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'_?ESTRACT fimats led T age KoL v, = Bo+ BiX11+ BoXizt ...+ BrXip + Uy

is paper proposes a new estimator called Two stage K- _

estimator by combining these two estimators previously proposed Y2 = Bo+ Pikor + BoXoot ot FiXow + Uz
by Prais Winsten (1958) and Kibra with Lukman (2020) for

autocorrelation and multicollinearity respectively and to derived the .

necessary and sufficient condition for its superiority over other Yn= Bo+ PiXni+ BoXnat ...+ BxXux + Uy

competing estimators. Simulation study was used to ascertain the

In vector form

dominance of this new estimator using the finite sample properties P 1 Xu X - X [50] Uo
of estimators in terms of the estimated mean squared error. The [V2 1 Xo1 Xoz oo Xoi | |Ba Uy
study findings shows that under severe autocorrelation and [Va] |1 X31 Xzo .. Xa| |B2] U,
collinearity condition, the proposed Two stage K-L estimator |- ]= . | | + | . |
appears to be having a similar performance with RMLE and MLE. || | | . .
Also, under severe autocorrelation and moderate collinearity J || .
condition, regardless of the sample size, the proposed Two stage Yn | 1 Xp1 Xno o Xk | lﬁkJ lUnJ
K-L estimator is seen to outperform all other estimators and lastly, nx1 n x (k+1 k+1) x1 n
the Two stage K-L estimator appears to have an improved x 1

performance as the large sample sizes. The study recommends The general form is:

that when autocorrelation and multicollinearity level is at moderate y=XBg+U (3)

to severe, the proposed Two stage K-L estimator will perform better
regardless of the size of the data, and the degree of autocorrelation
and multicollinearity should be considered while estimating
parameters and thus applying an efficient estimator to avoid
erroneous inferences.

Keywords: Autoregressive, Autocorrelation, K-L estimator,
Multicollinearity, Regression.

INTRODUCTION

Modern electronics and computers permit the collection of data
from an ever-increasing variety of sources. As more and more data
become available in many different fields, the size and complexity
of typical data sets grows as well. With this growth comes the
potential for more precise and accurate predictions. Regression
analysis is a classic commonly used prediction tool. Regression
analysis explore the relationship between a dependent variable
(response variable) and one or more independent variable
(explanatory variable). The general single-equation linear
regression model can be represented as:

y=Bo+X BX+U 1)
where yis the dependent variable; X;, X,,X5,..., X, are the
independent variables; f;,j = 0,1,2 ..k are the regression
coefficients, U is the stochastic disturbance term or error term.
For a sample of n observations,

where y is an (n x 1) vector of observations of the dependent
variable, X matrix is an n x (k+1) full rank matrix of explanatory
variables, B is a ((k+1) x1 vector of unknown parameters to be
estimated, U is (n x 1) vector of random error. The parameter § in
a linear regression model are commonly estimated using the
Ordinary Least Squares Estimator (OLSE). The OLSE of B is
given as:

ﬁOLS = (X X )71 Xy )

The estimator is generally preferred if there is no violation in any of
the assumptions of the linear regression model (Johnston, 1972;
Ayinde et al., 2018).

The assumption of uncorrelated errors must be valid for the
efficiency of the OLSE. Alternative estimators to the OLSE were
proposed. Some researchers have worked on the methods for
detecting the presence of autocorrelation and alternative
estimators to estimate the parameters in the linear regression
model with autocorrelation error. These include Aitken (1935),
Cochran and Orcutt (1949), Durbin and Watson (1950), Hildreth
and Lu (1960), Rao and Grilliches (1969), Beach and Mackinnon
(1978), Kramer (1980), Busse et al. (1994), Kramer and Hassler
(1998), Kleiber (2001), Kramer and Marmol (2002), Butte (2002),

