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ABSTRACT  
This paper explores the method of Pade approximation to solve a 
system of heat equation; The Pade method of solving PDEs is a 
well-established method because of its added advantage of 
naturally increasing the domain of convergence of truncated 
power series. The solution of the heat equation has been directly 
expressed as a rational power series of the independent variable 
known as the Pade approximant. Attempt is made to solve the 
heat equation and obtain solutions in terms of their exponential 
matrix. A test on the stability of the solutions via conventional 
numerical procedures through some form of John Neumann 
stability method confirmed the scheme to be 𝐿0 − 𝑠𝑡𝑎𝑏𝑙𝑒 and 

therefore produced solutions that are well behaved.  
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INTRODUCTION 
Partial differential equations (PDEs) form the basis of very many 
mathematical models of physical, chemical and biological 
phenomena, and more recently their use has spread into 
economics, financial forecasting, image processing and other 
fields. To investigate the predictions of PDE models of such 
phenomena it is often necessary to approximate their solution 
numerically, commonly in combination with the analysis of simple 
special cases; while in some of the recent instances the numerical 
models play an almost independent role.  
 
This paper is concerned with the solutions of Heat Equation using 
finite difference method and pade approximation. The Pade 
approximation deals with the construction of rational fraction with 
a numerator of degree N and denominator of degree M so that the 
Taylor series expansion agrees with the original function up to the 
term of order N+M. The obtained rational fraction is known as the 
Pade approximant of the original function. The coefficients of the 
rational fraction representing the function under consideration are 
obtained by comparison with known coefficients of the Taylor 
expansion of the original function itself. This was done explicitly 
for the first time by Johann Heinrich Lambert; see Mulhouse 
(1777) and Lambert (1758) or by means of continued fractions as 
presented by Joseph & Louis (1813), Lagrange (1776). 
 
The one dimensional Heat equation is the model for consideration 
in this paper, it is given by: 
 
 𝜕𝑡𝑢(𝑥, 𝑡) =𝛼𝜕𝑥𝑥𝑢(𝑥, 𝑡),     0 ≤ 𝑥 ≤ 𝐿,      𝑡 ≥ 0            (1) 

 
where 𝑢 = 𝑢(𝑥, 𝑡)  is the dependent variable, and 𝛼 is a 

constant coefficient. Equation (1) is a model of transient heat 
conduction in a slab of material with thickness L. The domain of 
the solution is a semi-infinite strip of width L that continues 

indefinitely in time. The material property 𝛼 is the thermal 

diffusivity. In a practical computation, the solution is obtained only 
for a finite time, say 𝑡𝑚𝑎𝑥. Solution to Equation (1) requires 

specification of boundary conditions at x = 0 and x = L, and initial 
conditions at t = 0. Subject to boundary and initial conditions: 
𝑢(0, 𝑡) = 𝑢0; 𝑢(𝐿, 𝑡) = 𝑢𝐿; 𝑢(𝑥, 0) = 𝑓0(𝑥)                      (2) 

  
Other boundary conditions, e.g. gradient (Neumann) or mixed 
conditions, can be specified. To keep the presentation as simple 
as possible, only the conditions in (2) are considered. See 
[Cooper, 1998; Fletcher, 1988; Golub & James, 1993; Hoffman, 
1992; Morton & Mayer, 1994; Williams, 1992] for more exposition 
on general description of heat equations. 
 
PRELIMINARIES 
 
Finite Difference Method and Pade Approximation. The finite 
difference method is one of several techniques for obtaining 
numerical solutions to Equation (1). In all numerical solutions the 
continuous partial differential equation (PDE) is replaced with a 
discrete approximation. In this context the word "discrete" means 
that the numerical solution is known only at a finite number of 
points in the physical domain. The number of those points can be 
selected by the user of the numerical method. In general, 
increasing the number of points not only increases the resolution 
(i.e., detail), but also the accuracy of the numerical solution. The 
discrete approximation results in a set of algebraic equations that 
are evaluated (or solved) for the values of the discrete unknowns.  
The mesh is the set of locations where the discrete solution is 
computed. These points are called nodes, and if one were to draw 
lines between adjacent nodes in the domain the resulting image 
would resemble a net or mesh. Two key parameters of the mesh 
are ∆𝑥, the local distance between adjacent points in space, and 
∆𝑡, the local distance between adjacent time steps. For the 

