schrodinger 
wave equation with harmonic oscillator potential (Ciftci et al, 
2003). It was subsequently extended to finding exact solutions of 
Schrodinger equation with complex cubic, quartic and Posch-
Teller potentials (Ciftci et al, 2005). Other early studies reported 
on use of AIM for exact eigenvalues of angular spheroidal wave 
function (Barakat et al, 2005), and many other quantum problems. 
These initial successes led to the use of AIM for investigating the 
potentials popularly applied to describe physics of atoms and 
molecules. Some workers employed the AIM to calculate bound 
states and energies of diatomic molecules, with the anharmonic 
potential first introduced by P.M. Morse (Morse, 1929) for 
studying molecular species. The Morse potential has continued to 
attract workers’ interest, and more recently, vibrational energy 
levels for the nuclear motion of several diatomic molecules have 
been treated analytically, and sometimes numerically, on the 
basis of this historically important potential. But as observed by 
Chabab et al. (2012), the accuracy of the obtained results ‘seem 

model or algorithm dependent’. For instance, these authors noted 
that Ley-koo et al. (1995) and Taseli (1998) used confined system 
in a spherical box of unit radius, to examine analytically and 
numerically, the eigenenergies of 7Li2, but the results of Ley-koo 
et al. (1995) were inaccurate because they used too large a 
spherical box, while Taseli (1998) presented impressive results 
for 7Li2 eigenenergies accurate to 28 digits. Other recent works 
used the AIM method for the same molecular species, with 
eigenvalue accuracies ranging from 14 digits (Barakat et al, 2006) 
to 28 significant figures (Chabab et al, 2012). 
It may therefore be noted that the AIM has been successfully 
applied to solve the Schrodinger equation using different 
potentials to obtain highly accurate numerical results of the 
energy eigenvalues. Its successes in computing highly accurate 
numerical results has led to wide acceptance of the AIM as an 
accurate and easily handled analytic method. As indicated earlier, 
the vibrational spectrum of 7Li2 diatomic molecule has been 
computed using the AIM by several workers (Ley-koo et al, 1995; 
Taseli, 1998; Barakat & Abodayeh, 2006; Chabab et al, 2012). 
This research work was undertaken to compare the numerical 
results of the energy eigenvalues with those obtained by these 
previous studies, and further extend the computations to other 
simple diatomic molecules, including H2 and N2, using the 
asymptotic iteration method (AIM). 
 
MATERIAL AND METHOD 
 
Comprehensive Brief on the Asymptotic Iteration Method 
(AIM) 
Second-order homogeneous linear differential equations of the 
form 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 0 arise naturally in the field of science 

and engineering. There are many techniques available in different 
books that can be used to solve these types of differential 
equations. The main task of the present work is to introduce a 
new technique, known as the Asymptotic Iteration Method (AIM) 
as an alternative approach to solve second-order homogeneous 
linear differential equations. 
 
To solve the second-order homogeneous linear differential 
equations using the AIM approach, one will rearrange the above 
equation to this form 
 

 𝑦′′ =  −
𝑏

𝑎
𝑦′ −

𝑐

𝑎
𝑦              (1) 

 
so as to make comparison with the general expression of the AIM 
approach below. 
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y′′ =  λ0 y′ +  s0y             (2) 

  

Considering the two equations, one can easily identify;  λ0 = −
𝑏

𝑎
 

, and  s0 = −
𝑐

𝑎
 . 

As an illustration, below is an example by Ciftci et al. (2003) on 
how to solve the second-order homogeneous linear differential 
equation using the AIM approach. 
 
Suppose we consider the homogenous linear second-order 
differential equation 
 
y′′ − 4y′ +  3y = 0          (3) 

 
The systematic procedure of the AIM begins now by rewriting 
equation (3) in the form given by equation (4) below and 
continuously iterate by differentiating from 3rd derivative to (n+2)th  
derivative; 
 
y′′ = 4 y′ − 3y          (4) 
 
Now let us introduce the constant parameters λ0 and s0 from the 

general AIM expression in (2). The primes of 𝑦 in equations (2 

and 3) denote the first and second derivatives with respect to 𝑥. 

