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ABSTRACT

In this paper, a refinement of preconditioned successive
overrelaxation method for solving the linear system Bx = c is
considered. The coefficient matrix B € R™™ is a nonsingular real
matrix, ¢ € R™ and x is the vector of unknowns. Based on the
usual splitting of the coefficient matrix B as B = D — L — Us,
the linear system is expressedas Ax = bor (I — L — U)x = b;
where L = D™Lg, U = D™ *Ug and b = D~1c. This system is
further preconditioned with a preconditioner of the type P =1 + S
asAx =b or (D — L — U)x = b. A refinement of the resulting
preconditioned successive overrelaxation (SOR) method is
performed. Convergence of the resulting refinement of
preconditioned SOR iteration is established and numerical
experiments undertaken to demonstrate the effectiveness and
efficiency of the method. Results comparison revealed that the
refinement of SOR method converges faster than the
preconditioned as well as the classical SOR method.

Keywords: SOR method, Preconditioned SOR, Convergence,
Refinement, Nonsingular Matrix, L-Matrix A

INTRODUCTION
The rate of convergence of an iterative technique depends on the
spectral radius of the coefficient matrix associated with the method.
One way to select a procedure to accelerate convergence is to
choose a method whose associated matrix has minimal spectral
radius. Thus, there is the need to introduce a new means of
measuring the amount by which an approximation to the solution
to a linear system differs from the true solution to the system
(Burden et al., 2014). Suppose X € R™ is an approximation to the
solution of the linear system defined by Ax = b. The residual
vector for x with respect to this system is r = b — AX. In
procedures such as the Jacobi, Gauss-Seidel or SOR methods, a
residual vector is associated with each calculation of an
approximate component to the solution vector. The true objective
is to generate a sequence of approximations that will cause the
residual vectors to converge rapidly to zero. Consider the linear
system

Ay=r (@)
The approximate solution ¥ of the above system satisfies

VA lr =41 (b—Ax) =A'b—A"Ax =x— X%
and
x=x+y

So ¥ is an estimate of the error produced when x approximates the
solution x to the original system. In general, X + ¥ is a more
accurate approximation to the solution of the linear system Ax =

b than the original approximation x. The method using this
assumption is called iterative refinement, or iterative improvement,
and consists of performing iterations on the system whose right-
hand side is the residual vector for successive approximations until
satisfactory accuracy results.

