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ABSTRACT  
The study investigates the performances of deep and probabilistic 
models under uncertainties with   non-spherical disturbances 
inherent in the data. We deemed aleatoric and epistemic 
uncertainties, the former inherent in the data while the later 
inherent in the model in probabilistic approach. Loss, mean square 
error (MSE), mean absolute error (MAE) were adopted to evaluate 
the performance of the models for training, testing and validating 
sets. Both multicollinearity and autocorrected error were inherent 
in the data, there exist negative autocorrected error of magnitude 
1.46 and the multicollinearity with magnitude of “inf” that implies 
imperfect multicollinearity were inherent in the data. Keras Dense 
layer and Tensor flow probability (tfp) Dense variational layer were 
adopted. The underlying model were constructed probabilistically 
to capture aleatoric, epistemic and both.  The study observed that 
the “no uncertainty, classical and aleatoric models behaved well 
when data were standardised, the magnitude of loss, MAE and 
MSE reduced by almost 98%, this implies that the accuracy of the 
parameter were improved, though epistemic and both aleatoric and 
epistemic uncertainties models depicted poor performances of the 
model despite their probabilistic nature, this may be due to 
combination of uncertainty with non-spherical disturbances. The    
unstandardised data exhibited poor performances in all the models.  
The study therefore recommended that data should be 
standardised prior estimation. 
 
Keywords: Aleatoric, Autocorrelation, Epistemic, Error term, 
Multicollinearity. 
 
INTRODUCTION 
Artificial neural network (ANN) is the statistical model built from 
inspiration from the architecture and cognitive capabilities of 
biological brain. ANN model have a layer of architecture comprising 
large neurons   in each layer. The first of which is input, the last 
layer is output. The middle layer is the hidden layer. Each neuron 
is determined by a non-linear function of the neuron connected with 
each other, each connection has a weight that is determined from 
the training data comprising set of input and output pair. Geoffrey 
et al. (2006) developed a fast-learning algorithm for learning 
multilayer neural network.   
 
Deep learning algorithm (DLA) has the capacity of mapping out 
perceptions (inputs) with array of output inherent herein hidden 
layers handling massive large high dimensional inputs, thus the 
processes are taken place obliviously thereby leading to confused 
or inaccurate inferences (Alex and Yarin, 2017).  In deep learning 
algorithm, it is common that a person approaches fashion designer 
to sewing cloth of his or her choice of style, he or she will either 
describe the style or choose from the existing styles from the 
designer, the designer will henceforth take the measurement of 

his/her client, then he will observe the client clearly. This is not 
sufficient enough; the designer needs to think deeply in order to 
make good design. Many people have been victim of poor designs 
due to poor thinking; the client complains bitterly if the designer 
could not think deeply. It is noteworthy of the inaccurate learning 
and mapping of deep learning in its attempt to map African-
American images which resulted into mapping of it with gorillas 
(Jessica, 2015).   It was reported that DLA with respect to aleatoric 
uncertainty underperformed in depth regression, but strongly 
captured in Bayesian deep learning paradigm owing to its 
probabilistic nature (Alex and Yarin, 2017).   
 
Aleatoric uncertainty is the inherent noise in the dataset, this is so 
prominent in cross sectional dataset that is characterised with non-
spherical disturbances. We infused the simulated dataset with 
multicollinearity (dependency of the covariates) and 
autocorrelation of the disturbance term 𝑈. The epistemic 

uncertainty on the other hand refers to the uncertainty inherent in 
the model. Both uncertainties are captured in Bayesian modelling.  
We are of the opinion that the presence of both uncertainties will 
bring about paramistic uncertainty. This type of uncertainty tells us 
the misbehaviour /misleading of parameters which produce 
synergistic in lieu of antagonistic and vice-versa. Epistemic 
uncertainty captures the ignorance in the model which often leads 
to non-closed form which fitted the dataset well, it is difficult in most 
cases to ascertain the model that best fit the data well in classical 
paradigm. More often than none, various distributional and 
transformation approach had been adopted.    Gal (2016) examined 
both aleatoric and epistemic uncertainties in Bayesian learning 
paradigm.  
 