simple examples considered in this project ∆𝑥  and ∆𝑡 are 

uniform throughout the mesh. The core idea of the finite-
difference method is to replace continuous derivatives with so-
called difference formulas that involve only the discrete values 
associated with positions on the mesh. In this project, we develop 
a handful of difference formulae to solve heat equation. Applying 
the finite-difference method to a differential equation involves 
replacing all derivatives with difference formulas. In the heat 
equation there are derivatives with respect to time, and 
derivatives with respect to space. Using different combinations of 
mesh points in the difference formulas results in difference 
schemes. In the limit as the mesh spacing (∆𝑥 and ∆𝑡) go to 

zero, the numerical solution obtained with any useful scheme will 
approach the true solution to the original differential equation. 
However, the rate at which the numerical solution approaches the 
true solution varies with the scheme. In addition, there are some 

F
u

ll 
L

en
g

th
 R

es
ea

rc
h

 A
rt

ic
le

 

44 

http://www.scienceworldjournal.org/


Science World Journal Vol. 14(No 4) 2019 
www.scienceworldjournal.org 
ISSN 1597-6343 
Published by Faculty of Science, Kaduna State University 

 

 

Solving 1-Dimensional Diffusion Process by Pade Approximation 

 

practically useful schemes that can fail to yield a solution for bad 
combinations of ∆𝑥 and ∆𝑡.  
  
The basic idea of the numerical approach to solving differential 
equations is to replace the derivatives in the heat equation by 
difference quotients and consider the relationships between u at 
(x, t) and its neighbours a distance ∆𝑥  apart and at a time ∆𝑡 
later.  
 
1. Forward Difference in Time 
𝑢(𝑥,𝑡+∆𝑡)−𝑢(𝑥,𝑡)

∆𝑡
=

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
+ 𝑂(∆𝑡)                                       (3) 

Where  𝑂(∆𝑡) is the truncation of higher order derivatives upon 

performing a Taylor series expansion with 𝑢(𝑥, 𝑡 +
∆𝑡) 𝑎𝑏𝑜𝑢𝑡 ∆𝑡 
 
2. Central Difference Space: 
𝑢(𝑥+∆𝑥,𝑡)−2𝑢(𝑥,𝑡)+𝑢(𝑥−∆𝑥,𝑡)

∆𝑥2
=

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
+  𝑂(∆𝑥)              (4) 

 
By rewriting the heat equation in its discretized form using the 
expressions above and rearranging terms, one obtains: 

𝑢(𝑥, 𝑡 + ∆𝑡) = 𝑢(𝑥, 𝑡) + 𝛼2
∆𝑡

∆𝑥2
(𝑢(𝑥 + ∆𝑥, 𝑡) −

2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ∆𝑥, 𝑡))                      (5)                              

Hence, given the values of u at three adjacent points 𝑥 +
𝛿𝑥, 𝑥, 𝑎𝑛𝑑 𝑥 − 𝛿𝑥  at a time 𝑡 one can calculate an 

approximated value of 𝑢 at 𝑥 at a later time 𝑡 + ∆𝑡, this is a 

standard numerical exercise.  
We introduce next the pade approximation which helps to give the 
best approximation of a function by its rational presentation in a 
given order. In this technique, the approximant power series is in 
concord with the power series of the function being approximated. 
Since pade approximation provides a more accurate 
approximation of a function beyond the capacity of a truncated 
Taylor series, this method works fine where Taylor series fails to 
converge. Therefore, pade approximation is a preferred choice in 
this paper to strengthen the use of finite difference method for our 
numerical approximation of the diffusion equation. 
 
 PADE SCHEME FOR DIFFUSION EQUATION 
We write the rational function: 

𝑅(𝑥) =
∑ 𝑎𝑗𝑥

𝑗𝑀
𝑗=0

1+∑ 𝑏𝑘𝑥
𝑘𝑁

𝑘=1

=
𝑃𝑀

𝑄𝑁
                                                   (6) 

       
𝑤ℎ𝑒𝑟𝑒 𝑅(𝑥) 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑝𝑎𝑑𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑛𝑡 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 (𝑀 +
𝑁) 𝑡𝑜 𝑒𝑥. By comparing coefficients with Taylor series of 𝑒𝑥 , we 

give (2,1) pade approximant as follows: 

𝑅(𝑥) =
1+

1

3
𝑥

1−
2

3
𝑥+

1

6
𝑥2

.                                                                 (7) 

This agrees with the function of interest to the highest possible 
order prescribed. 
 