Several studies have been made in this regard. For example, Yuan
(1998) proposed some iterative refinement methods for linear
system Ax = b, which proved to be better than the usual iterative
refinement methods in respect of complexity and storage
requirements. These methods are based on the obtained results
for the nonsingular matrix A, which show there exists a convergent
splitting A = M — N with M = DQ or M = QD where Q and D
are unitary and diagonal matrices respectively. The study further
revealed that, if LU decomposition of A is obtainable, there exists
aconvergent splitting A = M — N with triangular M. An example
of the desired triangular matrix M is constructed for p —cyclic
matrices. Dafchahi (2008) presented a refinement of the Jacobi
method whose rate of convergence measures up with that of the
SOR, and by consequence more than that of the Gauss-Seidel
method. It was recommended that this method be used in place of
the SOR method in view of the associated difficulty in finding the
optimal relaxation parameter w,,, for the SOR technique. Further
application of this method to the Poisson partial differential
equation yielded favourable results. Vatti and Gonfa (2011)
proposed refinement of generalized Jacobi method (RGJ) for
solving system of linear equations. Convergence conditions and
theorems of RGJ were advanced and established. The efficiency
of the RGJ over the generalized Jacobi method was demonstrated
through some numerical experiments. Vatti and Eneyew (2011)
discussed a refinement of the Gauss-Seidel method for solution of
the linear system Ax = b. Comparison results between
refinement of the Gauss-Seidel method and the Gauss-Seidel
method went further to validate the convergence theorems
presented. Kyurkchiev and lliev (2013) focused on refinement of
some successive overrelaxation (SOR) methods. Based on the
reverse Gauss—Seidel method, a splitting of coefficient matrix of
the linear system Ax = b is obtained as A = T,,, — E;, — Fp,,
where Ty, is a banded matrix of bandwidth 2m + 1. Theoretical
convergence of the methods were studied and established and
numerical examples with results are provided with the aid of
Mathematica software package. Laskar and Behera (2014)
surveyed three iterative refinement methods for the solution of
system of linear equations. By comparing the number of iterations
required to converge, storage requirements and level of accuracy,
it was conclusive that the refinement of generalized Jacobi method
is much more efficient than the refinement of Jacobi iterative
method and is as fast as the refinement of Gauss-Seidel method.
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Gonfa (2016) studied the refinement of generalized Gauss-Seidel
(RGGS) method for solving systems of linear equations. Sufficient
convergence conditions are established and appropriate numerical
experiments conducted. The results of RGGS are compared with
those of refinement of generalized Jacobi and Successive-Over
Relaxation methods. The results analysis indicates that, for all the
parameters considered, that is, CPU time, iteration count and
computer storage, the RGGS proved to be more efficient than the
other methods when the coefficient matrix is either an M-matrix or
a diagonally dominant matrix. Kebede (2017) presented a second
degree refinement of Jacobi method. A comparison of spectral radii
of second degree refinement of Jacobi method (SDRJ) with other
methods of first degree Jacobi (FDJ), first degree refinement of
Jacobi (FDRJ) and second degree Jacobi (SDJ) method was done
in order to demonstrate the effectiveness of the method. Numerical
results of spectral radius show that, SDRJ methods converge with
a small number of iteration steps for solving systems of linear
equations. Gebregiorgis and Gofe (2018) is concerned about
extension of refined generalized numerical algorithms for solving
systems of linear equations whose coefficient matrices are
M —matrices, to solving fuzzy linear systems like Refined
Generalized Jacobi (RGJ), and Refined Generalized Gauss-Seidel
(RGGS) iteration methods. These methods are developed via the
embedding approach and splitting strategy of the M —matrix
together with the refinement process. The results of numerical
experiments demonstrated that the proposed methods perform
better when compared with similar work. Muleta and Gofe (2018)
presented refinement of generalized accelerated over relaxation
(RGAOR) iterative method based on the Nekrassov-Mehmke 1
(NM1) method procedure for solving the linear system Ax = b. A
splitting of the coefficient matrix A is obtained in the form A =
Ty — Emy — Ep, where T, is a banded matrix of band width
2m+ 1 and —E,, and —F,, are the strictly lower and strictly
upper triangular parts of the matrix A — T, respectively. The
results show that the iteration matrix of RGAOR is the square of the
iteration matrix of generalized accelerated successive over
relaxation method. When compared to generalized accelerated
successive over relaxation (SOR2GNM1, SOR1GNM1), the results
reveal that the new method (RSOR1GNM1, RSOR2GNM1)
converges faster and its errors at any predefined error of tolerance
is lesser than the other methods. Vatti et al. (2018) considered a
refinement of accelerated over relaxation (AOR) method for solving
the linear system Ax = b, where convergence conditions were
also identified and established. It was capped by a numerical
experiment in order to validate the superiority of the proposed
method over existing methods. Eneyew et al. (2019) proposed a
new method christened second refinement of Jacobi (SRJ) method
for solving linear system of equations. This method is applicable to
the solution of ODE and PDE problems reduced to linear system of
equations with coefficient matrices being strictly diagonally
dominant (SDD) or symmetric positive definite (SPD) or M —
matrices. Few numerical examples established the increased rate
of convergence of the SRJ over Jacobi and refinement of Jacobi
(RJ) methods as noticed in the minimized number of iterations as
well as the spectral radius. Eneyew et al. (2020) proposed the
second-refinement of Gauss-Seidel method for solving linear
system of equations. In this study, the convergence rate of the
Gauss-Seidel method was enhanced by minimization of the
spectral radius, and by implication, a further reduction in the
number of iterations. Another distinct feature of the method is that
it can be applied towards the solution of linear systems resulting

from finite difference discretisation of systems of differential
equations. These systems are usually composed of coefficient
matrices that are strictly diagonally dominant, symmetric positive
definite, or M-matrices. In Theorem 1 of this research, it was
established that, if the coefficient matrix A is strictly diagonally
dominant, then the new modified method converges to the exact
solution. Similarly, in Theorems 2 and 3 it was proved that, if the
coefficient matrix is symmetric positive definite or M —matrix, then
the modified method converges. More so, Theorem 4 showed that,
second-refinement of Gauss-Seidel method exhibits faster
convergence when compared to the Gauss-Seidel and refinement
of Gauss-Seidel methods. The numerical experiments went further
to demonstrate the efficiency of second-refinement of Gauss-
Seidel method over the Gauss-Seidel and refinement of Gauss-
Seidel methods. Assefa and Teklehaymanot (2021) proposed a
second refinement of accelerated over relaxation method:; it is a
two-parameter generalization of the refinement of accelerated over
relaxation methods and the optimal value of each parameter is
derived. In general the kth refinement of accelerated methods are
also derived. The spectral radius of the iteration matrix and
convergence criteria of the second refinement of accelerated over
relaxation (SRAOR) are discussed.

This research work is aimed to formulate refinement of
preconditioned successive overrelaxation iterative method for the
solution of linear algebraic system Ax = b resulting from finite
difference discretization of elliptic partial differential equations.

