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ABSTRACT

In this paper, a new iterative method to solve linear and nonlinear
initial boundary value problem (IBVP) with non local conditions
was developed. The new method is an elegant combination of
traditional variational iteration and the decomposition methods.
Several examples are presented to verify the accuracy and
efficiency of this new method with the exact solution. This new
iterative method developed may be suitable for teaching and
better understanding of some advanced undergraduate courses
on analytical and classical mechanics.
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INTRODUCTION

With the rapid development of linear and nonlinear science and
engineering, many analytical and numerical methods have been
developed by various researcher for solving differential equation
with non local conditions, (Cheniguel, 2012; Cheniguel, 2011;
Cheniguel & Ayadi (2010), Siddique, 2010; Rahman, 2009) . This
development was driven by the needs from application in physics,
astrophysics, experimental and mathematical physics, nuclear
charge in heavy atoms, thermodynamics and fluid mechanics.
The widely use methods for solving these equations are
perturbation method. Cheniguel & Reghious (2013) have studied
IBVP using Homotopy Perturbation method (HPM) formulated by
merging the standard homotopy with perturbation. The objectives
of these studies were mostly to determine the analytical and
numerical solutions where a considerable volume of calculations
is usually needed. In this paper, we apply the new iterative
method (NIM) by Versha & Sachin (2008) and modified new
iterative method (MNIM) by Yaseen & Samraiz (2012) to linear
and nonlinear homogeneous and inhomogeneous IBVP with non
classical condition. These new techniques minimize the amount of
calculations introduced by HPM. The general form of equation is
given as

u, =G(x,t,u,u,,u,,)
a<x<b,0<t<T

Subject to the initial condition:

u(x,0)=~f(x), 0<t<T

and the non-local boundary conditions

u(a,t):i¢(x,t)u(x,t)dx+ g,(t), 0<t<T ©)

u(b,t):_Tw(x,t)u(x,t)dx+ g,(t), O<t<T (4)

where f,go,gl,go,y/ are sufficiently smooth known

functionsand T isa given constant.

NEW ITERATIVE METHOD
Consider the following general functional equation

u(x) = f(x)+N(u(x)) 5)

where N is a nonlinear operator from a Banach space
B—B and f is a known function.

X = (Xgy Xy yeeeerens ,X,,) . Looking for a solution U of (5)
having the form

u(x) = iui (x) 6)

The nonlinear operator N can be decomposed as (7)
From equations (6) and (7), equation (5) is equivalent to

i“i =f +N(u0)+i{ N(iuj)_N(iuj)}

n=0

N(iui):N(uo)+i{ N(iuj)—N(iuj)} @

The recurrence relation are define as

U= f ©
u, = N(u,) (10)
Uy =NUg + .. U,)— N, + e +U,,) (1)
Then

Uy + e +U,)=N(Uy + .. u,) (12)
and

Su =N u) 13)
i=0 i=0
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k-1
The K - term approximate solution of (5) is given by Zi:o U;

We refer to Varsha and Jafar (2006), Bhalekar & Varsha (2006)
and Bhalekar & Varsha (2010) for details of the convergence.

The MNIM is based on including particular terms of the source
term of inhomogeneous IBVP into the integral representing

N (u) in NIM.
NUMERICAL EXAMPLES

Example 1
Consider the IBVP

U, +U, —U, —U, =4t> +12t° —4x° -12x*
O<x<1 O<t<T (14)
with the initial condition:

ux,0)=x* u(x0=0, 0<x<l O<t<T (15
and the boundary conditions:

u(o,t) :j¢(x,t)u(x,t)dt+ g, :1+%t4 (16)

4

2
h X,t) =— and f)=—
where (X, 1) = = and Go (1) =~

1
u(1,t)=jw(x,t)u(x,t)dt+gl(t)=1+%t4 (17)
0

where (X, t) —% and g, (t) = ;g

To solve this problem, equation (14) is equivalent to the following
integral equation

tt

u=x* +J‘[(Uxx U, —U, 4%+ 1217 - 4% —12x2)dtdt (18)
00

Set U, = X*and

N(u) = H(Uxx +U, —u, +4t° +12t* - 4x° —12x2)dtdt
00

Following the algorithm (9) - (11), the successive
approximations are
1
u, = N(u,) ==t> +t* (19)
5
1

u, =N(uo+u1)—N(u0)=t“—%t6—x4 (20)

U; = N(ug +u, +u,)—N(u, +uy)

(21)
L Le 2 +1(—4X3 —12x*)t* - x*
210 30 5 2
Thus, the approximate solution of Equations (14) - (17) after 31
iteration is