Comparing equation (2) and equation (4), we have λ0 = 4   and   

s0 = −3 and, differentiating (4) with respect to 𝑥, gives 

 
y′′′ =  λ1 y′ + s1y          (5) 

    
where   λ1 = λ0′ + s0 + λ0

2   and  𝑠1 = 𝑠0′ + s0λ0. Now,  

λ0
′ = 0    and     𝑠0

′ = 0 because the differential of  λ0 = 4 and 

s0 = −3 gives zero. 

Substituting the above values in the expression of λ1 and 𝑠1 

gives   λ1 =  0 + (−3) + (4)2 =13, and  𝑠1 = 0 +
(−3)(4) = 12. Now, rewriting equation (5) by substituting the 

new values of λ1 and 𝑠1 from above gives 

 
y′′′ =  13y′ − 12y           (6) 

 
Again, the second derivative of equation (4), gives; 
  
y′′′′ =  λ2 y′ + s2y         (7) 

 
where  λ2 = λ1′ + 𝑠1 + λ0λ1,   and   s2 = s1

′ + 𝑠0λ1. λ1
′ =

0 and 𝑠1
′ = 0 because the differentials of  λ1 = 13 and 𝑠1 =

−12 gives zero. Again, substituting the above values in the 

expression of λ2 and s2 gives λ2 = 0 + (−12) + (4)(13) =
40    and    s2 = 0 + (−3)(−12) = −36. Now, rewriting 

equation (7) by substituting the new values of λ2 and 𝑠2 from 

above gives 
 
y′′′′ =  40y′ − 36y         (8) 

 

Thus, the (𝑛 + 1)𝑡ℎ and (𝑛 + 2)𝑡ℎ derivatives, n = 1, 2. . . is 
the iteration number, can be written as; 
 

yn+1 =  λn−1(x) y′ +  𝑠n−1(x)y       (9) 
   and 

yn+2 =  λn(x) y′ +  𝑠n(x)y       (10) 

where  λn = λ′n−1 + 𝑠n−1 + λ0λn−1, and  sn = sn−1
′ +

 𝑠0λn−1. In general, λn =
1

2
(3n+2 − 1) and    sn =

−
3

2
(3n+1 − 1). Note that one can get back the values of λ0 =

4 and s0 = −3, λ1 = 13 and 𝑠1 = −12,… by just substituting 

the values of n = 0,1,… in the expression of λn and sn above. 

 

𝛼(𝑥) = lim
n→∞

Sn

λn
= −1           (11) 

 
Substituting  λn, and the expression for 𝛼(𝑥) above, in equation 

(12) below to get the general solution to equation (2) above as 
seen in equation (13) below, using the elementary method. 

y(x) = exp(− ∫ ∝ (𝑥1)𝑑𝑥1
𝑥

) × [𝐶2 +

𝐶1 ∫ 𝑒𝑥𝑝(∫ (λ0(𝑥2) + 2 ∝ (𝑥2))𝑑𝑥2
𝑥1 )

𝑥
]          (12) 

 

y(x) = C1e3x + C2ex             (13) 
 
Formalism of the Asymptotic Iteration Method for Solving 
Schrödinger Equation with the Morse Potential 
As an empirical potential, the Morse potential has been one of the 
most helpful and convenient models, which provides a qualitative 
description of the interaction between two atoms in a 
very substance molecule. Analysis has shown that 
the rotational energy of a molecule is way smaller than 
its vibrational energy, and so, in a very pure Morse potential 
model the rotational energy of a molecule has been omitted 
(Barakat & Abodayeh, 2006). Hence, we start with the 
Schrödinger equation given by; 
 

