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ABSTRACT

A new preconditioner of the type P =1+S+S’ which
generalizes the preconditioners of Evans et al. (2001) and
Ndanusa and Adeboye (2012) is proposed. Theoretical
investigation of the new preconditoned AOR method is
undertaken by advancement of some convergence theorems with
well-known procedures. In order to validate the results of
theoretical convergence analysis, numerical investigation with
sample problems is done. Numerical results of comparison of the
proposed preconditioner with some available preconditioners in
literature are presented. The results show that convergence of the
proposed preconditioned AOR method is faster than that of the
unpreconditioned AOR as well as the preconditioned methods in
current use.

Keywords: Accelerated Overrelaxation Method, Preconditioner,
Convergence, L — matrix, spectral radius

INTRODUCTION
Recent advancements in Physics, numerical weather forecasting,
fluid dynamics, oil and gas resource development, image
processing, optimization, simulated nuclear explosion and so on
are modeled as partial differential equations, which are eventually
transformed into large sparse linear systems of equations through
finite element or finite difference discretization. Typically, the large
sparse linear system of equations can be expressed as
Ax=b @

where A = (a;;) € R™™ is a nonsingular matrix with
nonvanishing diagonal elements, and where x € R™ and b €
R™ are respectively vectors of unknown and preassigned
variables. For some time, a great many research has been
devoted to iterative solution methods for approximating the
solution of (1). Recall the usual splitting of the coefficient matrix
A€ Rnxn‘
A=Dy—Ly— Uy (2)
where D, = diag(aq1,azz, -+, any) is the diagonal part of A,
—L, and —U, its strictly lower and strictly upper parts,
respectively. If a; # 0 for all i € N (i = 1,2,---,n), then we
can multiply the linear system (1) by D, ™2, arising therefrom the
splitting of the matrix

A=I1-L-U 3)
where / =D, 'D,, L =D, *L,and U = D, U,.
Suppose A =M — N is a regular splitting of the coefficient
matrix A = (a;;), then the basic iterative method for the solution
of system (1) can be expressed in the form
x®+D) = M-INx®) + M~1p, k=012, (4
where M~1N is known as the iteration matrix of the method. The

iteration (4) is known to converge to the exact solution x = A~1h
for any initial vector value x(® € R™ if and only if the spectral
radius p(M~1N) < 1. The smaller the spectral radius the faster
the convergence speed of the iterative method. The classical
AOR iterative method given in Hadjidimos (1978) for solving (1) is
defined as
2D = £ x0 + (I —rL) wh
with the iteration matrix £, ,, given as
Lyy=U-7rL)"H1 - w)+ (w—71)L + U] (6)
where w and r are real parameters with w # 0.
Besides the iteration matrix and parameters involved in the
iterative methods, convergence is also dependent on the nature
of the linear systems of equations themselves. Therefore, in order
to improve efficiency of the iterative method (4), the linear system
(1) is transformed into the equivalent preconditioned system

PAx = Pb @)
where P is a nonsingular matrix called a preconditioner. Different
preconditioners have been advanced by several researchers for
the preconditioned system (7). Evans et al. (2001), Li et al.
(2007), Wu et al. (2007), Wu and Huang (2007), Yun and Kim
(2008), Wang and Song (2009), Darvishi et al. (2011), Li (2011),
Ndanusa and Adeboye (2012), Huang et al. (2016), Behzadi
(2019) and Wang (2019) are some instances of application of the
preconditioned system (7) to improve the convergence of the
AOR method. The preconditioner P of Evans et al. (2001) is
described by P = I + S’, where

’ —Qin
5= (Si"z B { 0 otherwise ®)
P =1+ S is another preconditioner proposed by Ndanusa and
Adedboye (2012), with

—a;, i=2,,n
S=(sy) =i+, i=1-,n-1 (©)
§ otherwise 00

Using the idea of previous works, we consider the preconditioner
P =1+, where

k=012 (5

—Qin
& _ & ' _ —aiq, i=2’...’n
$=5+S"=1 a1, i=1met1 (10)
0 otherwise

The present work is aimed at investigating the modified
precondiioner P =1+ S applied to AOR iteration, through
theoretical proofs, corroborated by numerical verifications, in
order to improve upon the rate of convergence of the method.

MATERIALS AND METHODS
Preliminaries
For convenience, some notations, definitions and lemmas that will
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be used in the succeeding sections are briefly explained.
Suppose A = (a;;) € R™™ is a real matrix. The notation
diag(A) implies the n x n diagonal matrix coinciding in its
diagonal with a;;. For a square matrix A, p(A4) denotes the
spectral radius of A.

