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ABSTRACT  
This paper proposes a new estimator called Two stage K-L 
estimator by combining these two estimators previously proposed 
by Prais Winsten (1958) and Kibra with Lukman (2020) for 
autocorrelation and multicollinearity respectively and to derived the 
necessary and sufficient condition for its superiority over other 
competing estimators. Simulation study was used to ascertain the 
dominance of this new estimator using the finite sample properties 
of estimators in terms of the estimated mean squared error. The 
study findings shows that under severe autocorrelation and 
collinearity condition, the proposed Two stage K-L estimator 
appears to be having a similar performance with RMLE and MLE. 
Also, under severe autocorrelation and moderate collinearity 
condition, regardless of the sample size, the proposed Two stage 
K-L estimator is seen to outperform all other estimators and lastly, 
the Two stage K-L estimator appears to have an improved 
performance as the large sample sizes. The study recommends 
that when autocorrelation and multicollinearity level is at moderate 
to severe, the proposed Two stage K-L estimator will perform better 
regardless of the size of the data, and the degree of autocorrelation 
and multicollinearity should be considered while estimating 
parameters and thus applying an efficient estimator to avoid 
erroneous inferences. 
 
Keywords: Autoregressive, Autocorrelation, K-L estimator, 
Multicollinearity, Regression. 
 
INTRODUCTION 
Modern electronics and computers permit the collection of data 
from an ever-increasing variety of sources. As more and more data 
become available in many different fields, the size and complexity 
of typical data sets grows as well. With this growth comes the 
potential for more precise and accurate predictions. Regression 
analysis is a classic commonly used prediction tool.  Regression 
analysis explore the relationship between a dependent variable 
(response variable) and one or more independent variable 
(explanatory variable). The general single-equation linear 
regression model can be represented as: 

 𝑦 =  𝛽0 + ∑ 𝛽𝑗
𝑘
𝑗=1 𝑋𝑗 + U                                              (1)  

where y is the dependent variable;  𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑘   are the 

independent variables; 𝛽𝑗 , 𝑗 = 0,1,2…𝑘 are the regression 

coefficients, U is the stochastic disturbance term or error term. 

For a sample of n observations, 
𝑦𝑖 =  𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2+ . . . + 𝛽𝑘𝑋𝑖𝑘 + U𝑖        (2) 

where 𝑖 = 1, 2, … n.          

Thus, 

      
        𝑦

1
= 𝛽0 + 𝛽1𝑋11 + 𝛽2𝑋12+ . . . + 𝛽𝑘𝑋1𝑘 + U1 

        𝑦2 =  𝛽0 + 𝛽1𝑋21 + 𝛽2𝑋22+ . . . + 𝛽𝑘𝑋2𝑘 + U2 

         

.

.

.
 

        𝑦𝑛 = 𝛽0 + 𝛽1𝑋𝑛1 + 𝛽2𝑋𝑛2+ . . . + 𝛽𝑘𝑋𝑛𝑘 + U𝑛 

In vector form  

[
 
 
 
 
 
 
𝑦1

𝑦2

𝑦3

.

.

.
𝑦𝑛]

 
 
 
 
 
 

  =  

 
 
 
 
 
 
 
1   𝑋11  𝑋12   . . .  𝑋1𝑘

1   𝑋21  𝑋22   . . .  𝑋2𝑘

1   𝑋31  𝑋32   . . .  𝑋3𝑘

.
 .
 .

1   𝑋𝑛1  𝑋𝑛2   . . .  𝑋𝑛𝑘 
 
 
 
 
 
 

     

[
 
 
 
 
 
 
𝛽0

𝛽1

𝛽2

.

.

.
𝛽𝑘]

 
 
 
 
 
 

    +          

[
 
 
 
 
 
 
𝑈0

𝑈1

𝑈2

.

.