[−
ℏ2

2𝜇

𝑑2

𝑑𝑥2 +  𝑉(𝑥)] Ψn(x) = 𝐸𝑛Ψn(x)                      (14) 

  
where 𝐸𝑛 are the energy eigenvalues, and 𝑉(𝑥)is the Morse 

potential function given as;  
 

V (x) =  De(e−2β(x−xe) −  2e−β(x−xe))           (15) 

 
where De is the dissociation energy, 𝑥𝑒 is the equilibrium inter-

nuclear distance of a diatomic molecule, μ is the reduced mass, 
and β is an adjustable parameter. Morse potential has a minimum 
value at 𝑥 = 𝑥𝑒, and it is zero at 𝑥 = ∞. At x= 0, V(0) has a 

finite value of De( e2β(xe) −  2eβ(xe) ) that is positive 

when 𝛽𝑥𝑒 > 𝑙𝑛2. Equation (14) is the famous one-dimensional 

Schrödinger equation, if x is defined on the domain (−∞ < 𝑥 <
+∞), and the eigenfunctions are normalized, that is 

∫ |Ψ(𝑥)|2 𝑑𝑥 = 1
−∞

+∞
. However, for real diatomic molecules x 

should range from 0 𝑡𝑜 ∞. 

 

Starting with Morse’s substitution, i.e. 𝑞 = 𝑒
−𝛽(𝑥−𝑥𝑒)

2 , and 
rewriting equation (14) in the form; 
 

−
𝑑2Ψ𝑛(𝑞)

𝑑𝑞2 −
1

𝑞

𝑑Ψ𝑛(𝑞)

𝑑𝑞
+ 

8𝜇De

𝛽2ℏ2
[𝑞2 − 2]Ψ𝑛(𝑞) =

 
8𝜇En

𝛽2ℏ2𝑞2 Ψ𝑛(𝑞)                                                                       (16) 

 
Furthermore, removing the first derivative by proposing the ansatz 
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Ψ𝑛(𝑞) = ϕn(𝑞)exp (−
p(r)

2
); p′(r) =

1

𝑞
  (17) 

 
This in turn implies, 
 

−
𝑑2Φ𝑛(𝑞)

𝑑𝑞2 + 
𝜖𝑛(𝜖𝑛+1)

𝑞2 Φ𝑛(𝑞) + 𝛾2𝑢2Φ𝑛(𝑞) =  2𝛾2Φ𝑛(𝑞) 

           (18) 
 
where,     

𝜖𝑛(𝜖𝑛 + 1) = −
1

4
−

8𝜇En

𝛽2ℏ2
, and 𝛾2 =

8𝜇De

𝛽2ℏ2
 (19) 

 
Further still, by introducing the frequency 
 

𝜔0 = 𝛽√2
𝐷𝑒

𝜇
       (20) 

 
of classical small vibrations about the equilibrium position 𝑥 =
𝑥𝑒, and expressing the energy parameters in unit ℏ𝜔0; that is; 

 

𝐷𝑒 = ∆ℏ𝜔0; 𝐸𝑛 = 𝜀𝑛ℏ𝜔0    and    𝜀𝑛 = −
(𝜖𝑛+

1

2
)

2

16∆2     (21) 

 
Now, we can write the eigenvalue problem in a more convenient 
re-scaled form as; 
 

−
𝑑2Φ𝑛(𝑞)

𝑑𝑞2 + 
𝜖𝑛(𝜖𝑛+1)

𝑞2 Φ𝑛(𝑞) + 16∆2𝑞2Φ𝑛(𝑞) =

 32∆2Φ𝑛(𝑞)        (22) 
 
In order to guarantee the asymptotic behavior of this eigenvalue 
problem when 𝑞 → ∞, and 𝑞 → 0, it is found that Φ𝑛(𝑞) should 

look like 
 

Φ𝑛(𝑞) = 𝑞(𝜖𝑛+1)𝑒−2Δ𝑞2
𝑃𝑛(𝑞)      (23) 

 
This implies that the function 𝑓𝑛(𝑞) will satisfy a second-order 

homogenous linear differential equation of the form; 
 