Now, for convenience, we could write equation (5) as: 
𝑑𝑢

𝑑𝑡
=

1

(∆𝑥)2
⌊𝑢(𝑥 + ∆𝑥, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ∆𝑥, 𝑡)⌋.      (8)                                

We subdivide the interval 0 ≤ 𝑥 ≤ 𝐿 in N equal subintervals by 

the grid lines 𝑥𝑖 = 𝑖∆𝑥 𝑓𝑜𝑟 𝑖 = 1,… , 𝑁 𝑤ℎ𝑒𝑟𝑒 𝑁. ∆𝑥 = 𝐿. 
We compute (8) for every mesh point to obtain approximate 
solutions 𝑉𝑖(t) for the solutions 𝑢𝑖(t) from a system of (N-1) 

ordinary differential equations: 
𝑑𝑉𝑖(𝑡)

𝑑𝑡
=

1

(∆𝑥)2
{𝑉𝑖−1(𝑡) − 2𝑉𝑖(𝑡) + 𝑉𝑖+1(𝑡)}; where 𝑖 =

1,… , 𝑁 − 1.                                    (9) 

The system (9) is reduced to the following ODE thus: 
𝑑𝑉(𝑡)

𝑑𝑡
− 𝐴𝑉(𝑡) = 𝑏;                (10) 

 
𝑤ℎ𝑒𝑟𝑒  

𝐴 =
1

(∆𝑥)2

(

 
 

−2 1                           
1
⋱

−2
⋮

1   
⋱  

  
1
 

−2
1

1
−2 )

 
 

 

 

and 𝑏 = (
𝑉(0)
⋮
𝑉𝑁

) are given boundary conditions. 

From (10) 

 𝑉(𝑡) = −𝑏𝐴−1 + 𝑐𝑒𝐴𝑡                                                           (11) 

𝑉(0) = 𝑓0(x)= = −𝑏𝐴−1 + 𝑐 ⟹ 𝑐 = 𝑓0(0) + 𝑏𝐴
−1 which 

yields 

𝑉(𝑡) = −𝑏𝐴−1 + (𝑓0(0) + 𝑏𝐴
−1)𝑒𝐴𝑡.                               (12)                                                                                     

 Since the solution is computed at every mesh point we have: 

𝑉(𝑡 + 𝑘) = −𝑏𝐴−1 + (𝑓0(0) + 𝑏𝐴
−1)𝑒𝐴(𝑡+𝑝); which 

simplifies to 

𝑉(𝑡 + 𝑘) = −𝑏𝐴−1 + (𝑏𝐴−1 + 𝑉(𝑡))𝑒𝐴𝑝.           (13) 

Now, we consider, for simplicity, a situation where b=0 so that 
(13) gives: 

𝑉(𝑡 + 𝑘) = 𝑉(𝑡)𝑒𝐴𝑝;                                     (14) 
        Next, we recall (7) and substitute into (14) to get: 

         𝑉(𝑡 + 𝑘) =
1+

1

3
𝐴𝑝

1−
2

3
𝐴𝑝+

1

6
(𝐴𝑘)2

𝑉(𝑡)               (15) 

 where  𝑒𝐴𝑝 =
1+

1

3
𝐴𝑝

1−
2

3
𝐴𝑝+

1

6
(𝐴𝑝)2

. 

We write 1 +
1

3
𝐴𝑝 explicitly as: 

1 +
1

3
𝐴𝑝 = [

1 ⋯  
 1 ⋮

0 ⋯
⋱ 0
 1

] +
1

3
𝑝

[
 
 
 
 
−2 1  
1 −2 1                
⋮
 
 

⋱
 
 

⋱
1 −2 1
 1 −2 ]

 
 
 
 

 

and 
 
 

 
 

1 −
2

3
𝐴𝑘 +

1

6
(𝐴𝑘)2 = [

1 ⋯  
 1 ⋮

0 ⋯
⋱ 0
 1

] −
2

3
𝑝

[
 
 
 
 
−2 1  
1 −2 1                
⋮
 
 

⋱
 
 

⋱
1 −2 1
 1 −2 ]

 
 
 
 

+ +
1

6
𝑝2

[
 
 
 
 
−2 1  
1 −2 1                
⋮
 
 

⋱
 
 

⋱
1 −2 1
 1 −2 ]

 
 
 
 
2

          (16) 

 
Using that 
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[
 
 
 
 
−2 1  
1 −2 1                
⋮
 
 

⋱
 
 

⋱
1 −2 1
 1 −2 ]

 
 
 
 
2

=

[
 
 
 