.
𝑈𝑛]

 
 
 
 
 
 

 

𝑛 ×  1             𝑛  × ( 𝑘 + 1)        (𝑘 + 1) ×  1            𝑛 
×  1           

The general form is: 
 y = X β + U                     (3) 
 
where y is an (n × 1) vector of observations of the dependent 

variable, X matrix is an n × (k+1) full rank matrix of explanatory 

variables, 𝛽  is a ((k+1) ×1 vector of unknown parameters to be 

estimated, U is (n × 1) vector of random error. The parameter 𝛽 in 

a linear regression model are commonly estimated using the 
Ordinary Least Squares Estimator (OLSE). The OLSE of  𝛽  is 

given as:  

  yXXXOLS


1
̂

                 (4) 
 
The estimator is generally preferred if there is no violation in any of 
the assumptions of the linear regression model (Johnston, 1972; 
Ayinde et al., 2018).  
 
The assumption of uncorrelated errors must be valid for the 
efficiency of the OLSE. Alternative estimators to the OLSE were 
proposed. Some researchers have worked on the methods for 
detecting the presence of autocorrelation and alternative 
estimators to estimate the parameters in the linear regression 
model with autocorrelation error. These include Aitken (1935), 
Cochran and Orcutt (1949), Durbin and Watson (1950), Hildreth 
and Lu (1960), Rao and Grilliches (1969), Beach and Mackinnon 
(1978), Kramer (1980), Busse et al. (1994), Kramer and Hassler 
(1998), Kleiber (2001), Kramer and Marmol (2002), Butte (2002), 
Nwabueze (2000), Nwabueze (2005), Olaomi (2004), Olaomi 
(2006), Olaomi and Ifederu (2006), Grochova and Strelec (2013). 
In time-series applications, there are many structures of 
autocorrelation (Olaomi and Ifederu, 2008). 
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Another popular assumption is that the independent (explanatory) 
variables are independent. However, in practice, there may be near 
to strong linear relationship among the explanatory variables which 
is referred to as multicollinearity. According to literature, the 
performance of OLSE drops when there is multicollinearity. The 
estimator possesses large variance and occasionally the 
regression coefficient will exhibit wrong sign (Gujarati, 1995; 
Ayinde et al., 2018; Lukman and Ayinde, 2017). Various methods 
of estimating the parameters in linear regression model with 
multicollinearity are available in the literature. Authors include Hoerl 
and Kennard (1970), McDonald and Galarneau (1975), Lawless 
and Wang (1976), Hocking, Speed and Lynn (1976), Dempster, 
Schatzoff and Wermuth (1977), Wichern and Churchill (1978), 
Gibbons (1981), Nordberg (1982), Saleh and Kibria (1993), Haq 
and Kibria (1996), Singh and Tracy (1999), Kibria (2003), Khalaf 
and Shukur (2005), Alkhamisi, Khalaf and Shukur (2006), 
Alkhamisi and Shukur (2008), Muniz and Kibria (2009), Dorugade 
and Kashid (2010), Mansson, Shukur and Kibria (2010), and 
recently Khalaf (2013), Ghadhan and Mohamed (2014), Dorugade 
(2014), Kibria and Shipra (2016), Ayinde et al. (2018), Lukman et 
al. (2017), Lukman et al. (2019a,b), Qasim et al. (2019), Kibria and 
Lukman (2020), Aslam and Ahmad (2020), Dawoud and Kibria 
(2020). 
 
Literature have recently show that both problems can jointly exist 
in a linear regression model (Trenkler 1984; Bayhan and Bayhan, 
1998; Ayinde et al., 2015; Lukman et al., 2015; Ozkale and Tugba, 
2015; Tugba and Ozkale, 2019; Tugba, 2020). Trenkler (1984) 
proposed the generalized ridge estimator which takes the 
autocorrelation into account in the general linear regression model. 
Hussein and Zari (2012) combined the ridge ression estimator and 
the generalized least squares estimator to mitigate both problems. 
Recently, Eledum and Zahri (2013) proposed the feasible 
generalized ridge (FGR) estimator to deal with both the 
multicollinearity and autocorrelation problems. Dawoud and 
Kaçıranlar (2015) proposed the feasible generalized Liu (FGL) 
regression estimator by combining the Liu estimator and the 
feasible generalized least squares. Ozbay et al. (2016) combined 
the feasible generalized restricted ridge regression estimator to 
take account of both problems. Bello et al. (2017) also introduced 
feasible generalized Ridge Estimators as Alternatives to ridge and 
feasible generalized least squares estimator. 
 