Definition 1 (Young, (1971)). A matrix A = (a;;);j=1,2,-.n IS
an L —matrixifa; > 0and a;; < 0 (i # j).

Definition 2 (Saad (2000)). An L —matrix A = (a;;) where A is
nonsingular and A=t > 0 is called an M —matrix.

Definition 3 (Saad (2000)). A matrix A = (a;;)ij=1,2..n IS
called nonnegative, nonpositive and positive if a;; = 0, a;; <
0and a;; > 0, respectively.

Definition 4 (Dehghan and Hajarian (2009). The decomposition

of a real matrix A € R™™ into the form A = M — N, where M 1= a5, — Ay 0 0 0
is a nonsingular matrix is called a splitting of A. Such splitting is 0 1- Qa1 ~ Gyl ™ 0 O
called : : . :
e Regularif M~ >0and N = 0 0 0 R St URIRT PRy PP PR
e Nonnegative if M~IN > 0 0 0 0 1= ayp
e  Convergentif p(M~IN) < 1 R
e M —splitting if M is a nonsingular M —matrix and —L
N > 0. [ 0 0 0 0 0]
—Qy3031 0 : 0 0
Definition 5 (Saad (2000)). A = (a;;) is called an irreducible = : T31012 T T034042 +asz . ; :
matrix if the directed graph associated to A is strongly connected. “n-1nln1 ; ' 0 0
L 0 —QAnp1a12 + anz -+ —=0p1Q1 -1 T Appn-101
Lemma 1 (Varga (1962)). Let A = 0 be an irreducible n x n ang
matrix. Then, -U
i. A has a positive real eigenvalue equal to its spectral [0~ 31nn2=A12823 — A1nlns + G137 ~128zn
radius. 0 0 —0a21013 '."_a21a1n - 6.123a3n + azn
i.  Top(A) there corresponds an eigenvector x > 0. = 0 . o
ii. p(A) increases when any entry of A increases. 8 g 0 a"—érlaln

iv. p(A) is a simple eigenvalue of A.

Lemma 2 (Gunawardena et al. (1991)). Let A be a nonnegative
matrix. Then
i. If ax < Ax for some nonnegative vector x,x # 0,
then a < p(4).
i. If Ax < Bx for some positive vector x, then p(4) <
B. Moreover, if A is irreducible and if 0 # ax <
Ax < Bx for some nonnegative vector x, then a <
p(4) < B and x is a positive vector.

Lemma 3 (Varga (1962)). Suppose A=M — N is an M —
splitting of A. Then the splitting is convergent iff A is a
nonsingular M — matrix.

Lemma 4 (Varga (1962)). Let A= M; —N; = M, — N, be
two regular splittings of A, where A™* > 0. If N, > N; > 0,
then
1> p(M;™'N,) = p(M;7'Ny) > 0.
If moreover, A=* > 0 and if N, > N, > 0, equality excluded
(meaning that neither Ny nor N, — Ny is the null matrix), then
1> p(M;™'N,) > p(M,™'N,) > 0.

A New Modified Preconditioned Accelerated Overrelaxation

The Preconditioned AOR iterative method
Application of the preconditioner P to system (1) results in the
preconditioned linear system
Ax=b
where A = (I +S)Aand b = (I + $)b with
0 —aq, 0 —aln
—ay, 0 —dy3 0
§ — |_a31 0 0 - :

(11

: : P T ap—1n |
l-ays 0 0 = o |
A usual splitting of the preconditioned coefficient matrix A of (11)
into its diagonal (D), strictly lower (—L) and strictly upper (—0)
components is obtained thus

A=D-L-T
with the following resultant representations

It is observed that D =1+D;, L=L+Ls+L, T=U+
Us+ Uy, S=—L¢—Us, and —SL—SU =D, — L, — Uy;
where D;, —L,, and — U, are the diagonal, strictly lower and
strictly upper parts of —SL — SU respectively; and —L¢ and
—Ug are the strictly lower and strictly upper parts of $
respectively. Application of the AOR method to the preconditioned
linear system (11) results in the corresponding preconditioned
AOR method whose iterative matrix is defined by
Lrw=0D0-rD)[1-w)D+(w—-7rL+w0l] (12)
Theorem 1 Let £, and £, be the AOR iterative
matrices corresponding to the linear systems (1) and (11)
respectively. Suppose 0 < r < w <1 (w #0,r # 1), Aisan
ireducible L — matrix with 0 < ay,an,1 <1, 0<aq;ai +
A i410i41; <1 (@E=2(1)n—-1) and 0 < agpa +
Ainany < 1. Then L, , and f:m, are nonnegative and
irreducible matrices.