Epistemic uncertainty captures the modelling or augmentation of 
model weight (parameter) with prior distribution over the likelihood 
which in most cases arise in ignorance or unknowing approach. 
Amodei et al., (2016) explored extremely large deep learning model 
considering more than hundred million of features and 11 hidden 
layers. Jchmidhuber (2015) examined historical review of deep 
learning applications. Nicholas and Vadim (2017) claimed that DLA 
is an algorithm capable of analysis of large set of data of high 
dimension. They described it as an approach not probabilistic as a 
result, it suffers the inability of improve estimate when there is noisy 
data irrespective of the dimension.    
 
Deep learning has revolutionized machine learning which is the 
nucleus of artificial intelligence (AI). The uncertainty are the major 
threats to the accuracy of the inferences which in many ways 
accepted ignorantly as accurate, deep learning failed in this 
perspective, thus this call for extensive approach in an attempt to 
have accurate inference. 
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The related information is search for and redundant information are 
eliminated. The retained relevant information are connected in 
layers. Yarin and Zoubin (2015) proposed approach that examined 
uncertainty theoretically and application wise. Alex and Yarin, 
(2017) distinguished between aleatoric and epistemic uncertainties 
in a Bayesian paradigm. Yarin and Zoubin (2015) explored 
Bayesian deep learning by placing Gaussian prior on the weight of 
the model with a view of estimating the uncertainty theoretically. 
The epistemic uncertainty is inherent on the weight cum its prior. In 
most cases, research cannot ascertain the optimal model that will 
fit the data well and minimize aleatoric uncertainty that is inherent 
in the data. They explored practically heteroscedastic loss and 
accuracy, equally, adopted dropout with the effort of sampling 
through Monte Carlo algorithm which is used to obtain posterior 
density. It has been observed that deep learning breakdown in the 
presence of uncertainty (Keydana, 2018). This then pave way for 
the adoption of probabilistic modelling which advertently capture 
uncertainty in the model. 
 
Nicholas and Vadim (2017) claimed that full potential application of 
Bayesian inference to the field of deep learning algorithm are yet 
to be fully explored. They added that Bayesian regularization 
approach adopted in their study provided more advantages in the 
predictive analytics with non-linear data relationship. Both 
Bayesian and probabilistic approaches were examined with 
Kolmogorov’s representation of a multiple outcome, the activation 
function that affine transformation of the dendrite (inputs) which is 
the weighted sum of elements in the inputs variables. 
 
This study observed loss function with a view to minimize aleatoric 
uncertainty, the effort gear towards inherent dual disturbance term 
in the data, thus the data significantly captured aleatoric uncertainty 
while the model captures epistemic uncertainty. With Bayesian 
deep learning algorithm, this study obtained both the aleatoric and 
epistemic uncertainties theoretically and practically in a cross-
sectional econometric syndrome. Sequel to section one that cover 
introductory concept of deep and deep probabilistic learning is the 
section two which is devoted to deep learning with continuous 
outcome variable. Section three examined the methodology within 
the framework of deep probabilistic learning. In section four the 
study looks into the concluding part of the work 
 

 
 
Deep Learning Algorithm of Continuous Outcome 
Let 𝑌 = 𝐹(𝑋) be a mapping of X-input of high dimensional 

features denote a deep learning input-output mapping, with input 
space 𝑋 = 𝑋1, , , … , , , 𝑋𝑃  . The output Y being a continuous 

random variable. 
A set of hidden layers are inherent in the mapping function, then 

we have affine activation function 𝑓𝑖 given by: 𝑓𝑖
𝑊,𝑏 =

𝑓𝑖 (∑ 𝑊𝑖𝑗
𝑁𝑗
𝑗=1 𝑧𝑗 + 𝑏𝑖) where 𝑊 and z stand as weight matrix and 

inputs of the 𝑖th layers, we add the error structures of both 

heteroscedastic and auto-correlated error. Gaussian prior 
distribution 𝑤 ∼ 𝑁(0, 𝐼), this is referred to as epistemic 

uncertainty, this study therefore modified the prior with auto-
correlated error which are embedded in the data generation 
syndrome. This is known as Bayesian neural network where 
possible weight parameters are average out which is different from 
classical point of view where the weight parameter is obtained 
iteratively. 