The Ordinary Least Square (OLS) estimator is popularly employed 
to estimate the regression parameter in the linear regression model 
(LRM). The estimator suffers setback in the presence of 
multicollinearity and/or autocorrelation. It produces inefficient 
estimates with large variance. Also, the two problems do exist 
jointly in LRM and in practice estimators to handle them together 
are rare. Thus, this research attempted to propose new estimators 
to handle both problems. This study considers the first-order 
Autoregressive structure AR(1).  The proposed new estimator 
which is the Two stage K-L estimator. and performance compared 
with other existing five common estimators such as Prais Winsten 
method of estimation, Cochrane Orcutt method of estimation, 
Maximum Likelihood method and Restricted maximum likelihood.  
This study thus employs Monte Carlo simulation study approach to 
compare the finite estimators’ property of the proposed estimator 
and the six (6) exiting ones formulated to correct for the problem of 
autocorrelation and multicollinearity in a regression model and 
thus, determine the best method in terms of mean squared error. 

MATERIALS AND METHODS 
 
The Proposed Estimator Derivation  
Consider the Linear Regression Model with autoregressive of order 
1, AR (1) given as: 
yt = β0 + β1Xt1 + β2Xt2 + ⋯+ βpXtp + Ut      (5) 

where ut= ρut−1  + εt, ρ is the autocorrelation parameter (|ρ|< 

1), εt is a random term such that εt ~ N (0, σ2), E(εiεj) = 0 (i ≠ j). 

Equation (3.1) in matrix form is written as follows:  
y = Xβ+U         (6) 

Pre-multiplying both sides of equation (5) by an n × n non-singular 

matrix P, we obtain  
Py = PXβ+PU        (7) 

 
The error term becomes PU with E (PU) = 0 and E(PU′UP)′ =  σ2 

PΩP′. Thus, if it is possible to specify P such that PΩP′= I implying 

that P′P = Ω-′, then the OLS estimates of the transformed variable 

PY and PX in equation (7) have all the optimal properties of OLS 
and so the usual inferences could be valid. Re-defining equation 
(7) as 
y* = X*β + U*                                                                            (8) 

 
where y* = Py, X* = PX and U* = PU. 
The generalized least squares estimator is obtained as follows:  

β̂GLS = (X*′X*)-′ X*′y* = (X′P′PX)-′ X′P′Py 
         = (X′ Ω-′ X)-′  X′ Ω-′ y           (9) 

 
Ω is a known positive definite (p.d.) matrix. However, in practice, Ω 
is often unknown. A common practice is to use the estimated matrix 
of Ω in order to find the estimated generalized least square 
estimator (EGLSE) or Two Stages method estimator that is more 
efficient than the GLSE. We reform the Two Stages procedure as 
follows to propose the new estimator. From equation (9) where 
E(U*)=0, Cov(U*)= σ2I. Thus, the OLS estimator for model (9) is: 

 

β̂TS = (X*′X*)-′ X*′y*         (10) 
where;  
                           y ∗= Py =

[
 
 
 
 
 (1 − 𝜌2)

1

2 0 0 ⋯ 0 0
−𝜌 1 0 ⋯ 0 0
0 −𝜌 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ −𝜌 1]

 
 
 
 
 

 

[
 
 
 
 
 
 
𝑌1

𝑌2

𝑌3

.

.

.
𝑌𝑛]

 
 
 
 
 
 

                                                  

X*=PX=

[
 
 
 
 
 (1 − 𝜌2)

1

2 0 0 ⋯ 0 0
−𝜌 1 0 ⋯ 0 0
0 −𝜌 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ −𝜌 1]

 
 
 
 
 

 
 
 
 
 
 
 
1   𝑋11  𝑋12   . . .  𝑋1𝑘

1   𝑋21  𝑋22   . . .  𝑋2𝑘

1   𝑋31  𝑋32   . . .  𝑋3𝑘

.
 .
 .

