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ABSTRACT  
The main purpose of this paper is to construct approximate 
analytic solutions for a time-fractional attraction Keller-Segel (TF-
AKS) chemotaxis model using the 𝑞 −homotopy analysis 

transform method (𝑞 −HATM). The obtained results and 
numerical simulations for three sets of initial data describe the 
behavior of the system. This further assert the convenience, 
computational efficiency and wide applicability of the proposed 
method even to more complex coupled systems of partial 
differential equations arising from mathematical biology.  
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INTRODUCTION 
Obtaining exact solutions of fractional differential equations 
appear to be more difficult than their classical integer-order 
counterparts. Hence, a lot of attention have been devoted to 
develop very effective semi-analytical and numerical techniques 
for finding approximate solutions to this class of problems. Some 
of these techniques include the Adomian decomposition method 
(ADM) (Momani, 2005; Momani et al., 2006), Laplace 
decomposition method (LDM) (Jafari et al., 2011; Khan et al., 
2011), Homotopy analysis method (HAM) (Liao, 1992; Liao, 2003; 
Zurigat et al., 2010), Homotopy perturbation method (HPM) 
(Momani et al., 2008) and Variational iteration method (VIM) 
(Jafari et al., 2012). Another very powerful technique is the 
𝑞 −homotopy analysis transform method (𝑞 − HATM) (Kumar 
et al., 2017; Prakasha et al., 2017; Singh et al., 2019). It 
combines the traditional 𝑞 −homotopy analysis method 

(𝑞 −HAM) due to El-Tawil and Huseen (El-Tawil et al., 2012; El-
Tawil et al., 2013) with the Laplace transform method (LTM) to 
simplify computational procedures without any need for 
discretization or restrictive assumptions. The 𝑞 −HAM extends 
the classical homotopy analysis method (HAM) by incorporating a 

parameter  𝑞 ∈ [0,
1

n
] , n ≥ 1. The presence of the term (

1

𝑛
)
𝑚

 in 

the 𝑞 −HATM solution ensures faster convergence than the 
classical HAM. The central focus of this paper is to employ the 
𝑞 −HATM to construct approximate series solutions for the 
following one-dimensional time-fractional Keller-Segel chemotaxis 
model (TF-AKS): 

{
 
 

 
 𝜕

𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
= 𝑑𝑢

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
−
𝜕

𝜕𝑥
(𝑢(𝑥, 𝑡)

𝜕𝜒(𝑣(𝑥, 𝑡))

𝜕𝑥
)

𝜕𝛼𝑣(𝑥, 𝑡)

𝜕𝑡𝛼
= 𝑑𝑣

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
− 𝛽𝑣(𝑥, 𝑡) + 𝛾𝑢(𝑥, 𝑡)

      (1) 

with associated initial conditions 
 
𝑢(𝑥, 𝑡) = 𝑢0(𝑥), 𝑣(𝑥, 𝑡) = 𝑣0(𝑥),     𝑥 ∈ 𝐼 = (𝑎, 𝑏)    (2) 
 
where 0 < 𝛼 ≤ 1 is the fractional differential parameter, 𝜕𝑢, 

𝜕𝑣, 𝛽 and 𝛾 are various positive constants of biological 

importance (see Table 1 for their definitions and values), 𝑢 =
𝑢(𝑥, 𝑡) and 𝑣 = 𝑣(𝑥, 𝑡) are unknown state variables denoting 
the density of amoebae and concentration of chemoattractive 
substance, respectively and 𝜒(𝑣(𝑥, 𝑡)) represents the signal-
dependent chemotatic sensitivity function. The chemotactic 
𝜕

𝜕𝑥
(𝑢

𝜕𝜒(𝑣(𝑥,𝑡))

𝜕𝑥
) term appearing in the first equation of (1) 

measures sensitivity of the amoebae cells to the chemical 
substance. If, for instance,𝛼 = 1 and 𝜒(𝑣) = 𝜒𝑣 with 

(𝑟𝑒𝑠𝑝. 𝜒 <  0), the system (1) reduces to the classical one-
dimensional attraction (resp. repulsion) Keller-Segel chemotaxis 
model (Keller et al., 1970) which describes  the aggregation 
dynamics of the amoeba Dictyostelium discoideum in response to 
cyclic Adenosine Monophosphate (cAMP) which mediate their 
aggregation. Generally, chemotaxis refers to the oriented motion 
of cellular species either in the direction of an attraction-type or 
away from a repulsion-type chemical signal. In biological 
processes, it accounts for cellular communication among motile 
marine organisms in their quest for mates, nutrients and survival. 
Among higher organisms, it dictates the processes of wound 
healing, pattern formation, cell-organization and positioning, 
embryogenesis, tumor cell invasion and cancer metastisis of living 
tissues. The classical Keller-Segel chemotaxis model (i.e., 
equation (1) with 𝛼 = 1) as well as several of its variant 
formulations have been extensively studied from different 
mathematical perspectives. For instance, it has been shown that 
the classical model admits globally bounded solutions in the one-
dimensional settings (Hillen et al., 2004; Yagi, 1997) whereas in 
higher dimensions a more complex dynamics arise in the sense 
that the solutions may blow up either in finite or infinite time 
(Blanchet et al., 2006; Horstmann et al., 2001; Senba et al., 
2001). Specifically, in the two-dimensional settings, it was 
conjectured that there exists a threshold value 𝑀 >  0 for which 

the model admits global solution in time if ∫𝑢0(𝑥)𝑑𝑥 < 𝑀  and 

for which blow up occurs if ∫𝑢0(𝑥)𝑑𝑥 > 𝑀 (Childress et al., 
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1984). A comprehensive review on the rich mathematical 
background concerning variant forms of the Keller-Segel 
chemotaxis model can be found in the survey articles (Hillin et al., 
2009; Murray, 2003; Perthame, 2007). 
 