3
du=-— R P (-2x* —6x2)t2 —x* (22)
a 210 15 5

which is very close to exact soluion U(X,t)=x*+1t*
obtained by Cheniguel and Reghioua (2013)

Example 2

Consider the following nonlinear reaction-diffusion equation:

u —u, =u’-u’ 0<x<l 0<t<T (23)
Subject to the initial condition:

u(x,0)=e*, 0<x<l1, 0<t<T (24)

and the boundary conditions:

u(o,t) = j.go(x,t) u(x,t)dt+g,(t) =e™ (25)

where @(X,t) =1 and g, (t) = t

1
WY = [y U dt+ g, O = %el“ )
0

where (X, t) :% and g, (t) = %e‘

To solve this problem, equation (23) is equivalent to the following
integral equation

u:ex+j.(uxx+u2—uf)dt (27)
0

N(u):j'(uxx +u? —uf)dt
Set U, =€"and 0

Following the algorithm (9) — (11), the successive approximations
are

u, =N(u,)=¢e"t (28)
, =N(uy,+u)—N(u,)=et +%ext2 -e* (29

U, = N(U, +u, +u,) = N(u, +Uu,) = e*t? +%ext3 —e*—et (30)

Thus, the approximate solution of Egs. (23)-(26) after 31 iteration
is
2 3
Dy, _—e t3+2et2+et (31)

i=0

X+t

which is very close to exact solution U(X,t) =e™" obtained

by Cheniguel & Reghioua (2013)

Example 3
Consider the following nonlinear reaction-diffusion equation:

_1(2 2 2 )
U= & XU+ YUy, + 2%,
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O<x,y,2<1, O<t<T (32)

Subject to the initial condition:
u(x,y,z,0) = x*y?z%, 0<x,y,z<1 0<t<T (33

and the boundary conditions:
111

U(Oyy,Z,t):”J'u(x,y,z,t)dxdydz+91=ie‘, g,=0 (34)
000 27
T 1 1 1. (35
u@y,z t)=”£u(x, y,z,t)dxdydz+gZ=Ee‘+§t, gz=Et
111 1 . 1
u(x,O,zt):!!!u(x,y,z,t)dxdydz+g3:E(e +1), g3:E (36)
111 1 1 38
u(x,l,z,t):!.([_([u(x,y,z,t)dxdydz+94:E(e‘+3), g4:5 (38)
111 1 1 1 (39)
,y,0,t) = .Y, Z,t)dxdyd =—e'+>, gy ==
ux v 00 =] [ulx 2.0 dxdydz+ g, = e+ 5. 9=

5 5

To solve this problem, equation (32) is equivalent to the following
integral equation

111
u(x, y.Lt) =J'”u(x, y, z,t)dxdydz + g, =%e‘ +1t, 9s _1; (o)
000

t
u :x2y222+_[%(x2uXx +y2uw+zzuzz)dt (41)
0

2,2

Set U, = X*y?z%and

t
N(u) = .[%(xzuxx +y°u,, + zzuzz) d . Following
0

the algorithm (9) - (11), the successive approximations are
u, = N(u,) = x’y*z°t (42)
u, = N(u, +u,) - N(u,) :%xzyzzzt2 +x2y2t—xy?zt (43)
U; =N(u, +u, +u,)—N(u, +u,) =
(44)

1
Zx2y222%% 4 x2y?2%% — x2y2zt

Thus, the approximate solution of Equations (32)—(40) after 34
iteration is

2,,252

3
>y :%xzyzzz'[3+gxzyzzzt2 + X2yt —x2y?z? (49)
i=0

which is very close to exact solution
u(x, y,z,t) = xy’z°e" obtained by Cheniguel &
Reghioua (2013)

Example 4

Consider the IBVP

ug=(,), 0<x<1, O<t<T (44)

with the initial condition:

u(x,0) = u (x0)=0, 0<x<1, 0<t<T (49

_1
@+ x)

and the boundary conditions:

u(0,1) = j(p(x,t)u(x,t)du g, (t) =1+%t )

where @(X,t) =1 and g,(t) = %

1
5
1t) = ,t ,t)dt t)=1+—t (47)
u(,t) !l//(x YU dt+g,(0) =1+

1 7
where (X, t) == and g, (t) = —

4 8
To solve this problem, equation (44) is equivalent to the following
integral equation

tt
(1+L)()2+J'J'(u‘lux)X dtdt (48)
00

u=
1 tt
SetUy = ——— and N (U) = ”(u‘lux)X dtdt.
(L+x) 20
Following the algorithm (9) — (11), the successive approximations
are

t2
Ul = N (UO) = W (49)
2 41
u, =N(u, +u,)—N(u,) = Loxy —(1+ T (50)
1

U; =N(Uy+U, +U,)— Ny +u,)=- (51)