 
 
 
 
 
5 −4 1
−4 6 −4
1 −4 6

   
1   
−4 1  

   
   
   

⋮ ⋱ ⋱
   
0 0 0

⋱ ⋱ ⋱
   
   

⋱ ⋱ ⋱
   
   

0 0 0
0 0 0
0 0 0

0 1 −4
0 0 1
0 0 0

6 −4 1
−4 6 −4
1 −4 5 ]

 
 
 
 
 
 
 
 

 

so that (15) becomes: 
 

𝑉(𝑡 + 𝑝) =
[
 
 
 
 
 1 −

2

3
𝑝

1

3
𝑝                         

1

3
𝑝 1 −

2

3
𝑝

1

3
𝑝            

⋮ ⋱
⋱

1

3
𝑝 1 −

2

3
𝑝]
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 1 +

4

3
𝑝 +

5

6
𝑝2

−
2

3
(𝑝 + 𝑝2)

1

6
𝑝2

−
2

3
(𝑝 + 𝑝2)

1 +
4

3
𝑝 + 𝑝2

−
2

3
(𝑝 + 𝑝2)

1

6
𝑝2

−
2

3
(𝑝 + 𝑝2)

1 +
4

3
𝑝 + 𝑝2

 
1

6
𝑝2

−
2

3
(𝑝 + 𝑝2)

 
 

1

6
𝑝2

 
 
 

 
 
 

 
 
 

 
 
 

⋮
 
 

⋱
 
 

⋱
 
 

⋱
 
 

⋱
 
 

⋱
 
 

⋱
 
 

⋱
 
 

⋱
 
 

 
 
 

 
 
 

 
 
 

 

 
 

1

6
𝑝2

 
 

−
2

3
(𝑝 + 𝑝2)

 
 

1 +
4

3
𝑝 +

5

6
𝑝2]
 
 
 
 
 
 
 
 
 
 

𝑉(𝑡) 

 
 
We write, 
 

[
 
 
 
 
 
 
 
 
 
 
 
 1 +

4

3
𝑝 +

5

6
𝑝2

−
2

3
(𝑝 + 𝑝2)

1

6
𝑝2

−
2

3
(𝑝 + 𝑝2)

1 +
4

3
𝑝 + 𝑝2

−
2

3
(𝑝 + 𝑝2)

1

6
𝑝2

−
2

3
(𝑝 + 𝑝2)

1 +
4

3
𝑝 + 𝑝2

 
1

6
𝑝2

−
2

3
(𝑝 + 𝑝2)

 
 

1

6
𝑝2

 
 
 

 
 
 

 
 
 

 
 
 

⋮
 
 

⋱
 
 

⋱
 
 

⋱
 
 

⋱
 
 

⋱
 
 

⋱
 
 

⋱
 
 

⋱
 
 

 
 
 

 
 
 

 
 
 

 

 
 

1

6
𝑝2

 
 

−
2

3
(𝑝 + 𝑝2)

 
 

1 +
4

3
𝑝 +

5

6
𝑝2]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑉1,𝑗+1
𝑉2,𝑗+1
𝑉3,𝑗+1
𝑉3,𝑗+1
  
⋮ 
 

𝑉𝑁−4,𝑗+1
𝑉𝑁−3,𝑗+1
𝑉𝑁−2,𝑗+1
𝑉𝑁−1,𝑗+1]

 
 
 
 
 
 
 
 
 
 
 
 

= 

=

[
 
 
 
 
 1 −

2

3
𝑝

1

3
𝑝                         

1

3
𝑝 1 −

2

3
𝑝

1

3
𝑝            

⋮ ⋱
⋱

1

3
𝑝 1 −

2

3
𝑝 ]
 
 
 
 
 

[
 
 
 
 
 
 
𝑉1,𝑗
𝑉2,𝑗
⋮
⋮ 

𝑉𝑁−2,𝑗
𝑉𝑁−1,𝑗]

 
 
 
 
 
 

.; 

 
 
 
This gives the following scheme: 
 
 

  
1

6
𝑝2𝑉𝑖−2,𝑗+1 −

2

3
(𝑝2 + 𝑝)𝑉𝑖−1,𝑗+1 + 

+(𝑝2 +
4

3
𝑝 + 1)𝑉𝑖,𝑗+1-

2

3
(𝑝2 + 𝑝)𝑉𝑖+1,𝑗+1+

1

6
𝑝2𝑉𝑖+2,𝑗+1=

1

3
𝑝𝑉𝑖−1,𝑗 + (1 −

2

3
𝑝)𝑉𝑖,𝑗 +

1

3
𝑝𝑉𝑖+1,𝑗 . 