 
MATERIALS AND METHODS 
 
Preliminaries 
Definition 1. (Podlubny, 1999) The Riemann-Liouville fractional 
integral of order 𝛼 > 0 of a function 𝜔 ∈ 𝐶𝜇(𝜇 ≥ −1) is 

defined as  
 𝐽𝑡
𝛼𝜔(𝑡)  

= {

1

Γ(𝛼)
∫ (𝑡 − 𝜗)𝛼−1𝜔(𝜗)𝑑𝜗,        𝛼 > 0, 𝑡 > 0,
𝑡

0

𝜔(𝑡),                                                 𝛼 = 0, 𝑡 = 0,

       (3) 

where Γ(∙) denotes the Gamma function. 
 
Definition 2. (Caputo, 1969; Miler et al., 1993; Kilbas et al., 2006) 
The fractional derivative of order 𝛼 > 0 of a function 𝜔 ∈ 𝐶−1

𝑚  in 
the sense of Caputo is defined as 
𝐷𝑡
𝛼𝜔(𝑡)  

=
1

Γ(𝑚 − 𝛼)
∫ (𝑡 − 𝜗)𝑚−𝛼−1𝜔(𝑚)(𝜗)𝑑𝜗,           
𝑡

0

(4) 

where 𝑚− 1 < 𝛼 < 𝑚 ∈ ℕ. If 𝛼 = 𝑚 ∈ ℕ, then 

𝐷𝑡
𝛼𝜔(𝑡) =

𝑑𝑚𝜔(𝑡)

𝑑𝑡𝑚
. 

 
Definition 3. . (Caputo, 1969; Kilbas et al., 2006)  The Laplace 
transform of the Caputo fractional derivative 𝐷𝑡

𝛼𝜔(𝑡)is defined 
as 
ℒ[𝐷𝑡

𝛼𝜔(𝑡)]  

= 𝑠𝛼ℒ[𝜔(𝑡)](𝑠) − ∑ 𝑠𝛼−𝑘−1𝜔(𝑘)(0+)

𝑚−1

𝑘=0

,                  (5) 

where 𝛼 > 0, 𝑚 − 1 < 𝛼 < 𝑚  and  ℒ denotes the Laplace 
transform operator. 
 
Basic solution procedure of the 𝒒 −HATM 

To demonstrate the solution procedure of the 𝑞 −HATM, we 
consider the following general nonlinear time-fractional partial 
differential equation: 
 𝐷𝑡
𝛼𝑈(𝑥, 𝑡) + ℛ𝑈(𝑥, 𝑡) + 𝑁𝑈(𝑥, 𝑡)  
= 𝑔(𝑥, 𝑡, ),    (𝛼 > 0,𝑚 − 1 < 𝛼 < 𝑚,𝑚 ∈ ℕ)             (6) 

where 𝐷𝑡
𝛼𝑈(𝑥, 𝑡) represents the Caputo fractional derivative of 

an unknown function 𝑈(𝑥, 𝑡), ℛ is a bounded linear partial 

differential operator satisfying ‖ℛ𝑈‖ ≤ 𝛿‖𝑈‖ for some 𝛿 > 0, 
𝑁 is a nonlinear partial differential operator satisfying the 

Lipschitz condition: ‖ℛ𝑈1 −ℛ𝑈2‖ ≤ 𝜘‖𝑈1 − 𝑈2‖ for some 

𝜘 > 0 and 𝑔(𝑥, 𝑡) is a nonhomogeneous term. To initiate the 

𝑞 −HATM, we first take the Laplace transform of (6) and then use 
the differentiation property (5) to get 

ℒ[𝑈(𝑥, 𝑡)] −
1

𝑠𝛼
∑ 𝑠𝛼−𝑘−1𝑈(𝑘)(𝑥, 0)

𝑚−1

𝑘=0

+
1

𝑠𝛼
(ℒ[ℛ𝑈(𝑥, 𝑡)] + ℒ[𝑁𝑈(𝑥, 𝑡)]

− ℒ[𝑔(𝑥, 𝑡)]) = 0                               (7) 
after simplification. Next, we define the nonlinear operator 

𝑁[𝜙(𝑥, 𝑡; 𝑞)] = ℒ[𝜙(𝑥, 𝑡; 𝑞)] −
1

𝑠𝛼
∑ 𝑠𝛼−𝑘−1𝜙(𝑘)(𝑥, 𝑡; 𝑞)(0+)

𝑚−1

𝑘=0 

  +
1

𝑠𝛼
(ℒ[𝜙𝑈(𝑥, 𝑡)] + ℒ[𝜙𝑈(𝑥, 𝑡)] − ℒ[𝑔(𝑥, 𝑡)])

 

(8) 

where 𝑞 ∈ [0,
1

𝑛
] , (𝑛 ≥ 1) is the embedding parameter and 

𝜙(𝑥, 𝑡; 𝑞) is an unknown real-valued function of 𝑥, 𝑡 and 𝑞. For 

a nonzero auxiliary function  𝐻(𝑥, 𝑡), a homotopy is constructed 
in the following form: 
(1 − 𝑛𝑞)ℒ[𝜙(𝑥, 𝑡; 𝑞) − 𝑈0(𝑥, 𝑡)] = ℏ𝑞𝐻(𝑥, 𝑡)𝑁𝜙(𝑥, 𝑡; 𝑞),     (9)  

where ℏ is a nonzero auxiliary parameter and 𝑈0(𝑥, 𝑡) is the 

initial assumption of 𝑈. Obviously, the following relation holds 

{
𝜙(𝑥, 𝑡; 0) = 𝑈0(𝑥, 𝑡),    𝑖𝑓 𝑞 = 0,

𝜙 (𝑥, 𝑡;
1

𝑛
) = 𝑈(𝑥, 𝑡),     𝑖𝑓 𝑞 =

1

𝑛
.
                                  (10) 

In other words, 𝜙(𝑥, 𝑡; 𝑞) varies from the initial guess 𝑈0(𝑥, 𝑡) 

to the solution 𝑈(𝑥, 𝑡) as 𝑞 varies from 0  to  
1

𝑛
 . A Taylor's series 

expansion of 𝜙(𝑥, 𝑡; 𝑞) about 𝑞 yields  

 𝜙(𝑥, 𝑡; 𝑞) = 𝑈0(𝑥, 𝑡) + ∑ 𝑈𝑚(𝑥, 𝑡)𝑞
𝑚

∞

𝑚=1

                      (11) 

where 

𝑈𝑚(𝑥, 𝑡) =  
1

𝑚!

