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ABSTRACT  
Alfred studied on the steady Magneto hydrodynamic (MHD) 
Poiseuille flow between two infinite parallel porous plates in an 
inclined magnetic field. The case of steady Poiseuille flow without 
oscillatory to extend the existing work. The study examines the 
unsteady MHD Poiseuille oscillatory flow between the two infinite 
parallel porous plates in a magnetic field. The motion of two 
dimensional unsteady oscillatory flow of viscous, electrically, 
conducting, incompressible fluid flowing between two infinite 
parallel plates at constant pressure gradient was examined. The 
analytical expression for the fluid velocity obtained was expressed 
in terms of Hartmann number. The effects of the magnetic 
inclinations, Hartmann number, suction/injection and pressure 
gradient to the velocity are presented graphically. It was 
discovered that the increase in the Hartmann number and 
suction/injection leads to the increase in the velocity.  
 
Keywords: Magneto-hydrodynamic, Hartmann number, 
Pressure, Velocity 
 
INTRODUCTION 
Magneto hydrodynamic (MHD) is the study of the magnetic 
properties of electrically conducting fluid. Example of such 
magneto fluids includes plasma, liquid metals and salt or 
electrolytes. The word MHD is derived from Magneto-meaning 
magnetic field, Hydro-meaning water, and Dynamics meaning 
movement. The subject MHD was initiated by Swedish Electrical 
engineer Alfven in (1942). If an electrically conducting fluid is 
placed in a constant magnetic field, the motion of the fluid induces 
current which create forces on the fluid. The production of these 
currents leads to their use in the designing of electricity 
generation and production among other devices of MHD 
generators. Hassanien and Mansour (1990) discussed the 
magnetic flow through a porous medium between two infinite 
parallel plates. 
 
In (2013) Alfred studied on the steady MHD Poiseuille flow 
between two infinite parallel porous plates in an inclined magnetic 
field. Alfred studied the case of steady Poiseuille flow without 
oscillatory to extend the work which examined the unsteady MHD 
Poiseuille oscillatory flow between two infinite parallel porous 
plates in a magnetic field. 
 
Shercliff (1956) studied the steady motion of an electrically 
conducting fluid in pipes under transverse magnetic fields. Drake 
(1965) considered the flow in a channel due to periodic pressure 
gradient and solved the resulting equation by separation of 

variables method.  Singh and Ram (1978) studied laminar flow of 
an electrically conducting fluid through a channel in the presence 
of a transvers magnetic field under the influence of a periodic 
pressure gradient and solved the resulting differential equation by 
the method of Laplace transformation. Furthermore, Ram (1984) 
analyzed half effect on heat and mass transfer flow through 
porous media. 
 
The magnetic flow through a porous medium between two infinite 
parallel plates was discussed by Hassanien and Mansour in 
(1990). Shimmomura (1991) discussed magneto hydrodynamics 
turbulent channel flow under a uniform transvers magnetic field. 
Singh (1993) considered steady magneto hydrodynamics fluid 
flow between two finite parallel plates. Al-Hadhrami (2003) 
determined the flow through horizontal channels of porous 
material and obtained the velocity expressions in terms of the 
Reynolds number. Ganesh (2007) studied the unsteady MHD 
stokes flow of a viscous fluid between two parallel porous plates. 
K D Singh and Reena Pathak (2010) discussed an analysis of an 
oscillatory rotary MHD Poiseuille flow with injection/suction and 
hall current.  
 
Idowu and Olabode (2014) Studied unsteady MHD Poiseuille flow 
between two infinite parallel plates in an inclined magnetic field 
with heat transfer. Kuiry and Surya Bahadur (2015) discussed the 
effect of an inclined magnetic field on steady Poiseuille flow 
between two parallel porous plates in (2014). Gital and 
Abdulhameed (2013) studied mixed convection flow for unsteady 
oscillatory MHD second grade fluid in a porous channel with heat 
generation. It is assumed that the walls of the channel are porous 
so that the injection/suction may take place. Umavathi et al (2009) 
studied the problem of unsteady oscillatory flow and heat transfer 
in a horizontal composite porous medium. The flow is modelled 
using the Darcy –Brinkman equation. This present paper studied 
the slip effect on MHD oscillatory flow of fluid in a porous medium 
with heat and mass transfer and chemical reaction. The 
temperatures prescribed at the plates are uniform and 
asymmetric. 
 
