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ABSTRACT  
In this paper, a refinement of preconditioned successive 
overrelaxation method for solving the linear system 𝐵𝑥 = 𝑐 is 

considered. The coefficient matrix 𝐵 ∈ 𝑅𝑛,𝑛 is a nonsingular real 

matrix, 𝑐 ∈ 𝑅𝑛 and 𝑥 is the vector of unknowns. Based on the 

usual splitting of the coefficient matrix 𝐵 as 𝐵 = 𝐷 − 𝐿𝐵 − 𝑈𝐵, 

the linear system is expressed as 𝐴𝑥 = 𝑏 or (𝐼 − 𝐿 − 𝑈)𝑥 = 𝑏; 

where 𝐿 = 𝐷−1𝐿𝐵, 𝑈 = 𝐷−1𝑈𝐵 and 𝑏 = 𝐷−1𝑐. This system is 
further preconditioned with a preconditioner of the type 𝑃 = 𝐼 + 𝑆 

as �̅�𝑥 = �̅�  or (�̅� − �̅� − �̅�)𝑥 = �̅�. A refinement of the resulting 

preconditioned successive overrelaxation (SOR) method is 
performed. Convergence of the resulting refinement of 
preconditioned SOR iteration is established and numerical 
experiments undertaken to demonstrate the effectiveness and 
efficiency of the method. Results comparison revealed that the 
refinement of SOR method converges faster than the 
preconditioned as well as the classical SOR method. 
 
Keywords: SOR method, Preconditioned SOR, Convergence, 
Refinement, Nonsingular Matrix, L-Matrix A 
 
INTRODUCTION 
The rate of convergence of an iterative technique depends on the 
spectral radius of the coefficient matrix associated with the method. 
One way to select a procedure to accelerate convergence is to 
choose a method whose associated matrix has minimal spectral 
radius. Thus, there is the need to introduce a new means of 
measuring the amount by which an approximation to the solution 
to a linear system differs from the true solution to the system 
(Burden et al., 2014). Suppose �̅� ∈ 𝑅𝑛 is an approximation to the 

solution of the linear system defined by 𝐴𝑥 = 𝑏. The residual 

vector for �̅� with respect to this system is 𝑟 = 𝑏 − 𝐴�̅�. In 

procedures such as the Jacobi, Gauss-Seidel or SOR methods, a 
residual vector is associated with each calculation of an 
approximate component to the solution vector. The true objective 
is to generate a sequence of approximations that will cause the 
residual vectors to converge rapidly to zero. Consider the linear 
system 

𝐴𝑦 = 𝑟                                                                          (1) 

The approximate solution �̅� of the above system satisfies  

�̅� ≈ 𝐴−1𝑟 = 𝐴−1(𝑏 − 𝐴�̅�) = 𝐴−1𝑏 − 𝐴−1𝐴�̅� = 𝑥 − �̅� 
and 

𝑥 ≈ �̅� + �̅� 

So �̅� is an estimate of the error produced when �̅� approximates the 

solution 𝑥 to the original system. In general, �̅� + �̅� is a more 

accurate approximation to the solution of the linear system 𝐴𝑥 =

𝑏 than the original approximation �̅�. The method using this 

assumption is called iterative refinement, or iterative improvement, 
and consists of performing iterations on the system whose right-
hand side is the residual vector for successive approximations until 
satisfactory accuracy results. 
Several studies have been made in this regard. For example, Yuan 
(1998) proposed some iterative refinement methods for linear 
system 𝐴𝑥 = 𝑏, which proved to be better than the usual iterative 

refinement methods in respect of complexity and storage 
requirements. These methods are based on the obtained results 
for the nonsingular matrix 𝐴, which show there exists a convergent 

splitting 𝐴 = 𝑀 − 𝑁 with 𝑀 = 𝐷𝑄 or 𝑀 = 𝑄𝐷 where 𝑄 and 𝐷 

are unitary and diagonal matrices respectively. The study further 
revealed that, if 𝐿𝑈 decomposition of 𝐴 is obtainable, there exists 