Vi = Bo+ BiXis + BoXizt ...+ BiXix + U; () Nwabueze (2000), Nwabueze (2005), Olaomi (2004), Olaomi
wherei=1,2,...n. (2006), Olaomi and Ifederu (2006), Grochova and Strelec (2013).
Thus, In time-series applications, there are many structures of

autocorrelation (Olaomi and Ifederu, 2008).
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Another popular assumption is that the independent (explanatory)
variables are independent. However, in practice, there may be near
to strong linear relationship among the explanatory variables which
is referred to as multicollinearity. According to literature, the
performance of OLSE drops when there is multicollinearity. The
estimator possesses large variance and occasionally the
regression coefficient will exhibit wrong sign (Gujarati, 1995;
Ayinde et al., 2018; Lukman and Ayinde, 2017). Various methods
of estimating the parameters in linear regression model with
multicollinearity are available in the literature. Authors include Hoerl
and Kennard (1970), McDonald and Galarneau (1975), Lawless
and Wang (1976), Hocking, Speed and Lynn (1976), Dempster,
Schatzoff and Wermuth (1977), Wichern and Churchill (1978),
Gibbons (1981), Nordberg (1982), Saleh and Kibria (1993), Haq
and Kibria (1996), Singh and Tracy (1999), Kibria (2003), Khalaf
and Shukur (2005), Alkhamisi, Khalaf and Shukur (2006),
Alkhamisi and Shukur (2008), Muniz and Kibria (2009), Dorugade
and Kashid (2010), Mansson, Shukur and Kibria (2010), and
recently Khalaf (2013), Ghadhan and Mohamed (2014), Dorugade
(2014), Kibria and Shipra (2016), Ayinde et al. (2018), Lukman et
al. (2017), Lukman et al. (2019a,b), Qasim et al. (2019), Kibria and
Lukman (2020), Aslam and Ahmad (2020), Dawoud and Kibria
(2020).

Literature have recently show that both problems can jointly exist
in a linear regression model (Trenkler 1984; Bayhan and Bayhan,
1998; Ayinde et al., 2015; Lukman et al., 2015; Ozkale and Tugba,
2015; Tugba and Ozkale, 2019; Tugba, 2020). Trenkler (1984)
proposed the generalized ridge estimator which takes the
autocorrelation into account in the general linear regression model.
Hussein and Zari (2012) combined the ridge ression estimator and
the generalized least squares estimator to mitigate both problems.
Recently, Eledum and Zahri (2013) proposed the feasible
generalized ridge (FGR) estimator to deal with both the
multicollinearity and autocorrelation problems. Dawoud and
Kagiranlar (2015) proposed the feasible generalized Liu (FGL)

MATERIALS AND METHODS

The Proposed Estimator Derivation

Consider the Linear Regression Model with autoregressive of order
1, AR (1) given as:

Ve = Bo + B1Xtx + BoXiz + -+ + BpXep + Ut (5)
where w= pu;_; + &, p is the autocorrelation parameter (|p|<
1), & is a random term such that e ~ N (0, 0?), E(g;g;) = 0 (i #]).
Equation (3.1) in matrix form is written as follows:

y = Xp+U (6)
Pre-multiplying both sides of equation (5) by an n x n non-singular
matrix P, we obtain

Py = PXB+PU (7)

The error term becomes PU with E (PU) = 0 and E(PU'UP)’ = ¢2
PQP'. Thus, if it is possible to specify P such that PQP’= | implying
that P'P = Q~', then the OLS estimates of the transformed variable
PY and PX in equation (7) have all the optimal properties of OLS
and so the usual inferences could be valid. Re-defining equation
(7) as

y=Xg+U @)

where y* = Py, X"=PXand U" = PU.
The generalized least squares estimator is obtained as follows:
Bats = (XX’ Xy = (X'P'PX)’ X'P'Py

=(X'Q'X)" XQ'y 9)

Q is a known positive definite (p.d.) matrix. However, in practice, Q
is often unknown. A common practice is to use the estimated matrix
of Q in order to find the estimated generalized least square
estimator (EGLSE) or Two Stages method estimator that is more
efficient than the GLSE. We reform the Two Stages procedure as
follows to propose the new estimator. From equation (9) where
E(U")=0, Cov(U’)= o2. Thus, the OLS estimator for model (9) is:

regression estimator by combining the Liu estimator and the Brs = (X"X)" Xy" (10)
feasible generalized least squares. Ozbay et al. (2016) combined where;
the feasible generalized restricted ridge regression estimator to y*=Py= i
take account of both problems. Bello et al. (2017) also introduced 1 "
feasible generalized Ridge Estimators as Alternatives to ridge and 1-p% 0 0 0 of|¥
feasible generalized least squares estimator. —p 1 0 - 0 oflhs

0 -p 1 - 0 0
The Ordinary Least Square (OLS) estimator is popularly employed : T
to estimate the regression parameter in the linear regression model 0 0 0 =« —p 1lf-
(LRM). The estimator suffers setback in the presence of . LYy,
multicollinearity and/or autocorrelation. It produces inefficient X=PX=
estimates with large variance. Also, the two problems do exist h [1 X113 X1z Xlk]
jointly in LRM and in practice estimators to handle them together @1=p2z 0 0 - 0 Off1 Xo1 X2 ... Xy
are rare. Thus, this research attempted to propose new estimators —-p 1 0 - 0 0|1 X31 X3z ... X3i
to handle both problems. This study considers the first-order 0 -p 1 - 0 0 :
Autoregressive structure AR(1). The proposed new estimator :
which is the Two stage K-L estimator. and performance compared 0 0 0 -p 1 .