Oscillatory flow is a periodic flow that oscillates around a zero 
value. Oscillatory flow is a single swing or movement in one 
direction of an oscillating body. They are generally used in the 
literature to describe the flows in which velocity or pressure or 
both depend on time. Oscillatory flow is always important for it 
has many practical applications for example in the aerodynamics 
of helicopter rotor or in fluttering airfoil and also in a variety of bio 
–engineering problems. 
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MATERIALS AND METHODS 
The governing and formation of MHD phenomena can simply be 
described as follows: Consider an electrically conducting fluid 
moving with velocity V. At right angles to this flow, we apply a 
magnetic field, the field strength of which is represented by the 
vector B. It shall be assumed that the fluid has attained steady 
state condition i.e. flow variables are independent of the time t. 
This condition is purely for analytic reasons so that no 
macroscopic charge density is being built up at any place in the 
system as well as all currents are constant in time. Because of the 
interaction of the two fields, namely, velocity and magnetic field, 
an electric field vector denoted E is induced at right angles to both 
V and B. This electric field is given by 
𝐸 = 𝑉 × 𝐵         (1) 
 
Where ×  stands for cross product of two vectors V and B. If 
assuming the conducting fluid is isotropic in spite of the magnetic 
field, we can denote the electrical conductivity of the fluid by a 
scalar. By Ohm’s law, the density of the current induced in the 
conducting fluid denoted J is given by  
𝐽 = 𝜎(𝑉 × 𝐵)                                                                (2) 
 
Simultaneously occurring with the induced current is the Lorentz 
force F given by 
𝐹 = 𝐽 × 𝐵                                                            (3) 
 
This force conducting occurs because, as an electric generator, 
the conducting fluid cuts the lines of magnetic field. The vector F 
is the vector cross product of both J and B and is a vector 
perpendicular to the plane of both J and B. This induced force is 
parallel to V but in opposite direction. Laminar flow through a 
channel under uniform transverse magnetic field is important 
because of some of the uses such as the MHD generator, MHD 
pump and electromagnetic flow meter. 
Considering an unsteady electrically conducting, viscous, 
incompressible fluid moving between two infinite parallel plates 
both kept at a constant distance 2h between them. Both plates of 
the channel are fixed with no motion. This is plane Poiseuille flow 
driven by a constant pressure gradient. The equations of motion 
are the continuity equation 
 
 
𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0           (4) 

And the navier-strokes’ equations 

𝜕𝑢

𝜕𝑡
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2
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𝜕𝑥
+𝑣

𝜕𝑣

𝜕𝑦
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1


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


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𝜕

2
𝑣
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𝜕

2
𝑣

𝜕𝑦
2
)    (6)       

Where 𝜌 is the fluid density 𝐹𝐵𝑥, 𝐹𝐵𝑦, 𝑢, 𝑣 are the components of 

the body force per unit mass of the fluid and the velocity in x and 
y directions respectively 𝜇 is the fluid viscosity and 𝜌 is the 
pressure acting on the fluid. This flow is practically horizontal, in 
which we choose the axis of the channel formed by the two plates 
as the x-axis and assume that the flow is in this direction. Thus 
v=0 and u=u(y). Also assume that the flow is one dimensional. 
Also v=0 implies that the continuity equation collapse to 

         
𝜕𝑢

𝜕𝑡
 + 
𝜕𝑢

𝜕𝑥
 = 0 

Hence, equations (5) and (6) becomes 

𝜕𝑢

𝜕𝑡
=

1


 𝑓𝐵𝑥 − 

1


𝜕𝑝

𝜕𝑥
 + 

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𝜕

2
𝑢

𝜕𝑦
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               (7) 

 

0 = 
1


 𝑓𝐵𝑥 − 

1


𝜕𝑝

𝜕𝑦
                     (8) 

Let the pressure gradient be   − 
𝜕𝑝   

𝜕𝑥
  = S  

Now since p = p(𝑋), 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (2.8) collapses and          
𝜕𝑝

𝜕𝑥
=  

𝑑𝑝

𝑑𝑥
= −𝑆                                                               (9) 

 
Combining (7) and (9) we find 

     0 =
1


 + 𝑓𝐵𝑥 −

𝑆


 + 



𝜕

2
𝑢

𝜕𝑦
2

   (10) 

The X – component of the Lorentz force in equation (10) can be 
expressed as follows 