𝑝(𝑦|𝑓𝑤(𝑋))     (1) 

 
The posterior density is obtained by conjugating the prior with the 
likelihood 
𝑝(𝑤|𝑋, 𝑦) ≅ 𝑝(𝑦|𝑋, 𝑤)𝑝(𝑤)/𝑝(𝑦|𝑋)   (2) 

 
𝑝(𝑦|𝑋) is known as normalization which is assumed to be unity. 

In deep leaning regression we specify the log likelihood as in [9]  

−𝑙𝑜𝑔𝑝 (𝑦|𝑓�̂� , (𝑋𝑖)) ∝
1

2𝜎2
∥ 𝑦𝑖 − 𝑓

�̂�(𝑋𝑖) ∥
2+

1

2
𝑙𝑜𝑔𝜎2   

          (3) 
To capture the distribution of error structure in our study, we model  

𝜎2 which capture noise in the data and model, both 

heteroscedastic and autocorrected error are inherent in 𝜎2   
embedded in Gaussian likelihood. Dropout is infused as a variation 
Bayesian approximation which is the aggregate of two Gaussian 
with small variance in one and zero mean in the other [9] VBA can 
be expressed as 

 𝑙(𝜃, 𝑝) = −
1

𝑁
∑ 𝑙𝑜𝑔𝑝 (𝑦𝑖|𝑓

�̂� , (𝑋𝑖)) +
1−𝑝

2𝑁
∥ 𝜃 ∥2𝑁

𝑖=1 .     (4) 

 
 P is the dropout probability. Since aleatoric uncertainty is captured 
in the dataset, thus epistemic uncertainty is captured by the 
predictive variance as 

 𝑣𝑎𝑟(𝑦) ≈ 𝜎2 +
1

𝑇
∑ 𝑓�̂�(𝑋)′𝑓�̂�(𝑋𝑖) − 𝐸(𝑦)′
𝑇
𝑖=1 𝐸(𝑌),     (5) 

 
The predictive mean of Epistemic uncertainty 𝐸(𝑌) =
1

𝑇
∑ 𝑓�̂�(𝑋)𝑇
𝑖=1 , in the above equation, 𝜎2 part representing the 

noise (uncertainty) inherent in the data. 
 
METHODOLOGICAL DESIGN  

Let Dataset D be denoted by: [𝑋𝑖 , 𝑦𝑖]𝑖=1
𝑁   

𝑦(𝑥) = 𝑋′𝑤 + 𝜀        (6) 

 

where  𝑤 ∈ 𝑅𝑑  represents Parameters and   𝜀 = 𝜌𝜀𝑡−1 + 𝑢𝑡 , 

assume 𝑢𝑡
𝑖𝑖𝑑
∼
𝑁(0, 𝜎−2) of which the error process is stationary 

at  /𝜌/<1, thus the covariance matrix of 𝜀 is expressed as: 𝜎−2Ω  
where 
 

Ω =
1

1−𝜌2

(

 
 
 

1 𝜌 𝜌2 . . . 𝜌𝑇−1

𝜌 1 𝜌 . . . 𝜌𝑇−2

𝜌2
..
.

𝜌𝑇−1

𝜌
..
.

𝜌𝑇−2

1 . . . 𝜌𝑇−3
..
.

𝜌𝑇−3

..

.

.

..

.

.

..

.

.

..

.
1 )

 
 
 

        (7) 

𝜀 is autocorrected error infused into the data cum the X-variables 

that are collinear of which are not of full rank, where the regressors 
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perfectly multicollinearity with variance inflation factor on 

magnitude “inf”. The study injected both the  𝜎−2Ω and 
𝜆(𝛽′𝛽 +𝑚) into the model (likelihood) to capture both 

autocorrected error and multicollinearity. Both non-spherical 
disturbances were inherent in the data. 
 
Let 𝑦 = 𝑓(𝑥)+∈ such that 𝑓(𝑥) = 𝑥′𝑤  where  𝑥 is the input 

vector, 𝑤 denotes vector of weight (parameters) of a linear deep 

learning model. 𝑓 is the transfer function while y represents the 

output. 
  