1 Xpq Xnz oo Xnie

with other existing five common estimators such as Prais Winsten
method of estimation, Cochrane Orcutt method of estimation,
Maximum Likelihood method and Restricted maximum likelihood.

This study thus employs Monte Carlo simulation study approach to
compare the finite estimators’ property of the proposed estimator
and the six (6) exiting ones formulated to correct for the problem of
autocorrelation and multicollinearity in a regression model and
thus, determine the best method in terms of mean squared error.

Note that X""X=X'P'PX= X"Q-"X and X"'y"=X'P'Py= X'Qy,
where
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1 -p o - 0 0 and 0.9.
-p 1+ pZ —p 0 0
01—t 0 —p 14p% o 0 0 (1) Proce'dures'for Generating the Explanatory Variables
1-p2| : : : : : The simulation procedure used by McDonald and Galarneau
0 0 0 1+p% —p (1975), Wichern and Churchill (1978), Gibbons (1981), Kibria
0 0 0 - —p 1 (2003), Lukman et al. (2019a,b), Lukman et al. (2020b) was also

After estimating the p, we obtained Q~*and then the two stage is
given as Prais Winsten (1954):

Brs= (X' Q1 X1 X' Q1y (12)
(to correct for autocorrelation)

Kibria and Lukman (2020) proposed the K-L estimator to solve the
problem of multicollinearity in the LRM.

A o A
B = (XX +KI)(XK =kl Bos (13)
(to correct for multicollinearity)

This paper therefore adopts these estimators (12) and (13) and
proposed the Two stage K-L estimator as follows:

Pra = (X'QX+KN)HX'QIX =Kl ) Brs (14)

(to correct for both problems)

where

A2

A~

k =min — |
282+
B+

Simulation Studies Procedure

To examine the proposed and existing estimators, consider a linear
regression model of the form:

Ye = Bo + B1Xe1 + BoXiz + - + PpXep + U (15)
t=12,..,n;p=3,7

used to generate the explanatory variables in this study: This is
given as:

1
Xg=(1- pz)zzti + pZyp (19)

t=1,2,3,...,n; i=1,2,...p.

where Z; is independent standard normal distribution with mean
zero and unit variance, pis the correlation between any two
explanatory variables and p is the number of explanatory variables.
The values of p were taken as 0.6, 0.8 and 0.9 respectively. Thus,
the correlations between the variable are the same. In this study,
the number of explanatory variable (p) was taken to be six (6).

Procedures for Generating the Dependent Variable

The true values of the regression coefficient of model (15) are taken
as follows: (3, was taken to be identically zero. When P=6, the
values of B were chosen to be: $,=0.6, 3,=0.1, B3=0.2, B,=0.1,
B5=0.2, B¢=0.4. Sample sizes were varied between 25, 50, 100,
250 and 500. Three different values of a: 0.5, 1 and 5 were also
used. At a specified value of n, p and o, the fixed Xs are first
generated; followed by the U, and the values of Y are then obtained
using the regression model. This process was done 1000 times.

Criterion for Investigation and Performance of Ridge
Parameters

Several authors in literatures have used the Mean Square Error
(MSE) to compare the performance of ridge regression estimator
with the Ordinary Least Square estimator when there is
multicollinearity and autocorrelation. These authors include Hoerl
and Kennard (1970), Lawless and Wang (1976), Saleh and Kibria
(1993), Kibria (2003), Khalaf and Shukur (2005), Alkhamisi and

Weri Shukur (2008), Mansson et al. (2010), Ozkale (2014), Dawoud and
He = pie-1 + &, |pl < . Kaciranlar (2015), Ozbay et al. (2016). For each replicate, the
1L, 412, ..n, g~N(0,0%). estimated MSE for each of the estimators a* is obtained as follows:

The model was studied with fixed regressors, X, t=1,2, ..., n;i
=1, 2, ..., p such that there exist different levels of multicollinearity
among the regressors.