𝜕𝑚𝜙(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|
𝑞=0

                                (12) 

For appropriate choices of the initial guess  𝑈0(𝑥, 𝑡), the auxiliary 
parameter ℏ and the auxiliary function  𝐻(𝑥, 𝑡), the series (11) 

converges at 𝑞 =
1

𝑛
 and yields a solution 

 𝑈(𝑥, 𝑡) = 𝑈0(𝑥, 𝑡) + ∑ 𝑈𝑚

∞

𝑚=1

(𝑥, 𝑡) (
1

𝑛
)
𝑚

                    (13) 

which is at least one solution of (6). Define the vectors 

𝑈⃗⃗ 𝑚(𝑥, 𝑡) = {𝑈0(𝑥, 𝑡), 𝑈1(𝑥, 𝑡), … , 𝑈𝑚(𝑥, 𝑡)}.            (14) 
Taking the derivative of (9) 𝑚 −times with respect to  𝑞, 

multiplying the result by 
1

𝑚
 and then setting  𝑞 = 0, gives the 

𝑚𝑡ℎ-order deformation equation 

ℒ[𝑈𝑚(𝑥, 𝑡) − 𝑘𝑚𝑈𝑚−1(𝑥, 𝑡)] = ℏ𝐻(𝑥, 𝑡)ℜ𝑚 ( 𝑈⃗⃗ 𝑚−1(𝑥, 𝑡))   (15)  

where 

ℜ𝑚(𝑈⃗⃗ 𝑚−1) = ℒ[𝑈𝑚−1(𝑥, 𝑡)]

−ℏ (1 −
𝑘𝑚
𝑛
)(

1

𝑠𝛼
∑ 𝑠𝛼−𝑘−1𝑈(𝑘)(𝑥, 0) +

1

𝑠𝛼
ℒ[𝑔(𝑥, 𝑡)]

𝑚−1

𝑘=0

)   

                                

+
1

𝑠𝛼
ℒ(ℜ𝑚𝑈𝑚−1 +ℋ𝑚−1)                                                        

                                                    

       (16) 

and 

  𝑘𝑚 = {
0,    𝑚 ≤ 1
𝑛,    𝑚 > 1

                                                               (17) 

In (16), ℋ𝑚 denotes the homotopy polynomial which is defined 
as 
ℋ𝑚 =  
1

𝑚!
[
𝜕𝑚𝜙(𝑥,𝑡;𝑞)

𝜕𝑞𝑚
]
𝑞=0

 𝑎𝑛𝑑 𝜙(𝑥, 𝑡; 𝑞) = 𝜙0 + 𝑞𝜙1 + 𝑞
2𝜙2 +⋯  (18)  

Applying the inverse transform to (3.10) yields the recursive 
equation 
𝑈𝑚(𝑥, 𝑡)  

= 𝑘𝑚𝑈𝑚(𝑥, 𝑡) + ℏℒ
−1[𝐻(𝑥, 𝑡)ℜ𝑚(𝑈⃗⃗ 𝑚−1(𝑥, 𝑡))]          (19) 
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Thus, by substituting (16) into (19) we get 
 

𝑈𝑚(𝑥, 𝑡) = (𝑘𝑚 + ℏ)𝑈⃗⃗ 𝑚−1(𝑥, 𝑡)    

−ℏ (1 −
𝑘𝑚

𝑛
) ℒ−1 [

1

𝑠𝛼
∑ 𝑠𝛼−𝑘−1𝑈(𝑘)(𝑥, 0) +

1

𝑠𝛼
ℒ[𝑔(𝑥, 𝑡)]𝑚−1

𝑘=0 ]
                                                                    

    +ℏℒ−1 [
1

𝑠𝛼
ℒ(ℜ𝑚𝑈𝑚−1 +ℋ𝑚−1)]

  (20)  

Finally, the approximate analytical solution of (6) is obtained by 
truncating the following series: 

 𝑈𝑚(𝑥, 𝑡) = 𝑈0(𝑥, 𝑡) + ∑ 𝑈𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

∙

∞

𝑚=1

                   (21) 

The existence of the factor (
1

𝑛
)
𝑚

 in the 𝑞 −HATM solution (21) 

allows for faster convergence than the standard HAM. Moreover, 
in the special case  𝑛 =  1, the 𝑞 −HATM reduces to the 
standard homotopy analysis transform method (HATM). 
 
𝑞 −HATM SOLUTION FOR TF-AKS MODEL 

Here, we implement the 𝑞 −HATM on the TF-AKS model (1) 
subject to the initial conditions (2). For the sake of simplicity, we 
assume a linear chemotactic sensitivity function in the sense 

that 𝜒(𝑣(𝑥, 𝑡)) = 𝑣(𝑥, 𝑡). To this end, we rewrite the system of 

equations (1) as 
 
 

 
Table 1: Model parameters description and values 

 
 
 

{
 

 
𝜕𝛼𝑢

𝜕𝑡𝛼
= 𝑑𝑢

𝜕2𝑢

𝜕𝑥2
−
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
− 𝑢

𝜕2𝑣

𝜕𝑥2
,

𝜕𝛼𝑣

𝜕𝑡𝛼
= 𝑑𝑣

𝜕2𝑣

𝜕𝑥2
− 𝛽𝑣 + 𝛾𝑢.            