𝜕𝑢

𝜕𝑡
 + 

1


 = 



 [(𝑢𝑖𝑋𝑗)𝑋𝑗𝐵0] = − 

𝐵0



 𝑢𝑖.   (11) 

Where 
0B is the Magnetic field strength component assumed to 

be applied to a direction perpendicular to fluid motion. Equation 
(11) is achieved after using expressions of force and induced 
current in equations (2) and (3) together with the fact, that for any 
three vectors A,B and C  it can be shown that 
(AXB)XC=(B.A)C−(B.C)A. In equation (11) i and j refer to unit 
rectangular vectors i and j. Hence equation (2.10) becomes; 

         
𝜕𝑢

𝜕𝑡
 + 
𝑑

2
𝑢

𝑑𝑦
2

 − 



2

u𝐵0 + 
𝑆


 = 0    (12) 

     
Next is to investigate how magnetic inclination to the velocity 
influences the fluid flow. This behaviour is modelled by 
introducing an angle of inclination to the third term of equation 
(12) as follows;    

𝜕𝑢

𝜕𝑡
 + 
𝑑

2
𝑢

𝑑𝑦
2

 −



𝐵0

2
usin

2
𝜃 + 

𝑆


 = 0                              (13) 

Where 𝜃 is the angle between V and B  in equation (13) it can be 
assumed that the two fields are inclined to each other at an angle 

𝜃 lying in the range 0 ≤ 𝜃 ≤
𝜋

2
and the equation is solved subject 

to the boundary conditions 0u =  when y h=   

In order to non-dimensionalized the equation (13), the following 
non-dimensionalization quantities are introduced. 

2
* * * * *, , , ,

x y ul pl t
x y u P t

l l l



 
= = = = =    (14) 

Where  l is the characteristic length of the plate and   is the 
kinetic viscosity. Using these quantities into equation (13) and 
later dropping the asterisks the following are obtained; 
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B u

L t L y L

  


 
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
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
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+ − + =

 
            (15) 

Equation (15) may be written as 
 

2
2 2

2

u u
M u L

t y

 
+ − +

 
    (16) 

Where M = M
*
sin 𝜃  𝑎𝑛𝑑  M

*
= IB 0  √


µ

 = Ha 

Where Ha is the Hartmann number defined by 

          Ha
2

= 

( 𝐵0

2
𝐿

2
)


   

Since L and S are constants and letting c = L
2

S a constant, 
equation (16) becomes   

2

2
0

u u
C

t y

 
+ + =

 
    (17) 

Mhd fluid flow between two infinite parallel plates one of which is 
porous. Suppose 𝑉0  is a characteristic velocity moving 
perpendicular to the fluid flow at a constant given pressure 
gradient. For lower porous plate, this characteristic velocity is the 
one which will maintain an unsteady fluid flow against the suction 
and injection of the fluid in which it is moving perpendicular to the 
fluid flow. The origin is taken at the centre of the channel and the 
x, y coordinates axes are parallel and perpendicular to the 
channel walls respectively. The governing equation will be  

2

0 2

u u s u
V

t y y



 

  
+ + +

  
      (18) 

This equation was derived directly from equation (5). For injection 
of flood into the channel, 𝑉0 is taken as positive and for suction 

𝑉0is negative. Since u is a function of y and t and earlier analysis, 
equation (17) follows. This may be written as: 

2

02
0

u u u s
V

t y y



 

  
− + + =

  
   (19) 

  
The magnetic influence comes from the third term in equation 
(13). 

To model this influence in equation (19) the term(−𝑀2 𝑢 )  was 
added which yielded 

𝜕𝑢

𝜕𝑡
  − 




𝜕

2
𝑢

𝜕𝑦
2

 + 0V 𝜕𝑢

𝜕𝑦
 + uM 2

+ d  = 0 

2
2

2
0

u u u
A M u d

t y y
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+ + − + =
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  (20)      

 Where A = 
0V


 

 
METHOD OF SOLUTION 
In order to solve equation (16) and (20) closed form method of 
solution was used. 
For purely oscillation, the following was assumed. 

