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ABSTRACT  
A central activity in the numerical solution of differential equations 
is that of finding effective numerical methods to solve particular 
types of problems. One of such problems is the second order 
ordinary differential equations of the form 𝑦′′ = 𝑓(𝑥, 𝑦). A very 

important algorithm towards the solution of this equation is the 
Numerov method. In this present work, the Numerov method is 
employed to solve linear second order ordinary differential 
equations involving a first derivative term. By a transformation of 
the equation, the first derivative term is eliminated by representing 
it with finite difference quotient at the grid points, resulting in an 
equation that makes it suitable for solution. Once this equation is 
solved, the approximate solution of the desired function 𝑦(𝑥) can 

be obtained at the grid points. Extensive numerical tests to illustrate 
the effectiveness and reliability of the method are presented. The 
numerical experiments were conducted using Maple 2019.0 
software package.  
 
Keywords: Numerov’s method, Runge-Kutta method, Schrodinger 
equation, Second order, Initial value problems 
 
INTRODUCTION  
Solution of the linear second order ordinary differential equation 
that does not contain a first order term,   

𝑦′′(𝑥) = 𝒇(𝑥, 𝑦) = −𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥)                        (1) 

can be obtained using the well-known Numerov method, proposed 
by Boris Vasil’evich Numerov (Numerov, 1924). 

𝑦𝑛+2 (1 +
ℎ2

12
𝑔𝑛+2)

= 2𝑦𝑛+1 (1 −
5ℎ2

12
𝑔𝑛+1)

− 𝑦𝑛 (1 +
ℎ2

12
𝑔𝑛) 

+
ℎ2

12
(𝑠𝑛+2 + 10𝑠𝑛+1 + 𝑠𝑛) + 𝑂(ℎ6)         (2) 

If 𝒇 is nonlinear in 𝑦, then the method (2) takes the form  

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
ℎ2

12
(𝑓𝑛+2 + 10𝑓𝑛+1 + 𝑓𝑛) + 𝑂(ℎ6)   (3) 

The preclusion of second order equations containing a first 
derivative term: 
𝑦′′(𝑥) + 𝑓(𝑥)𝑦′(𝑥) + 𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥) = 0                 (4) 

by the Numerov method makes it an unpopular choice in certain 
applications. To overcome this challenge, several researchers 
have proposed modifications and generalizations of the method in 
order to include equations of the type (4) and more general 
nonlinear equations. Among these include, Leroy and Wallace 
(1986), Van Daele et al. (1991) and Adeboye et al. (2018). Another 

way of achieving this is elimination of the first derivative using a 
simple transformation. For example, Salzman (2001) proposed this 
can be done by elimination of the first derivative in (4) using the 
transformation 𝑦′′ = ℎ(𝑥)𝑧(𝑥), and grouping terms by 

derivatives of 𝑧 thus, 
𝑑2𝑧

𝑑𝑥2
ℎ +

𝑑𝑧

𝑑𝑥
(2ℎ′ + 𝑓ℎ) + 𝑧(𝑥)(ℎ′′ +

𝑓ℎ′ + 𝑔ℎ) + 𝑠(𝑥) = 0; from whence the first derivative term, 

𝑧′(𝑥), can be eliminated by solving the equation 
𝑑ℎ

𝑑𝑥
=

−
1

2
𝑓(𝑥)ℎ(𝑥). On dividing the equation through by the coefficient 

of 𝑧′′(𝑥), what obtains is an equation of the form 
𝑑2𝑧

𝑑𝑥2
+

𝐴(𝑥)𝑧(𝑥) + 𝐵(𝑥) = 0, whose solution can be obtained using 
the Numerov method. Also, Tselyaev (2004) proposed elimination 
of the first derivative by adopting the transformation 𝑦(𝑥) =

𝑤(𝑥)exp (−
1

2
∫ 𝑓(𝑥) 𝑑𝑥). 