The likelihood of the deep learning model 
𝑝(𝑦|𝑋, 𝑤) = ∏ 𝑝𝑛

𝑖=1 (𝑦𝑖|𝑋𝑖 , 𝑤)  
 

= ∏
1

√2𝜋𝜎𝑛
2Ω
𝑒𝑥𝑝 (

−(𝑦𝑖−𝑋𝑖′𝑤)
2+𝜆(𝛽′𝛽+𝑚)

2𝜎𝑛
2Ω

)𝑛
𝑖=1    (8) 

 

= ∏
1

(2𝜋𝜎𝑛
2Ω)𝑛/2

𝑒𝑥𝑝 (
−(|𝑦𝑖−𝑋𝑖′𝑤|)

2+𝜆(𝛽′𝛽+𝑚)

2𝜎𝑛
2Ω

)𝑛
𝑖=1   (9) 

 

= 𝑁(𝑋′𝑤 + 𝜆𝐼  , 𝜎𝑛
2𝐼Ω)   (10) 

 
In Bayesian paradigm, the prior is specified over the parameters 
space. The prior for the w is assumed to have zero mean and 

covariance matrix 𝑤 = 𝑁(0, Σ𝑝). The posterior density is 

expressed as: 𝑝(𝑤|𝑦, 𝑋) =
𝑝(𝑦|𝑋,𝑤)𝑝(𝑤)

𝑝(𝑦|𝑋)
  where p(y|X) is 

normalizing constant or marginal likelihood which is assumed to be 

unity ∫ 𝑝(𝑦|𝑋) = 1 

𝑝(𝑤|𝑦, 𝑋) = ∫ 𝑝(𝑦|𝑋, 𝑤)𝑝(𝑤)                                       (11) 

 
Completing the squares have 

𝑝(𝑤|𝑦, 𝑋) ∝ 𝑒𝑥𝑝 (−
1

2𝜎𝑛Ω
2 (𝑦 − 𝑋

′𝑤)2 + 𝜆(𝛽′𝛽 +

𝑚)) 𝑒𝑥𝑝 (−
1

2
𝑤′Σ𝑝

−1𝑤)                               (12) 

∝ 𝑒𝑥𝑝 (−
1

2
(𝑤 − �̅�)′ (

1

𝜎𝑛
2Ω
𝑋𝑋′ + 𝜆𝐼 + Σ𝑃

−1) (𝑤 − �̅�))    (13) 

 

where �̅� = 𝜎𝑛
−2Ω(𝜎𝑛

2𝑋𝑋′ + 𝜆𝐼 + Σ𝑃
−1)−1𝑋𝑦. The prior is 

Gaussian with mean �̅� and covariance 

 𝐴−1 = 𝜎𝑛
2𝑋Ω𝑋 + 𝜆𝐼 + Σ𝑝

−1,                                           (14) 

thus we have  

𝑝(𝑤|𝑦, 𝑋) ∝ 𝑁 (�̅� =  
1

𝜎𝑛
2𝐴

−1𝑋𝑦, 𝐴−1)                           (15) 

 
RESULTS AND INTERPRETATION 
The study used normal distribution with scale of 1, with 
tfp.layers.DistributionLambda which return an instance of with 
tfd.Distribution. The model in anyway cannot capture data structure 
due to its complexity. The data has dual non-spherical disturbances 
(multicollinearity and autocorrelation of error term, the 
multicollinearity is severe with variance inflation factor of inf where 
autocorrelation of error term is negative with value of 1.46 that is 
less than 1.5), mere probabilistic model without uncertainty may not 
be able to capture the inherent uncertainty. The second model 
focused on modelling aleatoric uncertainty; this type of uncertainty 
inherent in the data coupled with the associated disturbances. 
Aleatoric the variability is inherent in the data which make 
impossible to predict target perfectly. The inherent variability in the 

data inhibit the certainty of the parameters.  
 
Epistemic: the noise inherent in the data implies that certainty of 
parameters of underlying process of linear relationship between 
regressors and regresand is doubtful. Epistemic uncertainty can be 
reduced if data I increased, this is impossible in case of aleatoric.  
In epistemic, standard keras is replaced with Tensorflow probability 
DenseVariational layer. The tfp layer uses a variational posterior 
Q(w) over the weight to denote the uncertainty in the 
weight(parameters). The dense layer regularises the posterior 
Q(w) in order to close to prior   p(w) which models the uncertainty 
in the underlying process (Pavel, et al., 2019). Both uncertainty: an 
extra output is added to TFP DenseVariational to capture aleatoric 
uncertainty in order to model the scale of the target distribution. 
 