a convergent splitting 𝐴 = 𝑀 − 𝑁  with triangular 𝑀. An example 

of the desired triangular matrix 𝑀 is constructed for 𝑝 −cyclic 

matrices. Dafchahi (2008) presented a refinement of the Jacobi 
method whose rate of convergence measures up with that of the 
SOR, and by consequence more than that of the Gauss-Seidel 
method. It was recommended that this method be used in place of 
the SOR method in view of the associated difficulty in finding the 
optimal relaxation parameter 𝜔𝑜𝑝𝑡  for the SOR technique. Further 

application of this method to the Poisson partial differential 
equation yielded favourable results. Vatti and Gonfa (2011) 
proposed refinement of generalized Jacobi method (RGJ) for 
solving system of linear equations. Convergence conditions and 
theorems of RGJ were advanced and established. The efficiency 
of the RGJ over the generalized Jacobi method was demonstrated 
through some numerical experiments. Vatti and Eneyew (2011) 
discussed a refinement of the Gauss-Seidel method for solution of 
the linear system 𝐴𝑥 = 𝑏. Comparison results between 

refinement of the Gauss-Seidel method and the Gauss-Seidel 
method went further to validate the convergence theorems 
presented.  Kyurkchiev and Iliev (2013) focused on refinement of 
some successive overrelaxation (SOR) methods. Based on the 
reverse Gauss–Seidel method, a splitting of coefficient matrix of 
the linear system 𝐴𝑥 = 𝑏 is obtained as 𝐴 = 𝑇𝑚 − 𝐸𝑚 − 𝐹𝑚, 

where 𝑇𝑚 is a banded matrix of bandwidth 2𝑚 + 1. Theoretical 

convergence of the methods were studied and established and 
numerical examples with results are provided with the aid of 
Mathematica software package. Laskar and Behera (2014) 
surveyed three iterative refinement methods for the solution of 
system of linear equations. By comparing the number of iterations 
required to converge, storage requirements and level of accuracy, 
it was conclusive that the refinement of generalized Jacobi method 
is much more efficient than the refinement of Jacobi iterative 
method and is as fast as the refinement of Gauss-Seidel method. 
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Gonfa (2016) studied the refinement of generalized Gauss-Seidel 
(RGGS) method for solving systems of linear equations. Sufficient 
convergence conditions are established and appropriate numerical 
experiments conducted. The results of RGGS are compared with 
those of refinement of generalized Jacobi and Successive-Over 
Relaxation methods. The results analysis indicates that, for all the 
parameters considered, that is, CPU time, iteration count and 
computer storage, the RGGS proved to be more efficient than the 
other methods when the coefficient matrix is either an M-matrix or 
a diagonally dominant matrix. Kebede (2017) presented a second 
degree refinement of Jacobi method. A comparison of spectral radii 
of second degree refinement of Jacobi method (SDRJ) with other 
methods of first degree Jacobi (FDJ), first degree refinement of 
Jacobi (FDRJ) and second degree Jacobi (SDJ) method was done 
in order to demonstrate the effectiveness of the method. Numerical 
results of spectral radius show that, SDRJ methods converge with 
a small number of iteration steps for solving systems of linear 
equations. Gebregiorgis and Gofe (2018) is concerned about 
extension of refined generalized numerical algorithms for solving 
systems of linear equations whose coefficient matrices are 
𝑀 −matrices, to solving fuzzy linear systems like Refined 

Generalized Jacobi (RGJ), and Refined Generalized Gauss-Seidel 
(RGGS) iteration methods. These methods are developed via the 
embedding approach and splitting strategy of the 𝑀 −matrix 

together with the refinement process. The results of numerical 
experiments demonstrated that the proposed methods perform 
better when compared with similar work. Muleta and Gofe (2018) 
presented refinement of generalized accelerated over relaxation 
(RGAOR) iterative method based on the Nekrassov-Mehmke 1 
(NM1) method procedure for solving the linear system 𝐴𝑥 = 𝑏. A 

splitting of the coefficient matrix 𝐴 is obtained in the form 𝐴 =
𝑇𝑚 − 𝐸𝑚 − 𝐹𝑚, where 𝑇𝑚 is a banded matrix of band width 