Procedures for Generating the Error Term

The error terms were generated by using the distributional
properties of the autocorrelation error terms of AR (1) model given
as:

u~N (0, e 5) (16)

Thus, assuming the model start from infinite past, the error terms
were generated as follows:

— €1
= (17)

U =pUup_q+¢& t=234...n (18)
In this study, autocorrelation value (p) will be varied from 0.6, 0.8,

MSE(a") = —==31%°(a" — a)'(a" — ),

(3.20)

where a* would be any of the estimators earlier listed. The
estimator with the smallest estimated MSE is considered best.
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RESULTS
Table 3.1 Simulation Result of the Estimators Finite Properties

n Sig r mse0OLS mzePW mzeCC maelMLE mseRMLE mseRP mseTSK]
25 0.6 0.6 1.765342 0.9216255 0.9552786 09189025 09002328 0.1895992 0.04949231
50 0.6 0.6 1.403258 0.6021851 0.6094751 0.6021621 06017794 0.3566228 0.2058936
100 | 06 0.6 1.080999 04354158 04349143 04353708 04353793 0.2509308 01057379
250 | 06 0.6 0.9064981 0.3599152 0.3600696 03599296 03599251 0.1989222 0.05630921
500 [ 06 0.6 0.8682992 0.3337621 0.3338483 03337686 0.3337682 0.1786961 0.03667147
25 0.6 0.8 01784106 0.1114702 01132732 01120787 01111013 1.785956 1.799055
50 0.6 0.8 1881733 1.024748 1.035084 1.024484 1.024364 08257871 0.6496964
100 | 06 0.8 140864 07548848 0.7539764 07547774 07548042 0.6525893 0.4925504
250 | 06 0.8 1.1193%6 0.629309 0.6294339 0.629329 06293293 05734614 0.4195086
500 [ 06 0.8 1.047148 0.5909644 05911119 05909755 0.5%09751 0.5470385 0.3947072
25 06 | 099 1810109 11.94426 1252129 11.93307 11.38448 7084873 5.863368
50 06 | 099 16.89864 9916169 10.04659 9908455 9.914905 5713724 5104146
100 | 06 | 099 9367394 5008914 5011178 5007942 5008922 2882066 2811191
250 ( 06 | 099 4441183 26842572 2844546 2642557 21842653 1594143 141249
500 [ 0.6 | 0.99 3.198046 1.989338 1.990154 1.989444 1.989448 1.272801 1103113
25 0.8 0.6 0.03947308 0.01517657 0.01385783 0.01388733 0.0139804 195613 1.959766
50 0.8 0.6 1.898236 0.5830173 0.5861086 05831152 05830579 0.3944859 0.215662
100 | 08 0.6 1.399113 04351171 04355746 04350625 04351161 02159617 0.0558912
250 | 0.8 0.6 1.029742 0.3545254 0.3547274 03545202 03545262 0.1632184 0008259548
500 [ 08 0.6 0909583 0.3342406 0.3342975 03342442 03342454 01290378 0.02285823
25 0.8 0.8 0.05638721 0.0243044 002222879 0.0226632 0.02268862 1.945945 1.950666
50 0.8 0.8 2580897 0.9749083 0.9798055 09745548 09745825 0.9458319 0.7270531
100 | 08 0.8 1.801418 0.7477165 0.7482741 07475779 07476361 0.6746369 0.5035295
250 | 08 0.8 1.265281 0.6212664 06216583 0621257 06212693 05891273 04337659
500 [ 0.8 0.8 1126614 05907184 0.5907927 05507245 05507261 05489454 0.387905
25 08 | 099 07076101 0.2854037 0.2575968 02736542 02742312 1739748 1.792176
50 08 | 099 27.07308 8.340902 8.46762 8.33705 8.33804 8757957 7.263274
100 | 08 | 099 14.3803 4402451 4411947 4398927 4400659 4042587 35085311
250 ( 0.8 | 099 6.680019 2475905 2481586 2475897 2475993 203117 1.830855
500 ( 0.8 | 0.99 4274545 1.910301 1910284 1910338 1910319 1466288 129125
25 | 099 | 06 0.2945369 0.00607149 0003705287 | 0005545767 | 0005028677 1.988992 1.989734
50 | 099 | 06 01016496 0002810683 | 0002255329 | 0002228428 | 0002233132 1987827 1.989002
100 | 099 | 0.6 0.9445305 0007852981 | 0.007344888 0.00767277 0.007695354 1.936978 1.944128
250 [ 099 | 06 16.297%4 0.2053679 0.2052671 02053562 02053515 04885477 0.6352601
500 [ 099 | 06 763216 01316079 01316185 01316091 0.131608 1.063558 1.142964
25 | 089 | 0.8 03111623 0008363842 | 0005831484 | 00068250723 | 0008479785 1982688 1.984997
50 | 089 | 0.8 0.1050946 0004895734 | 0.003856986 0.00380872 0.003817653 1.984912 1.987325
100 | 089 | 0.8 0972599 0.0135782 0.01357651 0.01329071 0.01333181 1919205 1.933621
250 | 099 | 08 19.45765 0.4179911 04172226 04174324 04174017 01697942 0.08307402
500 | 099 | 08 1779121 05827553 05827311 05827549 05827454 0.8542218 06341394
25 | 099 | 099 0.6487634 0.09306785 0.09462802 0.08131614 0.07956381 1.892854 1.939026
50 | 089 | 099 04545714 0.04321974 0.03614823 0.03552794 0.03578183 1.948407 1.957708
100 | 089 | 099 2165703 007245178 0.07425715 0.0716985 0.07152038 1667523 1.734786
250 | 0.99 | 0.99 2492182 0.07202752 0.07000018 0.07016146 0.07010827 1655552 167722
500 | 0.99 | 0.99 14.05857 04893829 0.4866271 0.4867259 04866702 0467098 0.397045