 
MATERIALS AND METHODS 
 
Derivation of the Method 
Given the differential equation 

𝑦′′(𝑥) = −𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥) 

To derive the Numerov method to solve this equation, the operator 

1 +
ℎ2

12

𝑑2

𝑑𝑥2 is applied to operate on the equation thus:       

[1 +
ℎ2

12

𝑑2

𝑑𝑥2] (
𝑑2𝑦

𝑑𝑥2) = [1 +
ℎ2

12

𝑑2

𝑑𝑥2](−𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥)) 

ℎ2

12

𝑑4𝑦

𝑑𝑥4
+

𝑑2𝑦

𝑑𝑥2
=

ℎ2

12

𝑑2

𝑑𝑥2
[−𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥)] − 𝑔(𝑥)𝑦(𝑥)

+ 𝑠(𝑥)                                                (5) 

Expanding the function 𝑦(𝑥) in Taylor series centred around 𝑥 +
ℎ: 

𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) +
ℎ2

2!
𝑦′′(𝑥) +

ℎ3

3!
𝑦′′′(𝑥)

+
ℎ4

4!
𝑦′𝑣(𝑥) +

ℎ5

5!
𝑦𝑣(𝑥) + ⋯       (6) 

And then expand 𝑦(𝑥) about 𝑥 − ℎ:  

𝑦(𝑥 − ℎ) = 𝑦(𝑥) − ℎ𝑦′(𝑥) +
ℎ2

2!
𝑦′′(𝑥) −

ℎ3

3!
𝑦′′′(𝑥)

+
ℎ4

4!
𝑦′𝑣(𝑥) −

ℎ5

5!
𝑦𝑣(𝑥) + ⋯       (7) 

Adding equations (6) and (7) gives 
𝑦(𝑥 + ℎ) − 2𝑦(𝑥) + 𝑦(𝑥 − ℎ)

= ℎ2𝑦′′(𝑥) +
1

12
ℎ4𝑦′𝑣(𝑥) + 𝑂(ℎ6) 

𝑦′′(𝑥) =
𝑦(𝑥 + ℎ) − 2𝑦(𝑥) + 𝑦(𝑥 − ℎ)

ℎ2
−

ℎ2

12
𝑦′𝑣(𝑥)

+ 𝑂(ℎ6)                                             (8) 
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Substituting (8) into (5), 

ℎ2

12

𝑑4𝑦

𝑑𝑥4 +
𝑦(𝑥 + ℎ) − 2𝑦(𝑥) + 𝑦(𝑥 − ℎ)

ℎ2 −
ℎ2

12

𝑑4𝑦

𝑑𝑥4

=
ℎ2

12

𝑑2

𝑑𝑥2
[−𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥)]

− 𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥) 
𝑦(𝑥 + ℎ) − 2𝑦(𝑥) + 𝑦(𝑥 − ℎ)

ℎ2

=
ℎ2

12

𝑑2

𝑑𝑥2
[−𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥)]

− 𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥)                       (9) 

To approximate the second derivative of −𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥): 

𝑑2

𝑑𝑥2
[−𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥)]

≈

[−𝑔(𝑥 + ℎ)𝑦(𝑥 + ℎ) + 𝑠(𝑥 + ℎ) + 2𝑔(𝑥)𝑦(𝑥) − 2𝑠(𝑥)

−𝑔(𝑥 − ℎ)𝑦(𝑥 − ℎ) + 𝑠(𝑥 − ℎ)]

ℎ2  

Substituting this equation into (6) and rearranging,  
𝑦(𝑥 + ℎ) − 2𝑦(𝑥) + 𝑦(𝑥 − ℎ)

= ℎ2[−𝑔(𝑥)𝑦(𝑥) + 𝑠(𝑥)]

+
ℎ2

12
[−𝑔(𝑥 + ℎ)𝑦(𝑥 + ℎ) + 𝑠(𝑥 + ℎ)

+ 2𝑔(𝑥)𝑦(𝑥) − 2𝑠(𝑥)
− 𝑔(𝑥 − ℎ)𝑦(𝑥 − ℎ) + 𝑠(𝑥 − ℎ)]

+ 𝑂(ℎ6) 

[1 +
ℎ2

12
𝑔(𝑥 + ℎ)] 𝑦(𝑥 + ℎ)

= [1 −
5ℎ2

12
𝑔(𝑥)] 2𝑦(𝑥) − [1

+
ℎ2

12
𝑔(𝑥 − ℎ)]𝑦(𝑥 − ℎ) 

+
ℎ2

12
[𝑠(𝑥 + ℎ) + 10𝑠(𝑥) + 𝑠(𝑥 − ℎ)] 

If this is phrased in terms of discrete indices, 𝑥 = 𝑛ℎ, and defining 

𝑦𝑛 = 𝑦(𝑥𝑛), 𝑔𝑛 = 𝑔(𝑥𝑛), 𝑠𝑛 = 𝑠(𝑥𝑛), ℎ = 𝑦𝑛 = 𝑥𝑛+1 −
𝑥𝑛, it can be written more tidily as, 