PROOF: Since A4 is an L — matrix, L = 0 and U > 0. Thus
(I=rL) ™t =T4+rL+7r2L2 + - +r" 11 20, And,
from (6), we have

Lry=U—-7rL) 1A - o)+ (w—-1)L+ wU]

(AOR) Iterative
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=[I+7L+7r2L*+ -
+ [ - w)l + (w —7)L
+ wU]
=(1-w)l+(w-r)L+wU+rL(1—w)l
+rL{(w — 1)L + U]
+(r2L2 4 -+ D[ — ) + (w = 7))L+ wU]
=1-wl+[(w—7r)L+7rL(1 - w)]+ U
+rL{(w — 1)L + wU]
+(@2L2 4 -+ Y[ - ) + (w — 7))L+ U]
=1-w)+w@d-r)L+0U+T
where
T =rL{(w —1)L + wU]
+@ 2L + -+ I X [(1 = 0)] + (0 — 1)L+ wU]
> 0.
It is clear that (1—w)+w(l—-7)L+wU=0.
Consequently, L,,=0-w)+w(l-7r)L+wU+T=
0. Hence, L, ,, is a nonnegative matrix. Since A =1 — L — U is
ireducible, so also is (1 — w)I + w(1 — r)L + wU since the
coefficients of I, L, and U are different from zero and less than 1
in absolute value. Hence, £, ,, is an irreducible matrix.

Now, consider the preconditioned AOR iterative matrix
Lyw={D-rD)[(1-w)D + (0 —7)L + wT]
Equation (7) ensures that the L — matrix structure of A is
preserved in A. Since A is an L — matrix, it is evident that L >
0and T = 0. Also, by the conditions of Theorem 1, it is easy to

getthat D > 0. Thus,

Lro=[DU=7D7D)] " [(1 - @)D + (0 — I + wT]
= —rDL)"'D7H(1 - w)D + (w — 1)L + 0]
= —rD'L) (1 - w) + (0w —7)D'L + wD 0]
=[1+7D L+ r2(DL)" + -+ 1 (DTL)T]
x[(1 - )+ (w—-71)D"'L + wD~10]
=1-w)l+w@-r)DL+wDW0+T
where
T =rD'L[(w — )DL + wD 0]
+ [rz(ﬁ—li)z + o
+rn (D)
x[(1—w) 4+ (w—-7)D"'L+wD 0] =0
Using similar arguments, it is conclusive that £, is also

nonnegative and irreducible. O
The following equalities are essential to prove Theorem 2.

At U=U+Us+U

A2: D=D-S5S=1+D,

A3: L=L=L+Ls+1L,

Ad: D-L=D-SS§-1L

Theorem 2 Let Lyo=U—-7rL)7HA - )+

(w-7L+wU] and ZL,,={D-rL)[(1-w)D+
(w — )L + wU] be the AOR and preconditioned AOR iterative
matrices respectively. Suppose 0 < r<w <1(w # 0,7 #
1), A is an irreducible L — matrix with 0 < ay,a,; <1, 0<
aq;Aiq1 + Aji+1Ai+1,i <1 (l = 2(1)1’)_ - 1) and 0<
Q12021 + Ainan, < 1.Then

(i) p({:r,w) <p(Lrw) ifp(Lr,w) <1
(ii) p(ﬁr,w) =pLrw), ifp(['r,w) =1
(i) p(Lrw) > p(Lrw) fp(Lre) > 1.

PROOF: It is established, from Theorem 1, that £, ,, and ﬁr‘w
are nonnegative and irreducible matrices. Therefore, suppose
n = p(L, ), then by Lemma 1 there exists a positive vector y,
such that

Loy =ny
Equivalently,

J—-rL)MA -+ (w—7)L + wUly =ny
[A-—w)+ (w—7)L+ U]l =n(—7L)
wl=M+w—-DI+ @ —-w-—-nr)L (13)