𝑑2P𝑛(𝑞)

𝑑𝑞2 =  (8Δ𝑞 −
2𝜖𝑛+2

𝑞
)

𝑑P𝑛(𝑞)

𝑑𝑞
+ (12Δ + 8Δ𝜖𝑛 −

32Δ2)P𝑛(𝑞)        (24) 
 
The systematic procedure of the asymptotic iteration method 
begins now by rewriting equation (24) in the following form, 
 
𝑃𝑛

′′(𝑞) = λ0(𝑞)𝑃𝑛
′(𝑞) + s0(𝑞)𝑃𝑛(𝑞)       (25) 

where, 
 

λ0(𝑞) = (8Δ𝑞 −
2𝜖𝑛+2

𝑞
),   s0(𝑞) = (12Δ + 8Δ𝜖𝑛 − 32Δ2) 

                                                                (26) 
 
The primes of 𝑃𝑛(𝑞) in equation (25) denote the second 

derivatives with respect to 𝑞. Now, in order to find the general 

solution to this equation, we rely on the symmetric structure of the 
right hand side of equation (25). Thus differentiating equation (25) 
With respect to 𝑞, gives; 

 
𝑃𝑛

′′′(𝑞) = λ1(𝑞)𝑃𝑛
′(𝑞) + s1(𝑞)𝑃𝑛(𝑞)         (27) 

 

where λ1(𝑞) = λ0
′ (𝑞) + s0(𝑞) + λ0

2(𝑞) and s1(𝑞) =
s0

′ (𝑞) + s0(𝑞)λ0(𝑞). Likewise, the calculation of the second 

derivative of equation (25) yield; 
 
𝑃𝑛

′′′′(𝑞) = λ2(𝑞)𝑃𝑛
′(𝑞) + s2(𝑞)𝑃𝑛(𝑞)           (28) 

 
where  λ2(𝑞) = λ1

′ (𝑞) + s1(𝑞) + λ0(𝑞)λ1(𝑞) and s2(𝑞) =
s1

′ (𝑞) + s0(𝑞)λ1(𝑞). For (𝑙 + 1)th, and (𝑙 + 2)th derivatives, 𝑙 = 

1, 2 … is the iteration number, one can obtain, 
 

𝑃𝑛
(𝑙+1)(𝑞) = 𝜆𝑙−1(𝑞)𝑃𝑛

′(𝑞) + 𝑠𝑙−1(𝑞)𝑃𝑛(𝑞)         (29) 

 

𝑃𝑛
(𝑙+2)(𝑞) = 𝜆𝑙(𝑞)𝑃𝑛

′(𝑞) + 𝑠𝑙(𝑞)𝑃𝑛(𝑞)          (30) 

 
where 
     
λ𝑙(𝑞) = λ𝑙−1

′ (𝑞) + s𝑙−1(𝑞) + λ0(𝑞)λ𝑙−1(𝑞)         (31a) 

s𝑙(𝑞) = s𝑙−1
′ (𝑞) + s0(𝑞)λ𝑙−1(𝑞)          (31b)  

  
which are called the recurrence relation of equation (25). By 

taking the natural log of equation (29), we have ln 𝑃𝑛
(𝑙+1)(𝑞) =

ln[𝜆𝑙−1(𝑞)𝑃𝑛
′(𝑞) + 𝑠𝑙−1(𝑞)𝑃𝑛(𝑞)]. Now, differentiating this 

expression with respect to 𝑢; 

 

𝑑

𝑑𝑢
ln 𝑃𝑛

(𝑙+1)(𝑞) =
𝜆𝑙(𝑃𝑛

′ (𝑞)+
𝑠𝑙(𝑞)

𝜆𝑙(𝑞)
𝑃𝑛(𝑞))

𝜆𝑙−1(𝑃𝑛
′ (𝑞)+

𝑠𝑙−1(𝑞)

𝜆𝑙−1(𝑞)
𝑃𝑛(𝑞))