== ld 
i t

𝑢(𝑦, 𝑡) =  0u
(𝑦) 

𝑖𝜔𝑡
}    (21) 

     
Considering equation (16) 
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𝜕

2
𝑢

𝜕𝑦
2
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2
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2
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𝜕𝑢
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( ) iwtyiwtu 0
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( )0

i tu y 

𝜕
2
𝑢
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''
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     (22) 

 
2 2

0 0( ) (y) (y) 0i t i t i t i t

oi t u y u M u    + − + =

      (23) 

( ) ( )iwMyu −− 2

0 ( ) 2

0 −=yu
   

       
Solving for the homogenous part, i.e., complementary function 
(c.f) 

2

1 0,M L− =  

  𝑤𝑒𝑟𝑒𝐿1 = 𝑀
2 − 𝑖𝜔  

    1

2 LM =
 

    1LM =
 

   11 LM =
 ,     12 LM =

 

Therefore, ( ) 1 2

0 1 2

m y m yu y C C= +    

For particular solution 

0

0

p

p

p

U K

U

U

=


= 
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     (24) 

Putting (24) into (23) 
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2

10 L K − = −  , 

2

1

K
L


=  

Therefore, the solution is 

( ) 1 2

2

0 1 2

1

m y m yu y C C
L
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Applying the boundary condition  

0 1u at y= = 
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Where   

2

2

1

L
L
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 𝐹𝑜𝑟 𝑢 = 0 𝑎𝑛𝑑 𝑦 = −1, We have 

1 2

1 2 2

m mC C L− −+ =    (26)  

 Solving (25) and (26) simultaneously as follows;  
1 2 2

1 2 2
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From (3.6) 
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Therefore the general solution for equation (5) and (6) becomes  
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Therefore, 0 3 4( ) b bm y m y
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For the particular solution, 
𝐿𝑒𝑡 𝑈𝑝 = 𝐾2  

        
0

'
=PU

 

       
0

''
=PU

 

−=− 21KL
 

        1

2
L

K

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The general solution is  

( ) 2430
43 KCCyU
yMyM
++= 

 
Applying the boundary conditions 

              
1,0 == yu

 

       
3

30
m

C= 4

4 2

mC K+ +
 

3 4

3 4 2

m mC C K+ = −    (29) 

Similarly, 
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430 KCC
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−− 
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  3 4

3 4 2

m mC C K
− −+ = −    (30) 

  
Solving simultaneously,  

( )4 4

3 4 4 3

2

3

m m

m m m m

K
C

−

− −

− −
=

−  
3

4

2 3
4

m

m

K C
C

−

−

− −
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Therefore the solution of the equation (30) is 

( ) ( )4
3 4

3 4 2,
mm y m y i tu y y C C K = + +

 
 
RESULTS AND DISCUSSION 

 
Figure 1: Effect of Hartman Number on Velocity Profile 
 
In figure 1 the influence of velocity profile is presented where the 
Hartman number varies. It can be observed that increase in the 
Hartmann number lead to increase in velocity. Therefore, 
Hartmann number have significant impact on velocity profile of the 
distribution. 
 

 
Figure 2: Effect of Variable Suction/Injection on Velocity Profile 
 
 Figure 2 shows effect of Hartmann number on variable 
suction/injection. For every change in Hartmann number have 
impact on variable suction/injection. It was observed that increase 
in Hartmann leads to increase in variable suction/injection which 
leads to small change on velocity profile. 
 

 
 
Figure 3: Effect of Pressure gradient on velocity profile 
 
In figure 3 the gradient of pressure varies on fluid flow velocity. 
There is a steady flow from the initial up to the point (-0.85, 0.68) 
when relative variation is observed which remain throughout the 
simulation. Hence pressure gradients have significant effect on 
velocity profile. 
 

 
Figure 4: Effect Slip parameter on velocity profile 
 
From figure 4 two points are critical to velocity profile when slip 
parameter are varies. The points are (-0.75, 0.8791) and 
(0.35,1.155). In the first point convergent point for any change in 
the slip parameter is observed before dispersed and later 
reconverted at the second point.     
 
The unsteady MHD Poiseuille flow between two infinite parallel 
porous plate in a magnetic field was studied and the governing 
equation of the flow of fluid were solved using closed form 
technique, the effect of parameters is shown graphically against y 
using MATLAB. The results as shown on figures 1-4 are 
discussed based on the analysis on the graphs interpretations.  
 