Therefore, for this y > 0,
Lyoy—ny=(D- rZ)_l[(l —w)D+ (w-7)L+ wﬁ]y
—ny
=(D-rL) " [A =)D+ (w-1L+wly
—n(D-rL) " (D-rL)y
=(D-rL) [0 - w)D + (@ -1 + wl
—n(D -rL)ly
From the identity,
77(5 - rZ) =n(1-7)D+ nr(ﬁ - Z).
it implies
Lyoy—ny=(D- rZ)_l[(l —w)D+ (w -1+l
—n(1 =)D —nr(D - D)y
= (D -rL) '[D - wD + oL —rL + w0 — 7D + nrD
—nrD +nri]y
= (D —+L) '[D—7D —nD +nrD —wD +rD —yrD
+ ol —rL+nrl + w0]y
=(D- rZ)_l[(l -mM@A-r)D—(w—-r+nr)(D-1L)
+ w0y
By employing A1 to A4, we obtain
= (D -rL) [(1 -0 - +Dy)
—(w=r+nr)(I+Dy)
+(—r+n)L+Ls+ L) +wU
+Us+ U]y
= (]3 - rZ)_l[(l —w—1n){I+D)+ (w—r+nr)L
+ Lg +L)+wlU+ Ug + Ul)]y
= (LA) —rZ)_l[(l —w-—-mMI+wl—-0r—w-—-nr)L
+(Q—-—w—-—mD+ (w—1r+nr)(Ls
+ L) + w(Us + U]y
From (13),
= (D —rL) " [A—mDy — (D — Ly — Uy)
B +w(ls+Ug) —r(1 —m)(Ls + L]y
=(D—rL) "[(n—1D(=Dy) + (= D(rls +7Ly)
- w(—fL - S‘U) +w(=]y
=(D- ri)_l[(n —1)(=Dy + rLg +rLy) + wSL + wSU
- wSly
=D —rL) [ — 1(=Dy + rLs + L) + (1 — w)$
+ wSU - $(I — wl)]y
= (E - rZ)_l[(n —1)(=D; +rLs +1L) + (1 — w)$
+ wSL —rSL + wSU — SI +7SL)]y
= (E — rZ)_l[(n —1)(=D; +rLs +1L) + (1 — w)$
+ (@ —7)SL+ wSU — S —rL)]y
= (5 — rZ)_l[(r] —1)(=D; +rLg +71L;) + ${(1 — w)
+(w =1L+ wU}=S$U -rL)]y
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And from (13),
Q-+ (w—-—7r)L+wU=n(—-71)L (14)
Loy —=my=(D=rL) " [(1 = D(=Ds + 7L +7L;)
+nSU —rL)—SU—rL)]y
= (D—rL) '[( — 1)(=Dy +rLs +7L) + (1
- 1DSU —rL)]y
By employing (14),
=m-1(D- TZ)_l[—Dl +rls+7rly
+[(1 = w)$ + (w — r)SL + wSU] /9]y
= [t = D/n)(D = rL)" [=nDy +ruls + 7Ly
+(1-w)S+ (w—r)SL+ wSU]y

It is obvious that —nD; +rnl¢+rnly =0, provided
Agq+10q+1,1 T aq1 =0 (g = 2,,n—1) a?d nray, —
1-w)ay,; 20, 1-w)§=0, (w—7r)SL=0 and
wSU = 0. Suppose D —rL is a spliting of some matrix X.
From observation, D is an M —matrix and rL > 0.
Consequently, D — rL is an M — splitting of X. Also, rD 'L,
being a strictly lower triangular matrix, has its eigenvalues lying
on its main diagonal, and they are all zeros. Therefore,
p(rD~'L) = 0 < 1. And by Lemma 3, X is a nonsingular M —
matrix. consequently, X~! = (D — rZ)_l > 0. We are now
ready to deduce (i) — (iii), by employing Lemma 2 thus.

(1) i n<1, then £,,y—ny <0 but not equal to 0.
Therefore, L£,.,y <7ny. By Lemma 2, we obtain
p(ﬁr,w) <n = P(Lr,w)- R

(2)  Ifnp=1,then L, ,y—ny = 0. Therefore, L, .,y = ny.
By Lemma 2, we obtain p(£,.,) =1 = p(Lrs).