           (32) 

 
The ratio of the (𝑙 + 2)th, and (𝑙 + 1)th can be expressed as; 

  

𝑃𝑛
(𝑙+2)(𝑞)

𝑃𝑛
(𝑙+1)

(𝑞)
=

𝜆𝑙(𝑃𝑛
′ (𝑞)+

𝑠𝑙(𝑞)

𝜆𝑙(𝑞)
𝑃𝑛(𝑞))

𝜆𝑙−1(𝑃𝑛
′ (𝑞)+

𝑠𝑙−1(𝑞)

𝜆𝑙−1(𝑞)
𝑃𝑛(𝑞))

            (33) 

 
One can write equation (32) and (33) as; 
 

𝑑

𝑑𝑢
ln 𝑃𝑛

(𝑙+1)(𝑞) =
𝑃𝑛

(𝑙+2)(𝑞)

𝑃𝑛
(𝑙+1)(𝑞)

=
𝜆𝑙(𝑃𝑛

′ (𝑞)+
𝑠𝑙(𝑞)

𝜆𝑙(𝑞)
𝑃𝑛(𝑞))

𝜆𝑙−1(𝑃𝑛
′ (𝑞)+

𝑠𝑙−1(𝑞)

𝜆𝑙−1(𝑞)
𝑃𝑛(𝑞))

         (34) 

 

Equation (34) above is the ratio of (𝑙 + 2)𝑡ℎ and (𝑙 + 1)𝑡ℎ 
derivatives. For sufficiently large 𝑙, and introducing the 

“asymptotic” aspect of the method; that is, 
 
𝑠𝑙(𝑞)

𝜆𝑙(𝑞)
=

𝑠𝑙−1(𝑞)

𝜆𝑙−1(𝑞)
≡ 𝛼(𝑞)            (35) 

 
Thus equation (34) can be reduced to; 
 
𝑑

𝑑𝑞
(𝑃𝑛

(𝑙+1)(𝑞)) =
𝜆𝑙(𝑞)

𝜆𝑙−1(𝑞)
           (36) 

 
Clearly, by integrating equation (36), we obtain; 
 

𝑃𝑛
(𝑙+1)(𝑞) = 𝐶1𝑒𝑥𝑝 (∫

𝜆𝑙(𝑞)

𝜆𝑙−1(𝑞)
𝑑𝑞)          (37) 
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where 𝐶1 is the integration constant. Substituting 𝜆𝑙(𝑞) from 

equation (31a) and then using the definition of 𝛼(𝑢)from equation 

(35), equation (37) can be rewritten as;  
 

𝑃𝑛
(𝑙+1)(𝑞) = 𝐶1𝜆𝑙−1(𝑞)𝑒𝑥𝑝(∫(𝛼(𝑞) + 𝜆0(𝑞))𝑑𝑞)         (38) 

 
Substituting equation (38) into equation (29) gives a first-order 
differential equation of the form 
 

𝑃𝑛
′(𝑞) + 𝛼(𝑞)𝑃𝑛(𝑞) = 𝐶1𝑒𝑥𝑝(∫(𝛼(𝑞) + 𝜆0(𝑞))𝑑𝑞)      (39) 

 
which, in turn, yield the general solution to equation (25) 
 

𝑃𝑛(𝑞) = 𝑒𝑥𝑝(− ∫ 𝛼(𝑞′)𝑑𝑞′𝑢
) [𝐶2 +

𝐶1 ∫ 𝑒𝑥𝑝 (∫ {𝜆0(𝑞′′) + 2𝛼(𝑞′′)}𝑑𝑞′′𝑢′

)
𝑢

]          (40) 

 
where 𝐶2 is the new integration constant. It should be noted that 

one can construct the eigenfunctions 𝑃𝑛(𝑞) from the knowledge 

of 𝛼. 