2𝑚 + 1 and −𝐸𝑚 and −𝐹𝑚 are the strictly lower and strictly 

upper triangular parts of the matrix 𝐴 − 𝑇𝑚respectively. The 

results show that the iteration matrix of RGAOR is the square of the 
iteration matrix of generalized accelerated successive over 
relaxation method. When compared to generalized accelerated 
successive over relaxation (SOR2GNM1, SOR1GNM1), the results 
reveal that the new method (RSOR1GNM1, RSOR2GNM1) 
converges faster and its errors at any predefined error of tolerance 
is lesser than the other methods. Vatti et al. (2018) considered a 
refinement of accelerated over relaxation (AOR) method for solving 
the linear system 𝐴𝑥 = 𝑏, where convergence conditions were 

also identified and established. It was capped by a numerical 
experiment in order to validate the superiority of the proposed 
method over existing methods. Eneyew et al. (2019) proposed a 
new method christened second refinement of Jacobi (SRJ) method 
for solving linear system of equations. This method is applicable to 
the solution of ODE and PDE problems reduced to linear system of 
equations with coefficient matrices being strictly diagonally 
dominant (SDD) or symmetric positive definite (SPD) or 𝑀 − 

matrices. Few numerical examples established the increased rate 
of convergence of the SRJ over Jacobi and refinement of Jacobi 
(RJ) methods as noticed in the minimized number of iterations as 
well as the spectral radius. Eneyew et al. (2020) proposed the 
second-refinement of Gauss-Seidel method for solving linear 
system of equations. In this study, the convergence rate of the 
Gauss-Seidel method was enhanced by minimization of the 
spectral radius, and by implication, a further reduction in the 
number of iterations. Another distinct feature of the method is that 
it can be applied towards the solution of linear systems resulting 

from finite difference discretisation of systems of differential 
equations. These systems are usually composed of coefficient 
matrices that are strictly diagonally dominant, symmetric positive 
definite, or M-matrices. In Theorem 1 of this research, it was 
established that, if the coefficient matrix 𝐴 is strictly diagonally 

dominant, then the new modified method converges to the exact 
solution. Similarly, in Theorems 2 and 3 it was proved that, if the 
coefficient matrix is symmetric positive definite or 𝑀 −matrix, then 

the modified method converges. More so, Theorem 4 showed that, 
second-refinement of Gauss-Seidel method exhibits faster 
convergence when compared to the Gauss-Seidel and refinement 
of Gauss-Seidel methods. The numerical experiments went further 
to demonstrate the efficiency of second-refinement of Gauss-
Seidel method over the Gauss-Seidel and refinement of Gauss-
Seidel methods. Assefa and Teklehaymanot (2021) proposed a 
second refinement of accelerated over relaxation method; it is a 
two-parameter generalization of the refinement of accelerated over 
relaxation methods and the optimal value of each parameter is 
derived. In general the kth refinement of accelerated methods are 
also derived. The spectral radius of the iteration matrix and 
convergence criteria of the second refinement of accelerated over 
relaxation (SRAOR) are discussed.  
This research work is aimed to formulate refinement of 
preconditioned successive overrelaxation iterative method for the 
solution of linear algebraic system 𝐴𝑥 = 𝑏 resulting from finite 

difference discretization of elliptic partial differential equations. 
 
MATERIALS AND METHODS 
Formulation of Refinement of SOR Method 
Following Vatti et al. (2011), Vatti and Gonfa (2011), Vatti et al. 
(2018) the refinement of SOR is obtained as  
From the linear system 

𝐴𝑥 = 𝑏                                                                             (2) 

which becomes 
𝐷𝑥 + 𝜔𝐴𝑥 = 𝐷𝑥 + 𝜔𝑏 

A splitting of the matrix 𝐴 is considered as 

𝐷𝑥 + 𝜔(𝐷 − 𝐿 − 𝑈)𝑥 = 𝐷𝑥 + 𝜔𝑏 

(𝐷 − 𝜔𝐿)𝑥 = (𝐷 − 𝜔𝐷 + 𝜔𝑈)𝑥 + 𝜔𝑏 

(𝐷 − 𝜔𝐿)𝑥 = 𝐷𝑥 − 𝜔(𝐷 − 𝑈)𝑥 + 𝜔𝑏 

(𝐷 − 𝜔𝐿)𝑥 = 𝐷𝑥 − 𝜔(𝐿 + 𝐴)𝑥 + 𝜔𝑏 
(𝐷 − 𝜔𝐿)𝑥 = (𝐷 − 𝜔𝐿)𝑥 + 𝜔(𝑏 − 𝐴𝑥) 