1   𝑋𝑛1  𝑋𝑛2   . . .  𝑋𝑛𝑘 
 
 
 
 
 
 

 

 
Note that X*′X*=X′P′PX= X′Ω-1X and X*′y*=X′P′Py= X′Ω-1y,  

where  
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Ω−1 =
1

1−𝜌2

[
 
 
 
 
 

1 −𝜌 0 ⋯ 0 0

−𝜌 1 + 𝜌2 −𝜌 ⋯ 0 0

0 −𝜌 1 + 𝜌2 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 … 1 + 𝜌2 −𝜌
0 0 0 ⋯ −𝜌 1 ]

 
 
 
 
 

    (11) 

After estimating the 𝜌, we obtained Ω−1and then the two stage is 
given as Prais Winsten (1954): 

β̂TS= (X′ Ω-1 X)-1  X′ Ω-1 y             (12) 
(to correct for autocorrelation) 
Kibria and Lukman (2020) proposed the K-L estimator to solve the 
problem of multicollinearity in the LRM.  

1ˆ ˆ( ) ( )KL OLSX X kI X X kI            (13)       

(to correct for multicollinearity) 
This paper therefore adopts these estimators (12) and (13) and 
proposed the Two stage K-L estimator as follows: 

1 1 1ˆ ˆ( ) ( )TKL p TSX X kI X X kI               (14) 

(to correct for both problems) 
 
where  

.
ˆˆ2

ˆ
minˆ

2
2

2























i

i

k








 
 
 
Simulation Studies Procedure  
To examine the proposed and existing estimators, consider a linear 
regression model of the form: 
Yt = β0 + β1Xt1 + β2Xt2 + ⋯+ βpXtp + Ut        (15)   

t = 1,2,… , n ; p = 3, 7 

Were, 
 𝜇𝑡 = 𝜌𝜇𝑡−1 + 𝜀𝑡,  |𝜌| <

1,    𝑡11,2, , …………𝑛,     𝜀𝑡~ 𝑁 (0, 𝜎2).  
The model was studied with fixed regressors, Xti,  t = 1, 2, …, n; i 

= 1, 2, ..., p such that there exist different levels of multicollinearity 
among the regressors. 
 
Procedures for Generating the Error Term 
The error terms were generated by using the distributional 
properties of the autocorrelation error terms of AR (1) model given 
as:  

𝑢𝑡 ~ 𝑁 (0,
σe

2

(1−ρ2)
)                  (16) 

Thus, assuming the model start from infinite past, the error terms 
were generated as follows: 

u1  =  
𝜀1

√1 −𝜌2
     (17) 

 

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜀𝑡,    𝑡 =  2 ,3,4… . 𝑛   (18) 

In this study, autocorrelation value  (𝜌) will be varied from 0.6, 0.8, 

and 0.9. 
 
Procedures for Generating the Explanatory Variables 
The simulation procedure used by McDonald and Galarneau 
(1975), Wichern and Churchill (1978), Gibbons (1981), Kibria 
(2003), Lukman et al. (2019a,b), Lukman et al. (2020b) was also 
used to generate the explanatory variables in this study: This is 
given as: 

 Xti = (1 − ρ2)
1

2Zti + ρZtp    (19) 

 
 t=1, 2, 3, … , n;  i=1, 2,…p. 
where Zti is independent standard normal distribution with mean 

zero and unit variance, ρ is the correlation between any two 

explanatory variables and p is the number of explanatory variables. 
The values of ρ were taken as 0.6, 0.8 and 0.9 respectively. Thus, 

the correlations between the variable are the same. In this study, 
the number of explanatory variable (p) was taken to be six (6). 
 
Procedures for Generating the Dependent Variable 
The true values of the regression coefficient of model (15) are taken 
as follows: β0 was taken to be identically zero. When P=6, the 

values of β were chosen to be: β1=0.6, β2=0.1, β3=0.2, β4=0.1, 

β5=0.2, β6=0.4. Sample sizes were varied between 25, 50, 100, 

250 and 500. Three different values of σ: 0.5, 1 and 5 were also 
used. At a specified value of n, p and σ, the fixed Xs are first 
generated; followed by the U, and the values of Y are then obtained 
using the regression model. This process was done 1000 times. 
 