(1 +
ℎ2

12
𝑔𝑛+1) 𝑦𝑛+1

= (1 −
5ℎ2

12
𝑔𝑛) 2𝑦𝑛

− (1 +
ℎ2

12
𝑔𝑛−1) 𝑦𝑛−1 

+
ℎ2

12
(𝑠𝑛+1 + 10𝑠𝑛 + 𝑠𝑛−1) + 𝑂(ℎ6) 

which is the Numerov method (2). 
 
Proof of Convergence 
Definition 1 The first and second characteristic 
polynomials of a 𝑘 − step linear multistep method are defined as  

𝜌(𝜉) = ∑ 𝛼𝑗𝜉𝑗
𝑘

𝑗=0
= 𝛼𝑘𝜉𝑘 + 𝛼𝑘−1𝜉𝑘−1 + 𝛼𝑘−2𝜉𝑘−2 + ⋯

+ 𝛼0                                                      (10) 

and 

𝜎(𝜉) = ∑ 𝛽𝑗𝜉𝑗
𝑘

𝑗=0
= 𝛽𝑘𝜉𝑘 + 𝛽𝑘−1𝜉𝑘−1 + 𝛽𝑘−2𝜉𝑘−2 + ⋯

+ 𝛽0                                                      (11) 

respectively. 

Definition 2 A linear multistep method is said to be 
consistent if it is at least first-order. 
 
Definition 3 A linear multistep method is said to be zero-
stable if as ℎ → 0, the roots 𝜉𝑗 , 𝑗 = 1(2)𝑘 of the first 

characteristic polynomial 𝜌(𝜉) satisfy |𝜉𝑗| ≤ 1, and for every 

|𝜉𝑗| = 1 the multiplicity must be simple. 

 
Definition 4 A linear multistep method is convergent if 
and only if it is stable and consistent. 
 
Absolute Stability of the Numerov Method 
Following Lambert (1973), the locus of the boundary of the region 
of absolute stability is, 

ℎ̅(𝜃) =
𝜌(𝑒𝑖𝜃)

𝜎(𝑒𝑖𝜃)
 

where 𝜌 and 𝜎 defined by (7) and (8)  are explicitly expressed by 

𝜌(𝜉) = 𝜉2 − 2𝜉 + 1 and 𝜎(𝜉) =
1

12
(𝜉2 + 10𝜉 + 1) 

respectively. Consequently, 

ℎ̅(𝜃) =
12(−18 + 16 cos 𝜃 + 2 cos 2𝜃)

(102 + 40 cos 𝜃 + 2 cos 2𝜃)
 

which makes the interval of the real axis to be the boundary of the 
region; and the extreme values (maximum and minimum) of the 

function ℎ̅(𝜃) are the end points of the interval. Consequently, the 

interval of absolute stability is computed as [−6, 0]. 
From the foregoing sections, it is evident that the Numerov method 
is shown to be consistent and stable, hence its convergence. 
 
Application of Numerov Method to Equations of the form 𝒚′′ =
𝒇(𝒙, 𝒚, 𝒚′) 

Some linear second order ordinary differential equations involving 
a first derivative term are considered. Their exact solutions are 
obtained analytically and the absolute value difference between the 
exact and approximate solutions compared. 
 
Problem 1 Consider the linear second order boundary value 
problem: 
𝑦′′ − 2𝑦′ + 𝑦 = 2𝑥, 𝑦(0) = 4; 𝑦(1) = 6,

ℎ = 0.1                                         (12) 

Let  
𝑦𝑛+1

′′ = 2𝑦𝑛
′ − 𝑦𝑛 + 2𝑥𝑛 = 𝑓𝑛  

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
ℎ2

6
(𝑓𝑛+2 + 4𝑓𝑛+1 + 𝑓𝑛) 

Thus, 𝑓𝑛 = 2𝑦𝑛
′ − 𝑦𝑛 + 2𝑥𝑛, 4𝑓𝑛+1 = 4(2𝑦𝑛+1

′ − 𝑦𝑛+1 +
2𝑥𝑛+1) = 8𝑦𝑛+1

′ − 4𝑦𝑛+1 + 8𝑥𝑛+1 and 𝑓𝑛+2 = 2𝑦𝑛+2
′ −

𝑦𝑛+2 + 2𝑥𝑛+2. 