𝑥 = 𝑥 + 𝜔(𝐷 − 𝜔𝐿)−1(𝑏 − 𝐴𝑥) 

From whence the refinement of SOR (RSOR) formula is obtained 
as 

𝑥(𝑛+1) = 𝑥(𝑛+1) + 𝜔(𝐷 − 𝜔𝐿)−1(𝑏 − 𝐴𝑥(𝑛+1))         (3) 

Or, 

𝑥(𝑛+1) = 𝑥(𝑛+1) + 𝜔(𝐼 − 𝜔�̃�)
−1

(�̃� − �̃�𝑥(𝑛+1))           (4) 

where 𝑥(𝑛+1) appearing in the RHS of (3.2) is the (𝑛 + 1)th 
approximation of SOR method given by 

𝑥(𝑛+1) = (𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷 + 𝜔𝑈}𝑥(𝑛)

+ (𝐷 − 𝜔𝐿)−1𝜔𝑏             (5) 
Or 

𝑥(𝑛+1) = (𝐼 − 𝜔�̃�)
−1

{(1 − 𝜔)𝐼 + 𝜔�̃�}𝑥(𝑛)

+ (𝐼 − 𝜔�̃�)
−1

𝜔�̃�             (6) 

where, �̃� = 𝐷−1𝐿, �̃� = 𝐷−1𝑈,   �̃� = 𝐷−1𝑏  and �̃� = 𝐷−1𝐴 
Substituting (5) in (3), 
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𝑥(𝑛+1) = (𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷 + 𝜔𝑈}𝑥(𝑛)

+ (𝐷 − 𝜔𝐿)−1𝜔𝑏 + 𝜔(𝐷 − 𝜔𝐿)−1[𝑏
− (𝐷 − 𝐿 − 𝑈)(𝐷 − 𝜔𝐿)−1

× [{(1 − 𝜔)𝐷 + 𝜔𝑈}𝑥(𝑛) + 𝜔𝑏]] 

𝑥(𝑛+1) = (𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷 + 𝜔𝑈}𝑥(𝑛)

+ 2𝜔(𝐷 − 𝜔𝐿)−1𝑏 − (𝐷 − 𝜔𝐿)−1[𝜔𝐷
− 𝜔𝐿 − 𝜔𝑈 + 𝐷
− 𝐷](𝐷 − 𝜔𝐿)−1[{(1 − 𝜔)𝐷

+ 𝜔𝑈}𝑥(𝑛) + 𝜔𝑏] 

𝑥(𝑛+1) = (𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷 + 𝜔𝑈}𝑥(𝑛)

+ 2𝜔(𝐷 − 𝜔𝐿)−1𝑏
− (𝐷 − 𝜔𝐿)−1[(𝐷 − 𝜔𝐿)

− {(1 − 𝜔)𝐷 + 𝜔𝑈}](𝐷 − 𝜔𝐿)−1[{(1

− 𝜔)𝐷 + 𝜔𝑈}𝑥(𝑛) + 𝜔𝑏] 

𝑥(𝑛+1) = (𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷 + 𝜔𝑈}𝑥(𝑛)

+ 2𝜔(𝐷 − 𝜔𝐿)−1𝑏 − [𝐼
− (𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷
+ 𝜔𝑈}](𝐷 − 𝜔𝐿)−1[{(1 − 𝜔)𝐷

+ 𝜔𝑈}𝑥(𝑛) + 𝜔𝑏] 

𝑥(𝑛+1) = (𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷 + 𝜔𝑈}𝑥(𝑛)

+ 2𝜔(𝐷 − 𝜔𝐿)−1𝑏

− (𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷 + 𝜔𝑈}𝑥(𝑛)