                               (22) 

and apply the Laplace transform together with the differentiation 
property (5) to get 
 

{
 
 

 
 ℒ[𝑢(𝑥, 𝑡)] −

𝑢0
𝑠
+
1

𝑠𝛼
ℒ [−𝑑𝑢

𝜕2𝑢

𝜕𝑥2
+
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
+ 𝑢

𝜕2𝑣

𝜕𝑥2
] = 0

ℒ[𝑣(𝑥, 𝑡)] −
𝑣0
𝑠
+
1

𝑠𝛼
[𝑑𝑣

𝜕2𝑣

𝜕𝑥2
+ 𝛽𝑣 − 𝛾𝑢] = 0                   

       (23) 

after simplification. Next, we define the following nonlinear 
operators: 
 

{
 
 
 
 
 

 
 
 
 
 𝑁1[𝜙1(𝑥, 𝑡; 𝑞), 𝜙2(𝑥, 𝑡; 𝑞)] = ℒ[𝜙1(𝑥, 𝑡; 𝑞)] −

𝑢0(𝑥, 𝑡)

𝑠
                                                                                           

  +
1

𝑠𝛼
ℒ

[
 
 
 −𝑑𝑢

𝜕2𝜙1(𝑥, 𝑡; 𝑞)

𝜕𝑥2
+
𝜕𝜙1(𝑥, 𝑡; 𝑞)

𝜕𝑥

𝜕𝜙2(𝑥, 𝑡; 𝑞)

𝜕𝑥

+𝜙
1
(𝑥, 𝑡; 𝑞)

𝜕2𝜙2(𝑥, 𝑡; 𝑞)

𝜕𝑥2 ]
 
 
 

  

𝑁2[𝜙1(𝑥, 𝑡; 𝑞), 𝜙2(𝑥, 𝑡; 𝑞)] = ℒ[𝜙2(𝑥, 𝑡; 𝑞)] −
𝑣0(𝑥, 𝑡)

𝑠
 

                                     +
1

𝑠𝛼
ℒ [−𝑑𝑣

𝜕2𝜙2(𝑥, 𝑡; 𝑞)

𝜕𝑥2
+ 𝛽𝜙2(𝑥, 𝑡; 𝑞) − 𝛾𝜙1(𝑥, 𝑡; 𝑞)]          

 

 
The 𝑚𝑡ℎ-order deformation equations with 𝐻(𝑥, 𝑡)  =  1 are constructed as 
 

{
ℒ[𝑢𝑚(𝑥, 𝑡) − 𝑘𝑚𝑢𝑚−1(𝑥, 𝑡)] = ℏℜ𝑚

𝑢 [𝑢⃗ 𝑚−1, 𝑣 𝑚−1],

ℒ[𝑣𝑚(𝑥, 𝑡) − 𝑘𝑚𝑣𝑚−1(𝑥, 𝑡)] = ℏℜ𝑚
𝑣 [𝑢⃗ 𝑚−1, 𝑣 𝑚−1],

                                         (24) 

where 

{
 
 
 
 

 
 
 
 ℜ𝑚

𝑢 [𝑢⃗ 𝑚−1, 𝑣 𝑚−1] = ℒ[𝑢𝑚(𝑥, 𝑡)] − (1 −
𝑘𝑚
𝑛
)
𝑢0
𝑠
                                                                            

                                                 +
1

𝑠𝛼
ℒ [−𝑑𝑢

𝜕2𝑢𝑚−1
𝜕𝑥2

+ ∑
𝜕𝑢𝑖
𝜕𝑥

𝜕𝑣𝑚−1−𝑖
𝜕𝑥

𝑚−1

𝑖=0

+ ∑ 𝑢𝑖
𝜕2𝑣𝑚−1−𝑖
𝜕𝑥2

𝑚−1

𝑖=0

] ,

ℜ𝑚
𝑣 [𝑢⃗ 𝑚−1, 𝑣 𝑚−1] = ℒ[𝑣𝑚(𝑥, 𝑡)] − (1 −

𝑘𝑚
𝑛
)
𝑣0
𝑠
                                                                             

                     +
1

𝑠𝛼
[−𝑑𝑣

𝜕2𝑣𝑚−1−𝑖
𝜕𝑥2

+ 𝛽𝑣𝑚−1−𝑖 − 𝛾𝑢𝑚−1−𝑖] .

                                                        (25) 

 
Substituting (25) into (24) and then taking the inverse Laplace transform gives 
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{
 
 
 
 

 
 
 
 𝑢𝒎 = (𝑘𝑚 + ℏ)𝑢𝑚−1 − ℏ(1 −

𝑘𝑚
𝑛
)ℒ−1 {

𝑢0
𝑠
}                                                                      

  +ℏℒ−1 {
1

𝑠𝛼
ℒ [−𝑑𝑢

𝜕2𝑢𝑚−1
𝜕𝑥2

+ ∑
𝜕𝑢𝑖
𝜕𝑥

𝜕𝑣𝑚−1−𝑖
𝜕𝑥

𝑚−1

𝑖=0

+ ∑ 𝑢𝑖
𝜕2𝑣𝑚−1−𝑖
𝜕𝑥2

𝑚−1

𝑖=0

]} ,

𝑣𝒎 = (𝑘𝑚 + ℏ)𝑣𝑚−1 − ℏ(1 −
𝑘𝑚
𝑛
) ℒ−1 {

𝑣0
𝑠
}                                                                       

+ℏℒ−1 {
1

𝑠𝛼
ℒ [−𝑑𝑣

𝜕2𝑣𝑚−1
𝜕𝑥2

+ 𝛽𝑣𝑚−1 − 𝛾𝑢𝑚−1]}                                       

                                                    (26) 

from which all solution components of the TF-AKS model (22) can be generated. Moreover, the 𝑞 −HATM series solution to the coupled 
system (22) is then given as 

  

{
 
 

 
 𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡) (

1

𝑛
)
𝑚∞

𝑚=1

,

𝑣(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) + ∑ 𝑣𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

∙

                                                                                                                                (27) 

 

We refer to the Appendix for the convergence of the 𝑞 −HATM 
series solution for the TF-AKS model. In what follows, we use the 
parameter values in Table 1 to obtain approximate analytical 
solutions for the TF-AKS model (22) for the three sets of initial 
data given in (28), (29) and (30). Numerical simulations 
demonstrating the biological behavior of the obtained 𝑞 −HATM 
solutions are also provided in each case. 
 