 
RESULTS AND DISCUSSION 
 
Numerical Results for the Vibrational Levels of the Morse 
Potential 
The energy eigenvalues of the Morse potential (E𝑛) were 

calculated by means of equation (35). To generate the energy 
eigenvalues E𝑛, equation (35) is first solved for 𝜖𝑛where the 

iterations should be terminated by applying a condition 𝛿𝑙(𝑞) =
0 as a rough calculation to equation (35).  

 
On the other hand, for each iteration, the expression 𝛿𝑙(𝑞) =
0 = s𝑙(𝑞)λ𝑙−1(𝑞) − s𝑙−1(𝑞)λ𝑙(𝑞), where the expression 

above depends on 𝜖𝑛 and 𝑞. The calculated  𝜖𝑛 by means of this 

condition should, however, be independent of the choice of  𝑞. 

Nevertheless, the choice of 𝑞 is observed to be critical only to 

speed of the convergence to 𝜖𝑛, as well as for the stability of the 

process.  
 
In this work, it is observed that the best starting value for 𝑞 is the 

value at which the effective potential of equation (23) takes its 
minimum value, that is when 𝑞 = 1 (Barakat & Abodayeh, 2006). 

Therefore, at the end of the iterations, 𝑞 = 1, the results of the 

AIM for 𝜖𝑛with different values of n are; 
 

𝜖0 =
−3+8Δ

2
,            (41a) 

𝜖1 =
−7+8Δ

2
,     

           (41b) 

𝜖2 =
−11+8Δ

2
     

           (41c) 

𝜖4 =
−19+8Δ

2
     

          (41d) 

𝜖5 =
−23+8Δ

2
     

         (41e) 
 
It means that; 

𝜖𝑛 =
−4𝑛−3+8Δ

2
, For n = 0, 1, 2.........        (42) 

 
The parameters 𝜖𝑛were calculated by means of 18 iterations 

only. Therefore, the exact energy eigenvalues of the Morse 
potential 𝐸𝑛are; 

 

E𝑛 = −
(−2(2𝑛+1)+8Δ)2

64Δ
            (43) 

 
The computation results of the energy eigenvalues of equation 
(43) for three diatomic molecules are represented below: 
 
Table 1: Energy eigenvalues of Morse potential for 7Li2 diatomic 

molecule in the 𝐴1 ∑+
𝑢  electronic state with the parameters 

𝐷𝑒 = 1.10842𝑒𝑉, 𝑥0 = 3.10821, and 𝛽 = 0.616. 

 

n  Eigen values for 7Li2 

0 -0.6648065682683458 

1 -0.11589911441511339 

2 -0.018084206708648357 

3 -0.3713618451489508 

4 -1.1757320297360208 

5 -2.4311947604698583 

6 -4.137750037350464 

7 -6.295397860377837 

8 -8.904138229551977 

9 -11.963971144872884 

10 -15.474896606340561 

11 -19.436914613955 

12 -23.85002516771621 

13 -28.71422826762419 

14 -34.029523913678936 

15 -39.79591210588045 

16 -46.013392844228726 

17 -52.68196612872377 

18 -59.80163195936557 

19 -67.37239033615415 

20 -75.39424125908951 

 
 
 
 
 
Figure 1 below is the graph of 7Li2 diatomic molecule with 
parameters 𝐷𝑒 = 1.10842𝑒𝑉, 𝑥0 = 3.10821, and 𝛽 =
0.616. 
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Figure 1: Morse potential curve for 7Li2 diatomic molecule. 
 