Source: Simulation study results extraction
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The table shows the finite performance properties of the proposed estimator and others to being compared

sig=0.6,r=0.6

25 100 250 500 50

100 250

sample size n)

50 100 250

50

sample size (n)

Figure 3.1

DISCUSSION

As observed from the result of the simulation study, the six (6) other
estimators in literature previously proposed to handle the
autocorrelation and multicollinearity in a linear model was seen to
be performing better than the Ordinary Least Square (OLS) is
expected to only produce a robust result when all the classical
assumptions are met and this corroborates the study of Mansson,
Shukur and Kibria (2010), and recently Khalaf (2013), Ghadhan
and Mohamed (2014), Dorugade (2014), Kibria and Shipra (2016),
Ayinde et al. (2018), Lukman et al. (2017), Lukman et al. (2019a,b),
Qasim et al. (2019), Kibria and Lukman (2020), Aslam and Ahmad
(2020), Dawoud and Kibria (2020). However, the simulation study
shows that the proposed Two stage K-L estimator out performed
all existing estimators in literature at different samples sizes and
various degree of the assumption violations. The Two stage K-L
estimator is seen to have a minimum variance (MSE) when
compared to the other estimators. This is thus expected since it

sig=0.8,r=0.6

Sample size (n)

sig=0.8,r=0.8

Sample size {n)

sig=0.99,r=0.6

MSE

500 50 100 250

Sample size (n)

5ig=0.99,r=0.8

MSE

Sample size (n)

sig=0.99,r=099

MSE
e

— 5 —Y

Sample size (n)

Plots of the Estimators’ Finite Properties at Different Sample Sizes and Degree of Assumption’s Violation

involves the process of first correcting for autocorrelation in the
model’s error term and then transforming the X'X matrix with a
suitable rho to remove the multicollinearity effect before estimating
the model's parameter. This procedure is however alien and unique
to other estimators which will just corrected of either of the two
assumption’s violations and not both simultaneously like the
proposed two-stage K-L estimator.

Conclusion and Recommendation

Based on the general finding about the estimators presented and

discussed earlier, the following conclusions are drawn:

e That under severe autocorrelation and multicollinearity
condition, and as sample size is increasing, the Two stage K-
L estimator proposed appears having a similar performance
with RMLE and MLE.

e That under severe autocorrelaton and moderate
multicollinearity condition, regardless of the sample size, the
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proposed Two stage K-L estimator is seen to be the best.

e  That sample size has a significant effect on the performance
of the estimators across all the autocorrelation and
multicollinearity levels. However, the Two stage K-L estimator
appears to have an improved performance as the sample size
increase.

Based on the above findings, the following are recommended:

e  Thatwhen autocorrelation and multicollinearity level between
the predictors is moderate to severe, the proposed Two stage
K-L estimator will perform better regardless of the size of the
data.

That the degree of autocorrelation and multicollinearity between

the variables should be considered while estimating parameters of

Regression models so as to avoid erroneous inferences
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