Case I 
Consider the TF-AKS model (22) with the initial conditions 
 𝑢(𝑥, 0) = 𝑀𝑒−𝑥 ,        𝑣(𝑥, 0) = 𝑁𝑒−𝑥 .                            (28) 
Thanks to the steps leading to (26), we have the following few 
solution iterations: 
𝑢0(𝑥, 𝑡) = 𝑀𝑒

−𝑥 , 
𝑣0(𝑥, 𝑡) = 𝑁𝑒

−𝑥 , 

𝑢1(𝑥, 𝑡) = −
ℏ𝑀(−2𝑒−2𝑥 + 𝑒−𝑥𝑑𝑢)𝑡

𝛼

Γ(𝛼 + 1)
, 

𝑣1(𝑥, 𝑡) = −
ℏ𝑒−𝑥(𝛾𝑀 + (−𝛽 + 𝑑𝑣)𝑁)𝑡

𝛼

Γ(𝛼 + 1)
, 

𝑢2(𝑥, 𝑡) = −
(𝑛+ℏ)ℏ𝑀(−2𝑒−2𝑥+𝑒−𝑥𝑑𝑢)𝑡

𝛼

Γ(𝛼+1)
  −

ℏ2(−6𝑁2𝑒−3𝑥−𝑒−𝑥𝑑𝑢
2+2(𝛾𝑀−𝑁𝛽+5𝑁𝑑𝑢+𝑁𝑑𝑣)𝑒

−2𝑥)𝑀𝑡2𝛼

Γ(2𝛼+1)
 ,  

𝑣2(𝑥, 𝑡) = −
(𝑛 + ℏ)ℏ𝑒−𝑥(𝛾𝑀 + (−𝛽 + 𝑑𝑣)𝑁)𝑡

𝛼

Γ(𝛼 + 1)
 

 −
ℏ2(2𝑁𝛾𝑀𝑒−2𝑥+𝑒−𝑥(𝑀𝛽𝛾−𝑀𝛾𝑑𝑢−𝑀𝛾𝑑𝑣−𝑁𝛽

2+2𝑁𝛽𝑑𝑣−𝑁𝑑𝑣
2))𝑡2𝛼

Γ(2𝛼+1)
.  

Moreover, the remaining terms for 𝑚 ≥ 3 can be generated by 
following in the same procedure and the series solution is 
obtained according to (27) 
 
Case II 
Consider the TF-AKS model (22) with the initial conditions 

 𝑢(𝑥, 0) = 𝑀𝑒−𝑥
2
 ,       𝑣(𝑥, 0) = 𝑁𝑒−𝑥

2
 .           (29) 

Then the steps leading to (26) yield the following few iterations: 

𝑢0(𝑥, 𝑡) = 𝑀𝑒
−𝑥2   , 

𝑣0 = 𝑁𝑒
−𝑥2   , 

𝑢1(𝑥, 𝑡)

= −
2ℏ𝑀 (−𝑒−2𝑥

2
𝑁(4𝑥2 − 1) + 𝑒−𝑥

2
𝑑𝑢(2𝑥

2 − 1)) 𝑡𝛼

Γ(𝛼 + 1)
, 

𝑣1(𝑥, 𝑡) = −
ℏ𝑒−𝑥

2
(𝑀𝛾 + (4𝑥2𝑑𝑣 − 𝛽 + 2𝑑𝑣)𝑁)𝑡

𝛼

Γ(𝛼 + 1)
, 

𝑢2(𝑥, 𝑡)

= −
2ℏ𝑀(𝑛 + ℏ) (−𝑒−2𝑥

2
𝑁(4𝑥2 − 1) + 𝑒−𝑥

2
𝑑𝑢(2𝑥

2 − 1)) 𝑡𝛼

Γ(𝛼 + 1)
 

 −
2𝑀ℏ2(−2𝑁2𝑒−3𝑥

2
(24𝑥4−18𝑥2+1)−2𝑒−𝑥

2
𝑑𝑢

2(4𝑥4−12𝑥2+3))𝑡2𝛼

Γ(2𝛼+1)
  

−
2𝑀ℏ2((80𝑁𝑥4−116𝑁𝑥2+14𝑁)𝑑𝑢+(16𝑁𝑥

4−36𝑁𝑥2+6𝑁)𝑑𝑣)𝑒
−2𝑥2𝑡2𝛼

Γ(2𝛼+1)
  

−
2𝑀ℏ2(4𝑀𝛾𝑥2 − 4𝑁𝛽𝑥2 −𝑀𝛾 + 𝑁𝛽)𝑒−2𝑥

2
𝑡2𝛼

Γ(2𝛼 + 1)
, 

𝑣2(𝑥, 𝑡)

= −
(𝑛 + ℏ)ℏ𝑒−𝑥

2
(𝛾𝑀 + (4𝑥2𝑑𝑣 − 𝛽 − 2𝑑𝑣)𝑁)𝑡

𝛼

Γ(𝛼 + 1)

−
2ℏ2𝑀𝑁𝛾(4𝑥2 − 1)𝑒−2𝑥

2
𝑡2𝛼

Γ(2𝛼 + 1)
 

+
ℏ2((−16𝑁𝑥4+48𝑁𝑥2−12𝑁)𝑑𝑣

2+(−4𝛾𝑀𝑥2+2𝛾𝑀)𝑑𝑢)𝑒
−2𝑥2𝑡2𝛼

Γ(2𝛼+1)
  

−
ℏ2((−4𝛾𝑀𝑥2+8𝑁𝛽𝑥2+2𝛾𝑀−4𝑁𝛽)𝑑𝑣+𝑀𝛽𝛾−𝑁𝛽

2)𝑒−2𝑥
2
𝑡2𝛼

Γ(2𝛼+1)
.  

 
The remaining solution components for 𝑚 ≥ 3 can be generated 
by continuing in the same manner and the series solution with 
respect to the initial data (29) is obtained according to (27). 
 