Table 1: Depicting RMSE, MAE, LOSS AND MSE Of Training, 
Testing And Validating Unstandardized Datasets For The Different 
Models In One Epoch. 

 
 
From the above table, the study observed in validation data, that 
both aleatoric and epistemic uncertainties models have the highest 
root mean square error of magnitude 14.67 while the classical 
approach which only considered non-spherical disturbances 
without modelling uncertainty has lowest root mean squares error 
with magnitude 14.23.  The classical adopted keras Dense layer 
while the probabilistic approach made use of DenseVariational 
model uncertainty cum non-spherical disturbances that inherent in 
the data. Epistemic-uncertainty in probabilistic model has minimum 
root mean square error and loss for the test data and training data 
respectively while aleatoric uncertainty has the highest mean 
square error and loss for test and training data respectively. The 
study recorded that epistemic uncertainty recorded the highest 
magnitude of mean square error and mean absolute error with both 
uncertainties having the lowest MSE and MAE for the trading data. 
It can be inferred from the study the both modelling uncertainty and 
data infusing with non-spherical disturbances inhibit the perfect and 
accuracy of the parameters and test of hypothesis and standard 
error that make use of the parameters. 
 
Table 2: Depicting   MAE, LOSS AND MSE OF Training and 
Validating Unstandardized Datasets for the Different Models in 100 
Epoch 
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The above table described loss, mse and mae of both training and 
validating data the study observed that both uncertainties have the 
highest loss, mae, mse in both training and validating data whereas 
no uncertainty has minimum loss in both training and validating 
data, the classical has minimum mse and mae both in training and 
validating data. 
 

 
Fig. 1 showing training and validation error for no uncertainty 
model of unstandardised datasets 
 

 
Fig. 2: showing training and validation error for aleatoric 
uncertainty model of unstandardized datasets 
 

 
Fig. 3: showing training and validation error for epistemic 
uncertainty model of unstandardized datasets 
 

 
Fig. 4 showing training and validation error for both aleatoric and 
epistemic uncertainties model of unstandardized datasets 
 

 
Fig. 5: showing training and validation error for frequentist model 
of unstandardized datasets 
 
From figures 1 to 5, it is observed that training error decrease 
slowly as the epoch increases, validating error stay above the 
training error, the study observed that effect of non-spherical 
disturbances and uncertainty in the model have great impact in the 
outcome of the study. 
 
Table 3: Depicting RMSE, MAE, LOSS AND MSE of Training, 
Testing and Validating Standardized Datasets for the Different 
Models in One Epoch 

 
 
Table 4: Depicting   MAE, LOSS AND MSE of Training and 
Validating unstandardized Datasets for the Different Models in 100 
Epoch 

 
 
The above table described loss, mse and mae of both training and 
validating data, the study observed that both uncertainties have the 
highest loss, mae, mse in both training and validating data except 
epistemic model that has highest mse in validating data whereas 
classical has minimum loss both at training and validating data.  
Aleatoric uncertainty has minimum mae and mse  for both the 
training and validating data. 

 
Fig. 6: showing training and validation error for both no 
uncertainties model of standardized datasets 
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Fig. 7 showing training and validation error for aleatoric uncertainty 
model of standardized datasets 
 

 
Fig. 8 showing training and validation error for epistemic 
uncertainty model of standardized datasets 
 

 
Fig. 9 showing training and validation error for both aleatoric and 
epistemic uncertainties model of standardised datasets 
 

 
Fig. 10 showing training and validation error for frequentist model 
of standardised datasets 
 
Conclusion 
The study compared the frequentist and probability approaches to 
capture uncertainty and non-spherical disturbances inherent in the 

data and model.  Both keras Dense layer and tfp DenseVariatìonal 
layer were adopted. The underlying model were constructed 
probabilistically to capture aleatoric, epistemic and both. 
Measurement criteria were used to evaluate the performance of the 
underlying model.   The study observed that the no uncertainty, 
classical and aleatoric behave well when data are standardised, 
the magnitude of loss, mae and mse reduced by almost 98%, this 
implies that the accuracy of the parameter will be certain, though 
epistemic and both uncertainties depict poor performance of the 
model despite their probabilistic nature, this may be due to 
combination of uncertainty with non-spherical disturbances. The 
outcome of the study is analogous with Keydana (2018) and Gal 
(2016). 
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