+ [(𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷

+ 𝜔𝑈}]2𝑥(𝑛) − (𝐷 − 𝜔𝐿)−1𝜔𝑏
+ 𝜔[(𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷
+ 𝜔𝑈}](𝐷 − 𝜔𝐿)−1𝑏 

𝑥(𝑛+1) = [(𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷 + 𝜔𝑈}]2𝑥(𝑛)

+ 𝜔(𝐷 − 𝜔𝐿)−1𝑏
+ 𝜔(𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷
+ 𝜔𝑈}(𝐷 − 𝜔𝐿)−1𝑏 

𝑥(𝑛+1) = 𝐺𝜔
2𝑥(𝑛) + 𝜔(𝐷 − 𝜔𝐿)−1𝑏 + 𝜔𝐺𝜔(𝐷 − 𝜔𝐿)−1𝑏 

𝑥(𝑛+1) = 𝐺𝜔
2𝑥(𝑛) + 𝜔[𝐼 + 𝐺𝜔](𝐷 − 𝜔𝐿)−1𝑏               (7) 

That is, 

𝑥(𝑛+1) = [(𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷 + 𝜔𝑈}]2𝑥(𝑛)

+ 𝜔[𝐼
+ (𝐷 − 𝜔𝐿)−1{(1 − 𝜔)𝐷 + 𝜔𝑈}](𝐷
− 𝜔𝐿)−1𝑏                                     (8) 

Or, 

𝑥(𝑛+1) = [(𝐼 − 𝜔�̃�)
−1

{(1 − 𝜔)𝐼 + 𝜔�̃�}]
2

𝑥(𝑛)

+ 𝜔 [𝐼

+ (𝐼 − 𝜔�̃�)
−1

{(1 − 𝜔)𝐼 + 𝜔�̃�}] (𝐼

− 𝜔�̃�)
−1

�̃�                                  (9) 

where, �̃� = 𝐷−1𝐿,      �̃� = 𝐷−1𝑈    and   �̃� = 𝐷−1𝑏    
And the refinement of SOR (i. e. , RSOR) method is defined by  

𝑥(𝑛+1) = 𝑅𝐺𝜔
𝑥(𝑛) + �̃� ,          𝑛 = 0,1,2, ⋯       (10) 

where, 

𝑅𝐺𝜔
= [(𝐼 − 𝜔�̃�)

−1
{(1 − 𝜔)𝐼 + 𝜔�̃�}]

2
 

is the RSOR iteration matrix, and  

�̃� = 𝜔 [𝐼 + (𝐼 − 𝜔�̃�)
−1

{(1 − 𝜔)𝐼 + 𝜔�̃�}] (𝐼 − 𝜔�̃�)
−1

�̃� 

Here, 𝐺𝜔 is the SOR iteration matrix. 

Now, by letting 

𝐸 = 𝐺𝜔 ,  �̅� = 𝑅𝐺𝜔
= 𝐸2, 

𝑓 = (𝐼 − 𝜔�̃�)
−1

�̃�,  𝑓̅ = (𝐼 − 𝜔�̃�)
−1

�̃�. 

 

Convergence of Refinement of Preconditioned SOR Method 
 
Lemma 3.1 (Hadjidimos (1978)): If A is an irreducible matrix with 
weak diagonal dominance, then the methods of Jacobi, of Gauss-
Seidel, of Simultaneous Overrelaxation, of Successive 
Overrelaxation and of Accelerated Overrelaxation converge.  
Theorem 3.1 Let 𝐴 be irreducible matrix with weak 

diagonal dominance. Then the refinement of SOR method 
converges for any arbitrary choice of the initial approximation. 
Proof: Suppose 𝑥𝐸  is the exact solution of linear system (2). 