Case III 
Consider the TF-AKS model (22) subject to the initial data: 
𝑢(𝑥, 0) = 𝑀 sin 𝑥 ,     𝑣(𝑥, 0) = 𝑁 sin 𝑥 .                   (30) 
From (26), we obtain the following few solution iterations: 
 
𝑢0(𝑥, 𝑡) = 𝑀 sin 𝑥,      
𝑣0(𝑥, 𝑡) = 𝑁 sin 𝑥, 
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𝑢1(𝑥, 𝑡) = −
𝑀ℏ(−𝑑𝑢 sin 𝑥 + 𝑁(sin

2 𝑥 − cos2 𝑥))𝑡𝛼

Γ(𝛼 + 1)
, 

𝑣1(𝑥, 𝑡) = −
ℏ sin 𝑥 (𝑀𝛾 − 𝑁(𝛽 + 𝑑𝑣))𝑡

𝛼

Γ(𝛼 + 1)
, 

𝑢2(𝑥, 𝑡)

= −
𝑀ℏ(𝑛 + ℏ)(−𝑑𝑢 sin 𝑥 + 𝑁(− cos

2 𝑥 + sin2 𝑥))𝑡𝛼

Γ(𝛼 + 1)
 

     −
ℏ2𝑀(−𝑁2 sin3 𝑥+cos2 𝑥(5𝑁2 sin𝑥+𝑀𝛾−𝑁(𝛽+𝑑𝑣+5𝑑𝑢)))𝑡

2𝛼

Γ(2𝛼+1)
  

      −
ℏ2𝑀(((−𝑀𝛾 + 𝑁𝛽 + 5𝑁𝑑𝑢 + 𝑁𝑑𝑣) sin 𝑥)

2
− 𝑑𝑢

2 sin 𝑥) 𝑡2𝛼

Γ(2𝛼 + 1)
, 

𝑣2(𝑥, 𝑡) = −
(𝑛 + ℏ)ℏ sin 𝑥 (𝑀𝛾 − 𝑁(𝛽 + 𝑑𝑣))𝑡

𝛼

Γ(𝛼 + 1)

+
ℏ2𝑁 sin 𝑥 (𝛽 + 𝑑𝑣)

2𝑡2𝛼

Γ(2𝛼 + 1)
  

        −
ℏ2𝑀𝛾(𝑁(− sin2 𝑥 + cos2 𝑥) + sin 𝑥 (𝛽 + 𝑑𝑣 + 𝑑𝑢))𝑡

2𝛼

Γ(2𝛼 + 1)
 

 
The remaining solution iterates for 𝑚 ≥ 3 can be generated in 
the same manner and the series solution with respect to the initial 
data (30) is obtained according to (27). 
 
RESULTS AND DISCUSSIONS 
Here, we present numerical simulations for the TF-AKS model 
(22) with respect to the initial data (28), (29) and (30) with M = 
0.000012 and N=0.000016 using the parameter values provided 
in Table 1. 
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The 2D-plots in Figure 1(a), Figure 4(a) and Figure 7(a) depict the 
behavior of the amoebae density 𝑢(𝑥, 𝑡) with respect to 𝑡 for 

CASE I, CASE II and CASE III, respectively, at  𝑥 =  1,  ℏ =
−1, 𝑛 =  1 and distinct values of 𝛼. Figure 1(c), Figure 4(c) and 
Figure 7(c) depict the behavior of the concentration of the 
chemoattractant 𝑣(𝑥, 𝑡) with respect to 𝑡 for CASE I, CASE II 

and CASE III, respectively, at  𝑥 =  1, ℏ = −1, 𝑛 =  1 and 

distinct values of 𝛼. In Figure 1(b), Figure 4(b) and Figure 7(b), 

show the behavior of the amoebae density 𝑢(𝑥, 𝑡) with respect to 

𝑥 for CASE I, CASE II and CASE III, respectively, at 𝑡 =  5, ℏ =
−1, 𝑛 =  1 and distinct values of 𝛼. Figures 1(d), Figures 4(d) 
and Figures 7(d) capture the behavior of the concentration of the 
chemoattractant 𝑣(𝑥, 𝑡) with respect to 𝑥 for CASE I, CASE II 

and CASE III, respectively, at 𝑡 =  5, ℏ = −1, 𝑛 = 1 and 
distinct values of  𝛼. In each case, whether for fixed 𝑡 or fixed 𝑥, 
the plots demonstrate continuous dependence of the model 
solutions on the arbitrary fractional order 𝛼.Figure 2(a)-(d), Figure 

5(a)-(d) and Figure 8(a)-(d) are ℏ-curves for the amoebae density 

𝑢(𝑥, 𝑡) for initial data in CASE I, CASE II and CASE III, 

respectively, for distinct values of 𝛼 when 𝑥 =  0.1 and 𝑡 =
 0.01. Figure 3(a)-(d), Figure 5(a)-(d) and Figures 9(a)-(d) are ℏ-

curves for the amoebae density 𝑣(𝑥, 𝑡) for initial data in CASE I, 

CASE II and CASE III, respectively, for distinct values of 𝛼 when 

𝑥 =  0.1 and  𝑡 =  0.01. For each case, whether for 𝑢(𝑥, 𝑡) 
or  𝑣(𝑥, 𝑡), the ℎ-curves are plotted for n = 1, n = 2, n = 3 and n = 
4 as demonstrated in the figures. Furthermore, the horizontal line 
segments in these figures indicate the convergence range of the 
solution thus demonstrating the validity of the 𝑞 −HATM solution 
in a very large domain. 
 