() fn>1, then £,,y—ny =0 but not equal to 0.
Therefore, L£,.,y =7ny. By Lemma 2, we obtain

p(ﬁr,w) >n= p(Lr,w)-
O

Following Kohno et al. (1997), a more general case of the
preconditioner introduced in this work is advanced by introducing
the preconditioner P = I + §(a), where

0 -ma, 0 - —Qin
—ay, 0 — a3 0
$(a) =] —axn 0 0
: H : T 0pn—10n-1n
—Qpny 0 0 0
for the preconditioned linear system
A()x = b(a) (15)

Correspondingly, the iteration matrix of the preconditioned AOR
method takes the form
Lrw(@) = (D(@) = rL(@)™*[(1 - w)D(a)
+(w—7)L(a) + a)U(a)]

Theorem 3 Let £, ., and f;r,w («) be the AOR iterative
matrices corresponding to the linear systems (1) and (15)
respectively. Suppose 0 < r < w <1 (w # 0,r # 1), Aisan
ireducible L — matrix with 0 < apa,an <1, 0<
aq;Aiq1 + AiAjjy1Qi41, <1 (l = 2(1)71 - 1) and 0<
@1012051 + Ajpany < 1.Then £, and £, ,, are nonnegative
and irreducible matrices.

Theorem 4 Let Lry=U-rL) A —-w)+
(w—7r)L+wU] and L, ,(a) = (D(a)—rL(@) (1 -

w)D(a) + (w —r)L(a) + wU(a)] be the AOR and
preconditioned AOR iterative matrices respectively. Suppose 0 <
r<w<1(w=#0,r=+1), Ais an irreducible L — matrix
with 0 < apainan; <1, 0<aga; + ;0410541 <
1({(=21)n—1)and 0 < aya,,a,1 + a;na,1 < 1. Then

(i p(Lr.0(@) < p(Lrw). i p(Lrw) <1;
(ii) p({:'r,w(a)) = P(L'r,w)v ifp(L'r,w) =1
(i) p(Lrw(@) > p(Lyw), it p(Lr) > 1.

Proofs of Theorems 3 and 4 follow the same pattern as in the
proofs of Theorems 1 and 2. Thus omitted.

Theorem 5 let0<ry<n,<w<1landA™!=0.
Under the hypothesis of Theorem 2, then 1> p(Z,, ,) >
p(Lr,0)>0,f0<n<1.

PROOF: Let
i A=Wy =Rpo

where M, , = (1/w)(D —rL) and N,, = (1/0)[(1 -
w)D + (w — 1)L + wU]. Suppose also that 4 = M, , —
Ny, and 4 =M, ,, — N, are two regular splittings of 4,
where Mrl,(u = (1/("-))(ﬁ - rlz)v er,(u =1/0)[1 -
w)D + (w —r)L+wl], My, = (1/w)(D—1,L) and
er,w = (1/w)[(1 —w)D + (w — 1)L + w0]. Since 0 <
rn <r,<w<1, then N, , =N, , >0, equality excluded,
then in the light of Lemma 4, we have that

1> p(£y.0) > p(£r,0) > 0
O
Consequently, the following theorem applies.

Theorem 6 let0<ry<n,<w<1landA!=0.
Under the hypothesis of Theorem 4, then 1 > p(Z,, ,(a)) >
p(Ly, (@) >0,if0<n<1.

When w =r in (6), the AOR method reduces to the SOR
method. As a consequence, the following corollaries are easily
obtained.

Corollary 1 Let £, = - wl) ({1 - w)] + wU]
and £, = (D — wl) ' [(1 — w)D + w0] be the SOR and
preconditioned SOR iterative matrices respectively. Suppose 0 <
w <1, Ais anirreducible L — matrix with 0 < ay,a,1 <1,
0< aq;Aiq + Aii+1Ai+1,i <1 (l = 2(1)71 - 1) and 0<
Q12027 + Ainany < 1.Then

(i p(Ly) < p(Ly) ifp(Ly) <1
(ii) P(Le) = pLo) ifp(Ley) = 1;
(iif p(Lw) > p(Ly),ifp(Ly) > 1.
Corollary 2 Let £, = (I — wl) 1 [(1 — 0)] + wU]

and £,,(a) = (D(a) — wL(@))™[(1 — w)D(a) + wU(a)]
be the AOR and preconditioned AOR iterative matrices
respectively. Suppose 0 < w <1, A is an irreducible L —
matrix  with 0 < apazan <1, 0 < aya; +
@i i410i41; <1 (@ =21)n—-1) and 0 < aja;,ap; +
Ainan, < 1.Then

(i) p(Lo(@) < p(La).ifp(Le) <1;
(il p(Lo(@) = p(Lo).ifp(Le) = 1;
(i) p(Lo(@) > p(Ly), if p(Ly) > 1.
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Corollary 3 let 0<w;<w, <1 and A71=>0.
Under the hypothesis of Corollary 1, then 1> p(Z,,) >
p(Ls,,)>0,if0<n <1

Corollary 4 let 0<w;<w, <1 and A71=>0.
Under the hypothesis of Corollary 2, then 1> p(£,,, (a)) >
p(f:a,z(a)) >0,f0<n<1.