Because matrix 𝐴  is an irreducible matrix with weak diagonal 

dominance, the SOR method is convergent by Lemma 3.1. Let 

�̂�(𝑛+1) be the (𝑛 + 1)th approximation to the solution of (2) by 
the SOR method (6). Then, 

‖�̂�(𝑛+1) − 𝑥𝐸‖ = ‖𝑥(𝑛+1) + 𝜔(𝐼 − 𝜔�̃�)
−1

(�̃� − �̃�𝑥(𝑛+1))

− 𝑥𝐸‖ 

≤ ‖𝑥(𝑛+1) − 𝑥𝐸‖‖(�̃� − �̃�𝑥(𝑛+1))‖ ‖𝜔(𝐼 − 𝜔�̃�)
−1

‖ 

Since ‖𝑥(𝑛+1) − 𝑥𝐸‖ → 0 and ‖(�̃� − �̃�𝑥(𝑛+1))‖ → 0, we 

have ‖�̂�(𝑛+1) − 𝑥𝐸‖ → 0. 

Hence, the refinement of SOR method converges to the solution of 
the linear system (2). 
 
Theorem 3.2 Let 𝐴 be irreducible matrix with weak 

diagonal dominance, then ‖𝑅𝐺𝜔
‖

∞
= ‖𝐺𝜔‖∞

2 < 1. 

Proof: Consider ‖𝑅𝐺𝜔
‖

∞
; then we have, 

‖𝑅𝐺𝜔
‖

∞
= ‖[(𝐼 − 𝜔�̃�)

−1
{(1 − 𝜔)𝐼 + 𝜔�̃�}]

2
‖

∞
 

= ‖[(𝐼 − 𝜔�̃�)
−1

{(1 − 𝜔)𝐼 + 𝜔�̃�}]‖
∞

2
 

= ‖𝐺𝜔‖∞
2 < 1    by Theorem 3.1 

 
Theorem 3.3 If 𝐴 is irreducible matrix with weak diagonal 

dominance, then ‖𝑅𝐺𝜔
‖

∞
< ‖𝐺𝜔‖∞. 

Proof: By Theorem 3.2, we have ‖𝑅𝐺𝜔
‖

∞
= ‖𝐺𝜔‖∞

2 <

‖𝐺𝜔‖∞. 

 
Theorem 3.4 The refinement of SOR method converges 
faster than the SOR method when SOR method is convergent. 
Proof: Let �̿� be the solution of linear system (2) obtained by 
the refinement of SOR method (10) and �̂� be the solution of (2) 

obtained by the SOR method (6). 
From (10), we get  

�̿� = 𝑅𝐺𝜔
�̂� + �̃� 

�̿� = 𝐺𝜔
2�̂� + �̃� 

�̿�(𝑛+1) − �̿� = 𝐺𝜔
2𝑥(𝑛) + �̃� − �̿� 

= 𝐺𝜔
2(𝑥(𝑛) − �̂�) + �̃� − �̿� + 𝐺𝜔

2�̂� 

= 𝐺𝜔
2(𝑥(𝑛) − �̂�) − �̿� + (𝐺𝜔

2�̂� + �̃�) 

= 𝐺𝜔
2(𝑥(𝑛) − �̂�) − �̿� + �̿� 

= 𝐺𝜔
2(𝑥(𝑛) − �̂�) 

Now, 

‖�̿�(𝑛+1) − �̿�‖
∞

= ‖𝐺𝜔
2(𝑥(𝑛) − �̂�)‖

∞
 

≤ ‖𝐺𝜔
2‖

∞
‖(𝑥(𝑛) − �̂�)‖

∞
 

≤ ‖𝐺𝜔‖∞
2 ‖(𝑥(𝑛) − �̂�)‖

∞
 

Therefore, by Theorems 3.1 and 3.2 the refinement of SOR method 
converges faster than the SOR method. 
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Numerical Experiments 
 
Problem 1: The solution of the following elliptic linear 
second-order partial differential equation  

(𝑥 + 1)
𝜕2𝑢

𝜕𝑥2 + (𝑦2 + 1)
𝜕2𝑢

𝜕𝑦2 + 𝑢 = −1 

with the boundary values 𝑢(0, 𝑦) = 𝑦, 𝑢(1, 𝑦) = 𝑦2, 𝑢(𝑥, 0) =
0, 𝑢(𝑥, 1) = 1, is sought in the region 0 ≤ 𝑥 ≤ 1,     0 ≤ 𝑦 ≤

1, with ℎ =
1

3
 . 