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
ℎ2

6
[2𝑦𝑛+2

′ − 𝑦𝑛+2 + 2𝑥𝑛 + 4ℎ

+ 8𝑦𝑛+1
′ − 4𝑦𝑛+1 + 8𝑥𝑛 + 8ℎ + 2𝑦𝑛

′

− 𝑦𝑛 + 2𝑥𝑛 + 12ℎ] 

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
ℎ2

6
[2𝑦𝑛+2

′ + 8𝑦𝑛+1
′ + 2𝑦𝑛

′ − 𝑦𝑛+2

− 4𝑦𝑛+1 − 𝑦𝑛 + 12𝑥𝑛 + 12ℎ] 
Now, 

2𝑦𝑛
′ =

2(𝑦𝑛+1−𝑦𝑛)

ℎ
=

2𝑦𝑛+1−2𝑦𝑛

ℎ
; 8𝑦𝑛+1

′ =
8(𝑦𝑛+2−𝑦𝑛+1)

ℎ
=

8𝑦𝑛+2−8𝑦𝑛+1

ℎ
; 2𝑦𝑛+2

′ =
2(𝑦𝑛+2−𝑦𝑛)

2ℎ
=

𝑦𝑛+2−𝑦𝑛

ℎ
. 
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𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
ℎ2

6
[
𝑦𝑛+2 − 𝑦𝑛

ℎ
+

8𝑦𝑛+2 − 8𝑦𝑛+1

ℎ

+
2𝑦𝑛+1 − 2𝑦𝑛

ℎ

−
(ℎ𝑦𝑛+2 + 4ℎ𝑦𝑛+1 + ℎ𝑦𝑛)

ℎ

+
12ℎ𝑥𝑛 + 12ℎ2

ℎ
] 

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
ℎ

6
[(9 − ℎ)𝑦𝑛+2 − (6 + 4ℎ)𝑦𝑛+1

− (3 + ℎ)𝑦𝑛 + 12ℎ𝑥𝑛 + 12ℎ2] 

(1 −
3ℎ

2
+

ℎ2

6
) 𝑦𝑛+2 + (ℎ − 2 +

2ℎ2

3
) 𝑦𝑛+1

+ (1 +
ℎ

2
+

ℎ2

6
) 𝑦𝑛 = 2ℎ2𝑥𝑛 + 2ℎ3 

0.851666666𝑦𝑛+2 − 1.893333333𝑦𝑛+1

+ 1.051666667𝑦𝑛 = 0.02𝑥𝑛 + 0.002 

𝑦𝑛+2 = 2.223091978𝑦𝑛+1 − 1.234833661𝑦𝑛

+ 0.023483365𝑥𝑛

+ 0.0023483366                              (13) 

Equation (13) is now the transformed Numerov method to be 
applied to the given problem (12). It is a two-step method requires 
two starting values, 𝑦0 and 𝑦1. Here, 𝑦0 = 4 is obtained from the 

boundary condition, and 𝑦1 = 4.2 is obtained from the exact 

solution 𝑦(𝑥), which is obtained analytically as 𝑦(𝑥) = 2𝑥 + 4. 

The approximate solution is computed over the interval 0 ≤ 𝑥 ≤
1 and the obtained results compared with the exact solutions are 

presented in Table I. 
Problem 2 Consider the linear second order initial value problem: 
𝑦′′ − 𝑦′ − 𝑦 = −4𝑥, 𝑦(0) = 2; 𝑦′(0) = 2,

ℎ = 0.1                                          (14) 

Let  
𝑦𝑛+1

′′ = 𝑦𝑛
′ + 2𝑦𝑛 − 4𝑥𝑛 = 𝑓𝑛 

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
ℎ2

6
(𝑓𝑛+2 + 4𝑓𝑛+1 + 𝑓𝑛) 

So, 𝑓𝑛 = 𝑦𝑛
′ + 2𝑦𝑛 − 4𝑥𝑛,4𝑓𝑛+1 = 4(𝑦𝑛+1

′ + 2𝑦𝑛+1 −
4𝑥𝑛+1) = 4𝑦𝑛+1

′ + 8𝑦𝑛+1 − 16𝑥𝑛+1 and 𝑓𝑛+2 = 𝑦𝑛+2
′ +

2𝑦𝑛+2 − 4𝑥𝑛+2. 