Conclusion 
In the present paper, approximate solutions for a one-dimensional 
TF-AKS chemotaxis model is investigated via the 𝑞 −HATM for 
three sets of initial data. The time-fractional derivatives are taken 
in the sense of Caputo. The 𝑞 −HATM which combines the 

classical 𝑞 −HAM with parameter 𝑞 ∈ [0,
1

𝑛
]    (𝑛 ≥ 1) and the 

usual Laplace transform method does not involve any form of 
linearization, discretization or restrictive assumption. The scheme 
also incorporates an auxiliary parameter ℏ which allows us to 
manipulate and control the series solution to ensure quick 
convergence. The behavior of the obtained series solution in 
comparison with varying fractional order parameter or auxiliary 
parameter ℏ are furnished via graphical representations. These 
graphs demonstrate continuous dependence of the model 
solutions on the fractional order parameter as well as chosen 
system parameters. In conclusion, we remark in view of the 
present work that the 𝑞 −HATM is not only efficient and highly 
reliable but also a very effective analytical scheme in studying a 
wide class of coupled systems of nonlinear fractional differential 
equations describing a variety of biological phenomena as well as 
other systems arising in different fields of science and 
engineering. 
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APPENDIX 
Theorem A.1 (Uniqueness theorem) The solution to the TF-AKS 
model (4.1) determined by q-HATM is unique for every   0 ≤ 𝜆1, 

𝜆2 ≤ 1, where 𝜆1 = (𝑘𝑚 + ℏ) − ℏ(𝑑𝑢𝛿
2 − 𝛿𝛾1 − 𝛾2)𝑇 and 

𝜆2 = (𝑘𝑚 + ℏ) − ℏ(𝑑𝑣𝜇
2 − 𝛽)𝑇. 

Proof. Let 

 

{
 
 

 
 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑚(𝑥, 𝑡) (

1

𝑛
)
𝑚∞

𝑚=0

𝑣(𝑥, 𝑡) = ∑ 𝑣𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=0

                (𝐴. 1) 

be the q-HATM series solution to the TF-AKS model (22) where 

{
  
 

  
 𝑢𝑚 = (𝑘𝑚 + ℏ)𝑢𝑚−1 − ℏ(1 −

𝑘𝑚

𝑛
) ℒ−1 {

𝑢0

𝑠
}                   

−ℏℒ−1 {
1

𝑠𝛼
ℒ [𝑑𝑢

𝜕2𝑢𝑚−1

𝜕𝑥2
− ∑

𝜕𝑢𝑖

𝜕𝑥

𝜕𝑣𝑚−1−𝑖

𝜕𝑥

𝑚−1
𝑖=0 − ∑ 𝑢𝑖

𝜕2𝑣𝑚−1−𝑖

𝜕𝑥2
𝑚−1
𝑖=0 ]} ,

𝑣𝑚 = (𝑘𝑚 + ℏ)𝑣𝑚−1 − ℏ(1 −
𝑘𝑚

𝑛
) ℒ−1 {

𝑣0

𝑠
} 

−ℏℒ−1 {
1

𝑠𝛼
ℒ [𝑑𝑣

𝜕2𝑣𝑚−1

𝜕𝑥2
− 𝛽𝑣𝑚−1 + 𝜆𝑢𝑚−1]} 

(𝐴. 2)  

Suppose the pairs (𝑢, 𝑣) and (𝑢̃, 𝑣̃)as distinct solutions of the 
TF-AKS model (22), then in view of the relation in (.2)1, we get 

|𝑢 − 𝑢̃| ≤ (𝑘𝑚 + ℏ)|𝑢 − 𝑢̃| − ℏℒ
−1 {

1

𝑠𝛼
ℒ (𝑑𝑢

𝜕2

𝜕𝑥2
|𝑢 −

𝑢̃| −
𝜕

𝜕𝑥
|𝑢 − 𝑢̃| |

𝜕𝑣

𝜕𝑥
| − |𝑢 − 𝑢̃| |

𝜕2𝑣

𝜕𝑥2
|)}.  (𝐴. 3)  

Furthermore, the convolution theorem for the Laplace transform 
ensures that we have 
                    |𝑢 − 𝑢̃| ≤ (𝑘𝑚 + ℏ)|𝑢 − 𝑢̃|    

  −ℏ∫ (𝑑𝑢
𝜕2

𝜕𝑥2
|𝑢 − 𝑢̃| −

𝜕

𝜕𝑥
|𝑢 − 𝑢̃| |

𝜕𝑣

𝜕𝑥
|

𝑡

0

− |𝑢 − 𝑢̃| |
𝜕2𝑣

𝜕𝑥2
|)
(𝑡 − 𝜗)𝛼

Γ(𝛼 + 1)
𝑑𝜗   

                             ≤ (𝑘𝑚 + ℏ)|𝑢 − 𝑢̃|

− ℏ∫ (𝑑𝑢𝛿
2|𝑢 − 𝑢̃| − 𝛿|𝑢 − 𝑢̃|𝛾1

𝑡

0

− |𝑢 − 𝑢̃|𝛾2)
(𝑡 − 𝜗)𝛼

Γ(𝛼 + 1)
𝑑𝜗, 

where 𝛿2 =
𝜕2

𝜕𝑥2
 , 𝛿 =

𝜕

𝜕𝑥
 , |

𝜕𝑣

𝜕𝑥
| ≤ 𝛾1 and |

𝜕2𝑣

𝜕𝑥2
| ≤ 𝛾2. 

Moreover, by the integral mean value theorem, we have 
|𝑢 − 𝑢̃| ≤ (𝑘𝑚 + ℏ)|𝑢 − 𝑢̃|

− ℏ(𝑑𝑢𝛿
2|𝑢 − 𝑢̃| − 𝛿|𝑢 − 𝑢̃|𝛾1

− |𝑢 − 𝑢̃|𝛾2)𝑇 

= [(𝑘𝑚 + ℏ) − ℏ(𝑑𝑢𝛿
2 − 𝛿𝛾1−𝛾2)𝑇]|𝑢 − 𝑢̃| ,                       

that is (1 − 𝜆1)|𝑢 − 𝑢̃| ≤ 0 where 𝜆1 = (𝑘𝑚 + ℏ) −
ℏ(𝑑𝑢𝛿

2 − 𝛿𝛾1−𝛾2)𝑇. Since 0 < 𝜆1 < 1, then |𝑢 − 𝑢̃| = 0. 
Thus  𝑢 = 𝑢̃. In a similar manner, we also get 𝑣 = 𝑣̃ where 

𝜆2 = (𝑘𝑚 + ℏ) − ℏ(𝑑𝑣𝛿
2 − 𝛽)𝑇. This completes the prove of 

uniqueness of the solution. 
 