 
Table 2: Energy eigenvalues of Morse potential for H2 diatomic 

molecule in the 11 ∑  electronic state with the parameters 

𝐷𝑒 = 4.97177𝑒𝑉, 𝑥0 = 0.89, and 𝛽 = 1.85 

 

n  Eigen values for H2 

0 -4.4843409757289665 

1 -3.584908781560692 

2 -2.786044393224144 

3 -2.0877478107193213 

4 -1.4900190340462252 

5 -0.9928580632048547 

6 -0.5962648981952103 

7 -0.3002395390172917 

8 -0.10478198567109909 

9 -0.009892238156632368 

10 -0.015570296473891564 

11 -0.12181616062287667 

12 -0.3286298306035877 

13 -0.6360113064160247 

14 -1.0439605880601874 

15 -1.5524776755360763 

16 -2.1615625688436912 

17 -2.8712152679830316 

18 -3.681435772954098 

19 -4.592224083756891 

20 -5.603580200391409 
 
Figure 2 is the graph of H2 diatomic molecule, with parameters 
𝐷𝑒 = 4.97177𝑒𝑉, 𝑥0 = 0.89, and 𝛽 = 1.85. 

 

 
 
Figure 2: Morse potential curve for H2 diatomic molecule 
 
 
Table 3: Energy eigenvalues of Morse potential for N2 diatomic 

molecule in the 𝐴3 ∑+
𝑢 electronic state with parameters 𝐷𝑒 =

4.66181𝑒𝑉, 𝑥0 = 1.28, and 𝛽 = 2.42 
 

n  Eigen values for N2 

0 -4.175216809801343 

1 -3.282471288212089 

2 -2.4969802450335816 

3 -1.8187436802658195 

4 -1.2477615939088038 

5 -0.7840339859625338 

6 -0.42756085642701014 

7 -0.1783422053022324 

8 -0.03637803258820072 

9 -0.0016683382849150862 

10 -0.0742131223923755 

11 -0.2540123849105819 

12 -0.5410661258395344 

13 -0.935374345179233 

14 -1.4369370429296775 

15 -2.045754219090868 

16 -2.7618258736628047 

17 -3.585152006645487 

18 -4.515732618038916 

19 -5.553567707843091 

20 -6.698657276058012 
 
Figure 3 is the graph of N2 diatomic molecule, with parameters 
𝐷𝑒 = 4.66181𝑒𝑉, 𝑥0 = 1.28, and 𝛽 = 2.42. 
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Figure 3: Morse potential curve for N2 diatomic molecule 
 
In table 1, the results of the computation of vibrational energies of 

the 7Li2 diatomic molecule in the 𝐴1 ∑+
𝑢 electronic state are 

represented, table 2 is the result of vibrational energies of the H2 

diatomic molecule in the 11 ∑ electronic state, and table 3 is 

the result of vibrational energies of the N2 diatomic molecule in 

the 𝐴3 ∑+
𝑢 electronic state. 

 
The parameters of the respective Morse potential are explicitly 
indicated for each diatomic molecule, with the dissociation energy 
parameter in units of 𝑒𝑉. The results of this research work given 

in the tables above are in excellent agreement with the energy 
eigenvalues results of  Taseli (1998) and Chabab et al. (2012). 
 
Morse potential has shown a great ability in the description of 
diatomic interactions and proven to be successful and accurate in 
computation. In this work, the energy eigenvalues levels and the 
corresponding vibrational states of diatomic molecule 7Li2, H2, and 
N2 via the Morse potential are analyzed. For this, the one-
dimensional Schrödinger equation is solved by making use of the 
asymptotic iteration method (AIM).  
Note that the unit of the dissociation energy parameters for the 
respective diatomic molecules in the present work is in 𝑒𝑉. On 

the other hand, the results obtained from AIM calculations are 
extremely precise and present the energy eigenvalues levels up 
to 15 decimals. 
 
Morse potential energy curve describes the potential energy of a 
system, V(x), as the two atoms are brought closer to, or moved 
away from, one another (see figure 1, figure 2 and figure 3). The 
point at which the curve flattens out at large inter-nuclear 
distances is termed the dissociation energy limit, and represents a 
state where the molecule is no longer bound, being instead, two 
separate atoms. The dissociation energy, De, is the vertical 
distance between the dissociation limit and the base of the curve, 
found at the equilibrium bond length. 
 
Finally, the Asymptotic Iteration Method (AIM) is highly accurate, 
but the technique requires a lot of computational time. 
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