Criterion for Investigation and Performance of Ridge 
Parameters 
Several authors in literatures have used the Mean Square Error 
(MSE) to compare the performance of ridge regression estimator 
with the Ordinary Least Square estimator when there is 
multicollinearity and autocorrelation. These authors include Hoerl 
and Kennard (1970), Lawless and Wang (1976), Saleh and Kibria 
(1993), Kibria (2003), Khalaf and Shukur (2005), Alkhamisi and 
Shukur (2008), Mansson et al. (2010), Ozkale (2014), Dawoud and 
Kaciranlar (2015), Ozbay et al. (2016). For each replicate, the 
estimated MSE for each of the estimators 𝛼∗ is obtained as follows: 

𝑀𝑆𝐸(𝛼∗) =
1

1000
∑ (𝛼∗ − 𝛼)′(𝛼∗ − 𝛼),1000

𝑖=1                                                                                

(3.20) 
where 𝛼∗ would be any of the estimators earlier listed. The 

estimator with the smallest estimated MSE is considered best. 
 
 
 
 
 
 
. 
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RESULTS 
 
Table 3.1  Simulation Result of the Estimators Finite Properties 

 
Source: Simulation study results extraction 
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The table shows the finite performance properties of the proposed estimator and others to being compared 

 
Figure 3.1  Plots of the Estimators’ Finite Properties at Different Sample Sizes and Degree of Assumption’s Violation 
 

DISCUSSION 
As observed from the result of the simulation study, the six (6) other 
estimators in literature previously proposed to handle the 
autocorrelation and multicollinearity in a linear model was seen to 
be performing better than the Ordinary Least Square (OLS) is 
expected to only produce a robust result when all the classical 
assumptions are met and this corroborates the study of Mansson, 
Shukur and Kibria (2010), and recently Khalaf (2013), Ghadhan 
and Mohamed (2014), Dorugade (2014), Kibria and Shipra (2016), 
Ayinde et al. (2018), Lukman et al. (2017), Lukman et al. (2019a,b), 
Qasim et al. (2019), Kibria and Lukman (2020), Aslam and Ahmad 
(2020), Dawoud and Kibria (2020). However, the simulation study 
shows that the proposed Two stage K-L estimator out performed 
all existing estimators in literature at different samples sizes and 
various degree of the assumption violations. The Two stage K-L 
estimator is seen to have a minimum variance (MSE) when 
compared to the other estimators. This is thus expected since it 

involves the process of first correcting for autocorrelation in the 
model’s error term and then transforming the X’X matrix with a 
suitable rho to remove the multicollinearity effect before estimating 
the model’s parameter. This procedure is however alien and unique 
to other estimators which will just corrected of either of the two 
assumption’s violations and not both simultaneously like the 
proposed two-stage K-L estimator. 
 
Conclusion and Recommendation 
Based on the general finding about the estimators presented and 
discussed earlier, the following conclusions are drawn: 

 That under severe autocorrelation and multicollinearity 
condition, and as sample size is increasing, the Two stage K-
L estimator proposed appears having a similar performance 
with RMLE and MLE.  

 That under severe autocorrelation and moderate 
multicollinearity condition, regardless of the sample size, the 
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proposed Two stage K-L estimator is seen to be the best. 

 That sample size has a significant effect on the performance 
of the estimators across all the autocorrelation and 
multicollinearity levels. However, the Two stage K-L estimator 
appears to have an improved performance as the sample size 
increase. 

 
Based on the above findings, the following are recommended: 

 That when autocorrelation and multicollinearity level between 
the predictors is moderate to severe, the proposed Two stage 
K-L estimator will perform better regardless of the size of the 
data. 

That the degree of autocorrelation and multicollinearity between 
the variables should be considered while estimating parameters of 
Regression models so as to avoid erroneous inferences 
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