Source: (Ndanusa and Adeboye, 2012). 
 
Problem 2: Consider the Poisson equation  

∇2𝑢 = −1 
in the region |𝑥| ≤ 1,     |𝑦| ≤ 1, with boundary values 𝑢 =
0, |𝑥| = 1, |𝑦| = 1. 

 
Problem 3 : The solution of Problem 1 is sought for ℎ = 1 4⁄ . 

 
RESULTS AND DISCUSSION 
The spectral radii of iteration matrices of Successive 
Overrelaxation (SOR) method, Preconditioned Successive 
Overrelaxation (PSOR), Refinement of Successive Overrelaxation 
(RSOR) and Refinement of Preconditioned Successive 
Overrelaxation (RPSOR) schemes are computed with the aid of 
Maple 2019 mathematical software package.  In what follows, the 
following notations are employed: 𝐺𝜔 = Iteration matrix of the 

SOR iteration method; 𝐺𝑃𝜔 = Iteration matrix of the 
preconditioned SOR iteration method of Ndanusa and Adeboye 

(2012); 𝑅𝐺𝜔
= Iteration matrix of the Refinement of SOR iteration 

method; 𝑅𝐺𝑃𝜔
= Iteration matrix of the Refinement of 

Preconditioned SOR iteration method; 𝜌(𝐺𝜔) = Spectral radius of 

𝐺𝜔; 𝜌(𝐺𝑃𝜔) = Spectral radius of 𝐺𝑃𝜔; 𝜌(𝑅𝐺𝜔
) = Spectral 

radius of 𝑅𝐺𝜔
; 𝜌(𝑅𝐺𝑃𝜔

) = Spectral radius of 𝑅𝐺𝑃𝜔
; 𝑅(𝐺) =Rate 

of convergence of linear iteration 𝑥(𝑛+1) = 𝐺𝑥(𝑛) + 𝑘, where 
𝜌(𝐺) is the spectral radius for that iterative method. 

 
Table 1:  Comparison of spectral radii of 𝐺𝜔, 𝐺𝑃𝜔and 𝑅𝐺𝑃𝜔

 for 

Problem 1 

 
 
 
 

Table 2:   Comparison of spectral radii of 𝑅𝐺𝜔
 and 𝑅𝐺𝑃𝜔

 for 

Problem 1 
 

 
 
Table 3:   Comparison of  𝑅(𝐺𝜔) and 𝑅(𝑅𝐺𝑃𝜔

) for Problem 1 

 
 
Table 4:   Comparison of spectral radii of 𝐺𝜔, 𝐺𝑃𝜔and 𝑅𝐺𝑃𝜔

 for 

Problem 2 
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Table 5:   Comparison of spectral radii of 𝑅𝐺𝜔
 and 𝑅𝐺𝑃𝜔

 for 

Problem 2 

 
 
Table 6:   Comparison of  𝑅(𝐺𝜔) and 𝑅(𝑅𝐺𝑃𝜔

) for Problem 2 

 
 
Table 7:  Comparison of spectral radii of 𝐺𝜔, 𝐺𝑃𝜔and 𝑅𝐺𝑃𝜔

 for 

Problem 3 

 

Table 8:   Comparison of spectral radii of 𝑅𝐺𝜔
 and 𝑅𝐺𝑃𝜔

 for 

Problem 3 

 
 
Table 9:   Comparison of  𝑅(𝐺𝜔) and 𝑅(𝑅𝐺𝑃𝜔

) for Problem 3 

 
 
Table 1 shows the spectral radii for iteration matrices of  
𝐺𝜔, 𝐺𝑃𝜔and 𝑅𝐺𝑃𝜔

 respectively, for various values of the relaxation 

parameter 𝜔, between 0 and 1, for Problem 1. The refinement of 

preconditioned SOR, RPSOR, exhibits faster convergence than the 

PSOR and SOR methods, i.e., 𝜌(𝐺𝜔) < 𝜌(𝐺𝑃𝜔) < 𝜌(𝑅𝐺𝑃𝜔
) <

1, for all values of relaxation parameter 𝜔. It further reveals that 

optimum convergence is attained at 𝜔 = 0.9 for all methods. 