Theorem A.2 (Convergence theorem) Let 𝜒 a Banach space 

and Π: 𝜒 → 𝜒 a nonlinear mapping? Assume that 
‖Π(𝜛) − Π(𝜔)‖ ≤ 𝜂‖𝜛 − 𝜔‖,    ∀𝜛,𝜔 ∈ 𝜒 , 

then Π admits a fixed point in view of the Banach fixed point 

theorem [4]. Moreover, for any 𝜛0, 𝜔0 ∈ 𝜒, the series generated 

by the q-HATM converges to a fixed point of Π and 

‖𝜛𝑚 −𝜛𝑛‖ ≤
𝜂𝑛

1 − 𝜂
‖𝜛1 −𝜛0‖,     ∀𝜛,𝜔 ∈ 𝜒 . 
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Proof. Let 𝜛 ≔ {𝑢, 𝑣} and 𝜂 ≔  {𝜆1, 𝜆2} where 𝑢 is the 

amoebae density and 𝑣 is the concentration of the 

chemoattractant. Assume that (𝐶[𝐽], ‖∙‖) is a Banach space of 

all continuous functions on 𝐽 with norm: ‖𝑤(𝑡)‖ ≔
 max
𝑡∈𝐽

|𝑤(𝑡)|, then by first taking 𝜛 ≔ 𝑢 and 𝜂 ∶=  𝜆1, we prove 

that {𝑢𝑖} is a Cauchy sequence in the Banach space. To this end, 
consider 
‖𝑢𝑚 − 𝑢𝑖‖ =  max

𝑡∈𝐽
|𝑢𝑚 − 𝑢𝑖|

=max
𝑡∈𝐽

|(𝑘𝑚 + ℏ)(𝑢𝑚−1 − 𝑢𝑖−1)  

− ℒ−1 {
1

𝑠𝛼
ℒ [𝑑𝑢 (

𝜕2𝑢𝑚−1
𝜕𝑥2

−
𝜕2𝑢𝑖−1
𝜕𝑥2

)

− (
𝜕𝑢𝑚−1
𝜕𝑥

−
𝜕𝑢𝑖−1
𝜕𝑥

) |
𝜕𝑣

𝜕𝑥
|

− (𝑢𝑚−1 − 𝑢𝑖−1) |
𝜕2𝑣

𝜕𝑥2
|]}| 

≤ max
𝑡∈𝐽

(𝑘𝑚 + ℏ)|𝑢𝑚−1 − 𝑢𝑖−1|                                                 

 −ℒ−1 {
1

𝑠𝛼
ℒ [𝑑𝑢 |

𝜕2𝑢𝑚−1
𝜕𝑥2

−
𝜕2𝑢𝑖−1
𝜕𝑥2

|

− |
𝜕𝑢𝑚−1
𝜕𝑥

−
𝜕𝑢𝑖−1
𝜕𝑥

| |
𝜕𝑣

𝜕𝑥
|

− |𝑢𝑚−1 − 𝑢𝑖−1| |
𝜕2𝑣

𝜕𝑥2
|]}. 

By the convolution theorem for Laplace transform, we get 

‖𝑢𝑚 − 𝑢𝑖‖ ≤ max
𝑡∈𝐽

[(𝑘𝑚 + ℏ)|𝑢𝑚−1 − 𝑢𝑖−1|                        

− ℏ∫ (𝑑𝑢 |
𝜕2𝑢𝑚−1
𝜕𝑥2

−
𝜕2𝑢𝑖−1
𝜕𝑥2

|
𝑡

0

− |
𝜕𝑢𝑚−1
𝜕𝑥2

−
𝜕𝑢𝑖−1
𝜕𝑥2

| |
𝜕𝑣

𝜕𝑥
|

− |𝑢𝑚−1 − 𝑢𝑖−1| |
𝜕2𝑣

𝜕𝑥2
|)
(𝑡 − 𝜗)𝛼

Γ(𝛼 + 1)
𝑑𝜗] 

                           ≤ max
𝑡∈𝐽

[(𝑘𝑚 + ℏ)|𝑢𝑚−1 − 𝑢𝑖−1|

− ℏ∫ (𝑑𝑢𝛿
2|𝑢𝑚−1 − 𝑢𝑖−1|

𝑡

0

− 𝛿|𝑢𝑚−1 − 𝑢𝑖−1|𝛾1

− |𝑢𝑚−1 − 𝑢𝑖−1|𝛾2)
(𝑡 − 𝜗)𝛼

Γ(𝛼 + 1)
𝑑𝜗] 

By the integral mean value theorem, the relation above reduces to 
‖𝑢𝑚 − 𝑢𝑖‖ ≤ max

𝑡∈𝐽
[(𝑘𝑚 − ℏ)|𝑢𝑚−1 − 𝑢𝑖−1|

− ℏ(𝑑𝑢𝛿
2|𝑢𝑚−1 − 𝑢𝑖−1|

− 𝛿|𝑢𝑚−1 − 𝑢𝑖−1|𝛾1
− |𝑢𝑚−1 − 𝑢𝑖−1|𝛾2)𝑇].   

That is, ‖𝑢𝑚 − 𝑢𝑖‖ ≤ 𝜆1‖𝑢𝑚−1 − 𝑢𝑖−1‖. Since  0 < 𝜆1 < 1, 

so 1 − 𝜆1
𝑚−𝑖−1 < 1, we have 

‖𝑢𝑚 − 𝑢𝑖‖ ≤
𝜆1
𝑖

1 − 𝜆1
‖𝑢1 − 𝑢0‖. 

But  ‖𝑢1 − 𝑢0‖ < ∞, consequently as 𝑚, 𝑖 → ∞ than ‖𝑢1 −
𝑢0‖ → 0 and therefore, the sequence {𝑢𝑖} is Cauchy in  𝐶[𝐽]. A 

similar line of reasoning yield that the sequence {𝑣𝑖} is also 

Cauchy sequence in  𝐶[𝐽]. Hence,  {𝑢𝑖} and {𝑣𝑖}  are 
convergent sequences. This concludes the proof of the theorem. 
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