(1+x)?
Thus, the approximate solution of Equations (44) - (47) after 31
iteration is

Zs"u. I S (52)

< @+xf @+x)

which is very close to exact soluton U(X,t) = i
@+ x)°

obtained by Cheniguel & Reghioua (2013)
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RESULTS

Table 1: Pointwise error obtained between NIM results and exact
solutions in Example 1

X Va5 | My U gpys Uy U, — Uy
J-iterates
00,0000 |0 0 0 0
0.1,01,0.1 | 0.000001 | 0.000001 | 0.000001 0
02,0202 | 0000064 | 0.000064 | 0.000064 0
03,0303 | 0.000731 | 0.000731 | 0.000731 0
040404 | 0004112 | 0.004112 | 0.004112 0
05,0505 | 0.015687 | 0.015687 | 0.015687 0
06,0606 | 0046842 | 0.046842 | 0046842 0
07,0707 | 0118120 | 0118120 | 0118117 3.0E-06
08,0808 | 0263194 | 0.263194 | 0263188 6.0E-06
09,0909 | 0533571 | 0533571 | 0533558 1.3E-05
10,101.0 | 1.004008 | 1.004008 | 1.003983 25E-05

Table 4: Pointwise error obtained between NIM results and exact
solutions in Example 4

h=t h=t
10 250
X, i, U ey Uyny 1, — Uy
J-iterates

00 | 256E-10 | -192E-3 | 4.09E-13 2 5E-10
0.1 | 0000100 | -92E-5 0.000100 0
0.2 | 0001600 | 0.001584 | 0.001600 0
0.3 | 0.008100 | 0.007908 | 0.008100 0
04 | 0025617 | 0.025408 | 0.025617 0
05 | 0062500 | 0.062308 | 0.062528 2 8E-05
06 | 0129600 | 0.129410 | 0.129641 4 1E-05
07 | 0240100 | 0.239910 | 0.240158 5.8E-05
08 | 0409600 | 0.409410 | 0.409677 7.7E-05
09 | 0656100 | 0.655910 | 0.656201 1.0E-05
10 | 1.000000 | 0999981 | 1.000128 1.2E-05

Table 2: Pointwise error obtained between NIM results and exact

solutions in Example 2

nol opo L

10 250
X; U, U ypyg Uy U, — Uy,

3-terates

0.0 1.004008 | 1.004009 1.003983 2 5E-05
01 1.108600 | 1.109600 1.109573 27E05
02 1.226268 | 1.226300 1226268 0
03 1.355269 | 1.355301 1.365236 3.3E-05
04 1497803 | 1.497807 1497768 3.5E-05
05 1655329 | 1.655302 1.665289 4 0E-05
06 1828421 | 1.829405 1829378 9 2E-05
07 2021823 | 2.021801 2021775 4 8E-05
08 2234460 | 2.234500 2234407 53E05
09 2469461 | 2469503 2469402 5.9E-05
10 2729176 | 2.729206 2729111 6.5E-05

Table 3: Pointwise error obtained between NIM results and exact

solutions in Example 3

h

X:i’ ht:
10

1

250

hoLl po L
10 250
x, | u, Uppys Uy e — 1]
3-iterates
0.0 | 1.000001 | 1.000000 | 0.99%968 3.3E-05
01 | 0826459 | 0.826450 | 0.826419 4 0E-05
0.2 | 0694455 | 0694442 | 0694422 3.3E-05
03 | 0591725 | 0591723 | 0591697 2.8E-05
04 | 0510212 | 0510200 | 0510187 2.5E-05
05 | 0444451 | 0444444 | 0444430 2.1E-05
0.6 | 0390631 | 0390631 | 0.390612 1.9E-05
0.7 | 0346026 | 0346022 | 0.346009 1.7E-05
0.8 | 0308646 | 0308641 | 0308632 1.4E-05
09 | 0277012 | 0277013 | 0.276999 1.3E-05
1.0 | 0.250004 | 0.250010 | 0.249992 1.2E-05
Conclusion

In this paper, we applied the new iterative method by Versha &
Sachin (2008) and modified new iterative method (MNIM) by
Yaseen & Samraiz (2012) for solving linear and nonlinear initial
boundary value problem (IBVP) with non local conditions. The
method is applied directly without using linearization,
discretization, perturbation or restrictive assumption in
comparison with other existing methods. The exact and
approximate solutions were obtained by using the initial
conditions only. The results as shown in the tables and graphs
illustrate the stability and convergence of the method even at third
iteration for IBVP. Thus we conclude the method used in this
paper can be considered as an efficient alternative for solving
IBVP with non-local conditions.
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