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
ℎ2

6
[𝑦𝑛+2

′ + 2𝑦𝑛+2 − 4𝑥𝑛+2 + 4𝑦𝑛+1
′

+ 8𝑦𝑛+1 − 16𝑥𝑛+1 + 𝑦𝑛
′ + 2𝑦𝑛 − 4𝑥𝑛] 

=
ℎ2

6
[𝑦𝑛+2

′ + 2𝑦𝑛+2 − 4𝑥𝑛 − 8ℎ + 4𝑦𝑛+1
′ + 8𝑦𝑛+1

− 16𝑥𝑛 − 16ℎ + 𝑦𝑛
′ + 2𝑦𝑛 − 4𝑥𝑛] 

Now, 

𝑦𝑛+2
′ =

𝑦𝑛+2−𝑦𝑛+1

ℎ
;    4𝑦𝑛+1

′ =
4(𝑦𝑛+2−𝑦𝑛)

2ℎ
=

2𝑦𝑛+2−2𝑦𝑛

ℎ
;    𝑦𝑛

′ =
𝑦𝑛+1−𝑦𝑛

ℎ
; 

It implies, 

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
ℎ2

6
[
𝑦𝑛+2 − 𝑦𝑛+1

ℎ
+

2𝑦𝑛+2 − 2𝑦𝑛

ℎ

+
𝑦𝑛+1 − 𝑦𝑛

ℎ

+
(2ℎ𝑦𝑛+2 + 8ℎ𝑦𝑛+1 + 2ℎ𝑦𝑛)

ℎ

−
(24ℎ𝑥𝑛 + 24ℎ2)

ℎ
] 

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
ℎ

6
[(3 + 2ℎ)𝑦𝑛+2 + 8ℎ𝑦𝑛+1

+ (2ℎ − 3)𝑦𝑛 − 24ℎ𝑥𝑛 − 24ℎ2] 

[(1 −
(3ℎ + 2ℎ2)

6
)] 𝑦𝑛+2 − (2 +

4ℎ2

3
) 𝑦𝑛+1 + [1 + [1

+
(3ℎ − 2ℎ2)

6
]𝑦𝑛 = −4ℎ2𝑥𝑛 − 4ℎ3 

That is, 
𝑦𝑛+2 = 2.126760565𝑦𝑛+1 − 1.105633804𝑦𝑛

− 0.042253521𝑥𝑛

− 0.00422535212                     (15) 

The starting values of (15) are 𝑦0 = 2 and 𝑦1 = 2.231077594. 

The exact solution is obtained as 𝑦(𝑥) = 𝑒2𝑥 + 2𝑒−𝑥 + 2𝑥 −
1. The results of Problem 2 are presented in Table II. 

 
RESULTS AND DISCUSSION 
Problems 1 and 2 involving linear second order ordinary differential 
equations are solved, analytically and numerically, and the 
computed results are compared. The results are presented in 
Tables I and II. In the tables, the values of  𝑥 represent the 

integration points which are evenly spaced in steps of 0.1, the 
computed approximate values are represented by 𝑦𝑛, 𝑦𝐸(𝑥) is the 

exact solution and the absolute error is given by  |𝑦𝑛 − 𝑦𝐸(𝑥)|. 
 
Table I   Results of Problem 1 

 
 
Table II   Results of Problem 2 

 
 
Table I displays the results of solving the linear second order 
ordinary differential equation  𝑦′′ − 2𝑦′ + 𝑦 = 2𝑥 with boundary 

conditions 𝑦(0) = 4; 𝑦(1) = 6 and exact solution 
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 𝑦(𝑥) = 2𝑥 + 4.  The displayed minimal errors translate to high 

level of accuracy of the method. Similarly, Table II shows the 
results of applying the Numerov method to solve the linear second 
order ordinary differential equation𝑦′′ − 𝑦′ − 𝑦 = −4𝑥, with 
initial conditions 𝑦(0) = 2; 𝑦′(0) = 2. The displayed errors are 

of minimal consequence. 
 
Conclusion 
A reformulated version of the Numerov method is developed and 
applied to solve both initial and boundary value problems of linear 
second order ordinary differential equations involving first 
derivative terms. The mathematical software package Maple 
2019.0, Maple Build ID 1384062 was employed to generate the 
results. The results of numerical examples established the method 
to be worthwhile. 
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