In figure 1 and 2 it was concluded that velocity is influence by 
Hartmann number and suction/injection. The increase in 
Hartmann number and suction/injection increases the velocity of 
flows. In the study, the motion of two dimensional unsteady 
oscillatory flow of viscous, electrically, conducting, incompressible 
fluid flowing between two infinite parallel plates one of which is 
porous and under the influence of a transvers magnetic field and 
constant pressure gradient was examined. The lower plate was 
assumed porous while the upper plate was not. The resulting 
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governing equations of motion are solved using closed form. The 
analytical expression for the fluid velocity obtained was expressed 
in terms of Hartmann number. The effects of the magnetic 
inclinations, Hartmann number, suction/injection and pressure 
gradient to the velocity are presented graphically and discussed. 
The equation was analyzed using closed form technique and the 
effect of the pertinent parameters on the fluid flow has been 
discussed with the aid of velocity profile. 
 
Conclusion 
Magneto hydrodynamic (MHD) Poiseuille Oscillatory flow is very 
important particularly in the fields of petroleum technology for the 
flow of oil through porous rocks, in chemical engineering for the 
purification and filtration processes. The principles of this subject 
are very useful in recovering the water for drinking and irrigation 
purposes. The knowledge of flows through magnetic field is also 
useful to study the movement of natural gas and water through 
the oil reservoirs. In conclusion to the research, it was discovered 
that the increase in the Hartmann number and suction/injection 
leads to the increase in the velocity. 
 
Acknowledgement  
We acknowledge the reviewers for the suggestions and Ali S M 
department of Mathematics, Federal University Dutse for his 
words of encouragement, thank you all. 
 
REFERENCES 
Alfven, H., (1942). Existence of electromagnetic hydrodynamic 

wave: Nature, vol.150, issue 3805, pp. 405-406. 
Al-Hadhrami, A.K., Elliot, L., Ingham, M.D. and Wen,X., (2003). 

Flow through horizontal channel of porous metals: 
International Journal of Energy Research, vol.27,pp.875-889 

Alfred W. (2013). Unsteady MHD poiseuille flow between two 
infinite parallel porous plates in an inclined magnetic 
field.journal of computation and applied 
Mathematics.3(4):220-224 

Drake, D. G. (1965). On the flow in a channel due to a periodic 
pressure gradient: Quart.J. of mech. And Appl. Maths., vol. 
18,No.1. 

Ganesh, S. and Krishnambal, S. (2007). Unsteady MHD stokes 
flow of viscous fluid between two parallel porous plates: 
Journal of Applied Science vol.7, pp.374-379. 

Gital, A.Y. and Abdulhameed M. (2013). Mixed Convection Flow 
for Unsteady    Oscillatory MHD Second Grade Fluid in a 
Porous Channel with Heat generation, Int. J. Sci. Engr. Res. 
4 (9) ISSN 2229 – 5518. 

Hassanien and Mansour (1990). Magnetic flow through a porous 
medium between two infinite parallel plates. 

Idowu A. S. (2014).  Unsteady MHD poiseuille flow between two 
infinite parallel plates in an inclined magnetic field with heat 
transfer. Journal of Maths.vol.10, pp.47-53. 

Kuiry, D. R. and Surya (2015). Effect of an inclined magnetic field 
on stead poiseuille   flow    between two parallel porous 
plates. Journal of Mathematics. Vol.10,pp. 90-96. 

Ram, P. C., Singh, C.B. and Singh, U. (1984). Hall effect on heat 
and mass tramsfer          flow through porous medium: 
Astrophysics space science,100, pp.45-51 

Shercliff, J. A., (1956). Entry of conducting and n0n-conducting 
fluid in pipes: Journal of Mathematical proc. Of the 
Cambridge philosophical soc., vol.52,pp.573-583. 

Shimmomura, Y., (1991). Large eddy simultation of magneto 
hydrodynamic turbulent channel flow under uniform 
magnetic field: phys. Fluid A, Vol, No.12, Pp. 3107-3116. 

Singh, C. B. and Ram, P. C., (1978). Unsteady magneto 
hydrodynamic fluid flow through a channel: journal of 
scientific research, vol.XXXVIII, No.2. 

Singh. K. D. And Reena Pathak (2011). Analysis of an oscillatory 
rotary MHD poiseuille flow with injection/suction and hall 
current: Department of Math proc Indian natn sci. Acad 76. 
N0.4 pp. 201-207. 

Umavathi, C., Chankha, A. J., Mateen A. and Al – Mudhaf A. 
(2009). Unsteady Oscillatory Flow and Heat Transfer in a 
Horizontal Composite Porous Medium Channel, Nonlinear 
Analysis: Modeling and Control, 14 (3): 397 – 425 

61 

http://www.scienceworldjournal.org/