46 

http://www.scienceworldjournal.org/


Science World Journal Vol. 14(No 4) 2019 
www.scienceworldjournal.org 
ISSN 1597-6343 
Published by Faculty of Science, Kaduna State University 

 

 

Solving 1-Dimensional Diffusion Process by Pade Approximation 

 

Now, it is left to be seen whether the scheme above displays any 
form of stability i.e. whether or not a small perturbation of the 
initial data leads to only small changes on the solution or changes 
on initial data would result to significant changes on the solution. 
The next theorem answers this important question. 
 
STABILITY TEST OF THE SCHEME 
It is important to check that the scheme is stable before any 
attempt to search for solution; an unstable scheme cannot 
produce reasonable solution that converges to the exact solution. 
It is imperative to check that a small perturbation of the initial data 
would lead to only a small change in the solution; it need be also 
emphasized here that testing stability of the scheme is of greater 
importance to obtaining a reasonable solution in an explicit 
numerical computation. The following results are obtained for our 
scheme: 
 
Theorem 1: 

The following Pade approximant 𝑅(𝑥) =
1+

1

3
𝑥

1−
2

3
𝑥+

1

6
𝑥2

 is such that 

|R(x)|<1 and that lim
𝑥→∞

𝑅(𝑥) = 0. 

Obviously, the 𝐿0 stability holds true. 

 
Theorem 2 

If sin2
𝑝𝜋

2𝐿
= 𝐾 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 {

𝑟 <
1−√13𝐾

4𝐾
𝑜𝑟

𝑟 >
1+√13𝐾

4𝐾

      then the scheme is 

stable. 
 
Proof: 
Suppose that 𝛼𝑡,𝑡 = 1,2, …𝑁 −

1 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴, 𝑠𝑜  
 

𝛼𝑡 = −
4

ℎ2
sin2

𝑝𝜋

2𝐿
 and 𝛾𝑡,𝑡 = 1,2, …𝑁 − 1 are the 

eigenvalues of the matrix 𝑒(𝑝𝐴)=
1+

1

3
𝐴𝑝

1−
2

3
𝐴𝑝+

1

6
(𝐴𝑝)2

. Hence,  

𝛾𝑡  =
1+

1

3
𝐴𝛼𝑡  

1−
2

3
𝐴𝛼𝑡+

1

6
(𝐴𝛼𝑡,)

2
; plugging 𝛼𝑡 = −

4

ℎ2
sin2

𝑝𝜋

2𝐿
 yields: 

 

𝛾𝑡  =
1+

1

3
𝐴(−

4

ℎ2
sin2

𝑝𝜋

2𝐿
)

1−
2

3
𝐴(−

4

ℎ2
sin2

𝑝𝜋

2𝐿
)+

1

6
(𝐴(−

4

ℎ2
sin2

𝑝𝜋

2𝐿
))2

, where r=
𝐴

ℎ2
. Should we 

claim that 𝛾𝑡   𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒,𝑤𝑒 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑖𝑙𝑦 𝑠ℎ𝑜𝑢𝑙𝑑 𝑜𝑏𝑡𝑎𝑖𝑛 

−1 <
1+

1

3
𝐴(−

4

ℎ2
sin2

𝑝𝜋

2𝐿
)

1−
2

3
𝐴(−

4

ℎ2
sin2

𝑝𝜋

2𝐿
)+

1

6
(𝐴(−

4

ℎ2
sin2

𝑝𝜋

2𝐿
))
2 < 1. This is possible if 

we put  

sin2
𝑝𝜋

2𝐿
= 𝐾 𝑤ℎ𝑒𝑟𝑒 

{
 
 

 
 𝑟 <

1 − √13𝐾

4𝐾
𝑜𝑟

𝑟 >
1 + √13𝐾

4𝐾

 

 
 
 
 
 

Conclusion 
The diffusion equation is solved by the Pade approximation of the 
exponential matrix; we presented a robust scheme that is tested 
to be 𝐿0 𝑠𝑡𝑎𝑏𝑙𝑒 so should have a solution that is well behaved 

(Converges to the exact solution) should the scheme proceed to 
execution using any numerical method. The deployment of Pade 
approximation for solving the diffusion equation is a preferred 
choice because rational approximants increases the domain of 
convergence than the traditional Taylor series. 
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