RESULTS AND DISCUSSION

Numerical Examples

Numerical examples are presented to verify the theorems. These
calculations were performed using Maple 2019 software package.
Let the coefficient matrix A of the linear system (1) be given by

1 -1/6 -1/7 -1/8 —-1/6 —-1/7

-1/8 1 -1/6 -1/7 —-1/8 —-1/6

4= -1/6 —-1/8 1 -1/6 —-1/7 —-1/8

| -1/7 -1/6 -1/8 1 -1/6 —-1/7

-1/8 -1/7 -1/6 —-1/8 1 -1/6
-1/6 -1/8 —-1/7 —-1/6 —-1/8 1

The corresponding iterative matrices of the matrix A for various
iteration processes discussed here are computed alongside their
spectral radii. The results are presented in Tables 1 - 4. In the
following tables, £,.,,(1) denote the iterative matrix in Ndanusa
and Adeboye (2012) under the conditions of Theorem 2 and
L, ,(2) denote the iterative matrix in Wang (2019) under the
conditions of Theorem 2.

Table 1: Numerical validation of Theorem 2

w T p(L.) PlLro(D)  p£ru(2)) p(L.)
095 085 04820339009 04827830342 05172376634 06205255277
090 080 05268521180 05276840729 05606287531 (6518574112
080 070 06059612644 06068707293 06364965183  0.7083014149
070 065 066562871216 06661423662 06921471056 07516743194
060 050 07352606039 07361121449 07584515241  0.8026767336
050 040 07897395742 07904979556  0.8090612095  0.8429614522
040 030 08391415217 08397793239  0.8545524533  (.8796743773
030 020 08843014020 08847984990 0.8958008930 09133536720
020 010 09258516830 09261931550 09334669460  0.9444202400
010 005 09636211849 09637940570 09674142960 09727210830

Table 1 displays the results of comparing the spectral radii of the
proposed preconditioned method, for varied values of w and r,
with those of other preconditioned methods in literature. It reveals
that the rate of convergence of the proposed method is faster
than those of Ndanusa and Adeboye (2012) and Wang (2019),
even as all the preconditioned methods proved faster than the
unpreconditioned AOR.

Table 2: Numerical validation of Theorem 4

« @ 1 p(Lre®) p(La) p(£a)
(141352 085 085 02933086209 04820339009  0.6205255277
213112 080 080 04654973618 05268521180 0.6518574112
(1121,1,1) 080 070 05911674768 0.6059612644  0.7083014149
21,2368 010 065 06177208139 06652871216  0.7516743194

In Table 2, the effect of parameterization of the proposed
preconditioned method is evident in the convergence rate of the
parameterized method being faster than that of the
unparameterized preconditioned method.

A New Modified Preconditioned Accelerated Overrelaxation

Table 3: Numerical validation of Theorem 5

@ LS 2 P(Erw) P{Erj,w)
085 080 085 04820339009 05005661270
085 070 075 05171135993 05320790053
095 060 065 05457468061 0.5583268321
085 050 0b5 05699791445 05808291307

Results of Table 3 affirms that for two regular splitting of the
preconditioned matrix A = M, o, — Ny, o = My, — Ny, 4
with Ny o = Ny, =0 (since 0 <7 <7, < < 1), then
1> p(Ly,0) > p(Lr,0) > 0.

Table 4: Numerical validation of Corollary 3

Wy w2 p{fwz) P{fwx)

010 015 09432965130  0.9629258430
040 050 07793837566  0.8317916620
060 065 06891951876  0.7210485253
080 090 04892856621  0.5794241055

Similar to Table 3, Table 4 seeks to validate Corollary 3, where
there exists two regular splitting of the preconditioned matrix A =
M, -N, =M, —N,, such that N, >N, >0, then
1> p(Ly,) > p(Ls,) > 0.

Conclusion

In this study, we investigated the modified preconditioned AOR
(SOR) iterative method in order to discover the most effective
method for accelerating its convergence speed towards solution
of linear systems. Results of numerical experiments undertaken to
validate the proposed convergence theorems, demonstrated the
effectiveness of the new method by not only improving the
convergence rate of the AOR method, but also in its
outperformance among  three  preconditioned  methods
considered.
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