Table 2 specifically compares the spectral radius of refinement of 

SOR (RSOR) method, 𝝆(𝑅𝐺𝜔
), with that of refinement of 

preconditioned SOR (RPSOR) method, 𝝆(𝑅𝐺𝑷𝜔
), for various 

values of 𝜔, in order to demonstrate the effect of preconditioning 

on the refinement technique. As is shown in the table, the RPSOR 
converges faster than RSOR; while RSOR converges faster than 
PSOR. In Table 3, the rate of convergence of refinement of 
preconditioned SOR method, RPSOR is compared with the rate of 
convergence of SOR method. It revealed that the RPSOR 
converges almost thrice as fast as the SOR method.  
In Table 4, the spectral radii for iteration matrices of  𝐺𝜔, 𝐺𝑃and 

𝑅𝐺𝜔
 are compared, for Problem 2, for various values of the 

relaxation parameter 𝜔, between 0 and 1. The refinement of 

preconditioned SOR, RSOR, exhibits faster convergence than the 

PSOR and SOR methods, i.e., 𝜌(𝐺𝜔) < 𝜌(𝐺𝑃) < 𝜌(𝑅𝐺𝜔
) < 1, 
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for all values of relaxation parameter 𝜔. It also revealed that 

optimum convergence is attained at 𝜔 = 0.9 for all methods. 

Table 5 specifically compares the spectral radius of refinement of 

SOR (RSOR) method, 𝝆(𝑅𝐺𝜔
), with that of refinement of 

preconditioned SOR (RPSOR) method, 𝝆(𝑅𝐺𝑷𝜔
), for various 

values of 𝜔, in order to demonstrate the effect of preconditioning 

on the refinement technique. As is shown in the table, the RPSOR 
converges faster than RSOR. In Table 6, the rate of convergence 
of refinement of preconditioned SOR method, RPSOR is compared 
with the rate of convergence of SOR method. It revealed that the 
RPSOR converges thrice as fast as the SOR method 
In Table 7 the spectral radii for iteration matrices of  𝐺𝜔, 𝐺𝑃and 

𝑅𝐺𝜔
 are compared, for Problem 3, for various values of the 

relaxation parameter 𝜔, between 0 and 1. The refinement of 

preconditioned SOR, RSOR, exhibits faster convergence than the 

PSOR and SOR methods, i.e., 𝜌(𝐺𝜔) < 𝜌(𝐺𝑃) < 𝜌(𝑅𝐺𝜔
) < 1, 

for all values of relaxation parameter 𝜔. It also reveals that 

optimum convergence is attained at 𝜔 = 0.9 for all methods. 
Table 8 specifically compares the spectral radius of refinement of 

SOR (RSOR) method, 𝝆(𝑅𝐺𝜔
), with that of refinement of 

preconditioned SOR (RPSOR) method, 𝝆(𝑅𝐺𝑷𝜔
), for various 

values of 𝜔, in order to demonstrate the effect of preconditioning 

on the refinement technique. As is shown in the table, the RPSOR 
converges faster than RSOR. In Table 9, the rate of convergence 
of refinement of preconditioned SOR method, RPSOR is compared 
with the rate of convergence of SOR method. It revealed that the 
RPSOR converges thrice as fast as the SOR method. 
 
Conclusion 
A refinement iteration technique for the Successive Overrelaxation 
(SOR) iterative method is proposed; this refinement iteration is 
applied to a preconditioned linear system of equations arising from 
discretization of elliptic partial differential equations. The main 
thrust of refinement of preconditioned successive overrelaxation 
(RPSOR) is to reduce to the barest minimum the spectral radius of 
the iteration matrix so as to increase the rate of convergence of the 
method in comparison to the successive overrelaxation (SOR) 
method. Convergence theorems were advanced and the 
refinement of preconditioned SOR method is shown to be 
convergent; for irreducible matrix with weak diagonal dominance 
then the RPSOR converges for any initial approximation. Also, the 
RPSOR is shown to converge almost thrice as fast as the SOR 
method. Sample numerical experiments conducted further 
corroborate the theoretical analysis. 
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