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ABSTRACT  
In this paper, a new iterative method to solve linear and nonlinear 
initial boundary value problem (IBVP) with non local conditions 
was developed. The new method is an elegant combination of 
traditional variational iteration and the decomposition methods. 
Several examples are presented to verify the accuracy and 
efficiency of this new method with the exact solution. This new 
iterative method developed may be suitable for teaching and 
better understanding of some advanced undergraduate courses 
on analytical and classical mechanics.  
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INTRODUCTION 
With the rapid development of linear and nonlinear science and 
engineering, many analytical and numerical methods have been 
developed by various researcher for solving differential equation 
with non local conditions, (Cheniguel, 2012; Cheniguel, 2011; 
Cheniguel & Ayadi  (2010), Siddique, 2010; Rahman, 2009) . This 
development was driven by the needs from application in physics, 
astrophysics, experimental and mathematical physics, nuclear 
charge in heavy atoms, thermodynamics and fluid mechanics.  
The widely use methods for solving these equations are 
perturbation method. Cheniguel & Reghious (2013) have studied 
IBVP using Homotopy Perturbation method (HPM) formulated by 
merging the standard homotopy with perturbation. The objectives 
of these studies were mostly to determine the analytical and 
numerical solutions where a considerable volume of calculations 
is usually needed. In this paper, we apply the new iterative 
method (NIM) by Versha & Sachin (2008) and modified new 
iterative method (MNIM) by Yaseen & Samraiz (2012) to linear 
and nonlinear homogeneous and inhomogeneous IBVP with non 
classical condition. These new techniques minimize the amount of 
calculations introduced by HPM. The general form of equation is 
given as  
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where ,,,, 10 ggf  are sufficiently smooth known 

functions and T  is a given constant. 
 
NEW ITERATIVE METHOD  
Consider the following general functional equation  
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where N  is a nonlinear operator from a Banach space 

BB   and f  is a known function. 
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The nonlinear operator N can be decomposed as (7) 

From equations (6) and (7), equation (5) is equivalent to 
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The recurrence relation are define as  
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The k - term approximate solution of (5) is given by 
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.We refer to Varsha and Jafar (2006), Bhalekar & Varsha (2006) 
and Bhalekar & Varsha (2010) for details of the convergence. 
The MNIM is based on including particular terms of the source 
term of inhomogeneous IBVP into the integral representing 

)(uN  in NIM.  

 
NUMERICAL EXAMPLES 
 
Example 1 
Consider the IBVP 
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To solve this problem, equation (14) is equivalent to the following 
integral equation 
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Thus, the approximate solution of Equations (14) - (17) after 3rd 
iteration is  
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which is very close to exact solution 
44),( txtxu   

obtained by Cheniguel and Reghioua (2013) 
 
Example 2 
Consider the following nonlinear reaction-diffusion equation: 
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To solve this problem, equation (23) is equivalent to the following 
integral equation 
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Thus, the approximate solution of Eqs. (23)–(26) after 3rd iteration 
is  
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Example 3 
Consider the following nonlinear reaction-diffusion equation: 
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Subject to the initial condition: 
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To solve this problem, equation (32) is equivalent to the following 
integral equation 
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Thus, the approximate solution of Equations (32)–(40) after 3rd 
iteration is  
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which is very close to exact solution 
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Example 4 
Consider the IBVP 
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To solve this problem, equation (44) is equivalent to the following 
integral equation 
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Thus, the approximate solution of Equations (44) - (47) after 3rd 
iteration is  
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RESULTS 
 
Table 1: Pointwise error obtained between NIM results and exact 
solutions in Example 1 
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Table 2: Pointwise error obtained between NIM results and exact 
solutions in Example 2 

250

1
,

10

1
 tx hh  

 
 
Table 3: Pointwise error obtained between NIM results and exact 
solutions in Example 3 

250

1
,

10

1
 tx hh  

 
Table 4: Pointwise error obtained between NIM results and exact 
solutions in Example 4 
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Conclusion 
In this paper, we applied the new iterative method by Versha & 
Sachin (2008) and modified new iterative method (MNIM) by 
Yaseen & Samraiz (2012) for solving linear and nonlinear initial 
boundary value problem (IBVP) with non local conditions. The 
method is applied directly without using linearization, 
discretization, perturbation or restrictive assumption in 
comparison with other existing methods. The exact and 
approximate solutions were obtained by using the initial 
conditions only. The results as shown in the tables and graphs 
illustrate the stability and convergence of the method even at third 
iteration for IBVP.  Thus we conclude the method used in this 
paper can be considered as an efficient alternative for solving 
IBVP with non-local conditions. 
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