MATERIALS AND METHODS
Formulation of Refinement of SOR Method
Following Vatti et al. (2011), Vatti and Gonfa (2011), Vatti et al.
(2018) the refinement of SOR is obtained as
From the linear system
Ax=b )
which becomes
Dx + wAx = Dx + wb
A splitting of the matrix A is considered as
Dx+ w(D—-L—-U)x =Dx+ wb
(D —wl)x = (D — wD + wU)x + wb
(D — wl)x =Dx — w(D —U)x + wb
(D —wl)x = Dx — w(L + A)x + wb
(D —wLl)x = (D —wL)x + w(b — Ax)
x=x+w(D —wl) (b - Ax)
From whence the refinement of SOR (RSOR) formula is obtained
as

xHD = x (4D 4 (D — wL) 71 (b — Ax(HD) 3)
Or,

XD = x4 4 (1 — )T (B — Ax™D)  (4)
where x™*1) appearing in the RHS of (3.2) is the (n + 1)th
approximation of SOR method given by

x@* ) = (D — wL) (1 — w)D + wU}x™
+ (D — wL) *wb %)
Or
xD = (1 - wZ)_l{(l — ) + wT}x™
+(I—wl) ' wb (6)
where, L =D7'L, U=D"'U, b=D7'h andA=D"14
Substituting (5) in (3),
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x™*D = (D — wL) (1 — w)D + wU}x™
+ (D —wL) *wb + w(D — wL) 1[b
—~(D—-L-U)D - wL)™?
X [{(1 — @)D + wU}x™ + wb]]

x®D = (D — wL) (1 — w)D + wU}x™
+20w(D — wL)™'h — (D — wL) [wD
—wL—wU+D
= D](D - wL)"'[{(1 — w)D
+ wUx™ + wb]

x™D = (D — wL) (1 — w)D + wU}x™
+2w(D — wL)™'b
— (D — wL) (D — wL)
—{(1 — w)D + wU}(D — wL)[{(1
— w)D + wU}x™ + wh]

x®D = (D — wL) (1 — w)D + wU}x™
+20(D — wL) b —[I
- (D - wl) {1 -w)D
+ wU (D — wL) {(1 — w)D
+ wUx™ + wb]

2D = (D — wL) (1 — w)D + wU}x™
+2w(D — wL)™'b
- (D — wL) (1 — w)D + 0U}x™
+[(D — wL) {1 — w)D
+ wU}2x™ — (D — wL) *wb
+ w[(D — wL) {1 — w)D
+ wUY(D — wL)™1h

2D = [(D — wL) "Y1 — w)D + wU}]2x™
+w(D — wl)™'b
+ w(D — wl) Y1 — w)D
+ wU}D — wL)™1h
x@*D = G, %2x™ 4 (D — wl) b + w6, (D — wL) b

x*D) = G, %x™ + w[l + G,](D — wL)™'b @)
That is,
2D = [(D — wL) (1 - w)D + wU}Px™
+ wll
+ (D — wL) (1 — w)D + wU}](D
—wl) b ()]
Or,
x@#0 = [(1 = L) {1 - )1 + T)] x®
+w [1
+ (1= o) {1 - )l + 0T} (1
—wL)"'b ©

where, L=D"'L, U=D"'U and h=D"1b
And the refinement of SOR (i. e., RSOR) method is defined by
xD = R x™ + 4, n=0,12- (10)
where,
=1 12
Re, = [(1 = L) {1 = w)I + wT}]

is the RSOR iteration matrix, and

d=w [1 +(1- wZ)_l{(l —w)l + wﬁ}] (1- wZ)_ll3
Here, G,, is the SOR iteration matrix.
Now, by letting
E=G,, E=Rg, =E?

f=(-wl) b, f=(I-wl)b.

Convergence of Refinement of Preconditioned SOR Method

Lemma 3.1 (Hadjidimos (1978)):If A is an irreducible matrix with
weak diagonal dominance, then the methods of Jacobi, of Gauss-
Seidel, of Simultaneous Overrelaxation, of Successive
Overrelaxation and of Accelerated Overrelaxation converge.
Theorem 3.1 Let A be irreducible matrix with weak
diagonal dominance. Then the refinement of SOR method
converges for any arbitrary choice of the initial approximation.
Proof: Suppose x is the exact solution of linear system (2).
Because matrix A is an irreducible matrix with weak diagonal
dominance, the SOR method is convergent by Lemma 3.1. Let
£+ pe the (n + 1)th approximation to the solution of (2) by
the SOR method (6). Then,

20D — x| = |2+ + w(1 — wL) 7 (B — Ax+D)
-
< [l g |[|(B — Ax )| | w(t = wI) |
Since [|x™*D — xg|| - 0 and ||(b — Ax™V)|| - 0, we
have || £+ — xg|| - 0.

Hence, the refinement of SOR method converges to the solution of
the linear system (2).

Theorem 3.2 Let A be irreducible matrix with weak
diagonal dominance, then ”RGw”oo = |G, 1% < 1.

Proof:  Consider || R, || _; then we have,
o 12
IRe, ., = [ - D) {1 - @)1 + B} |

= ||[(I - a)Z)_l{(l —w)l + wU}]”i
=||G,ll% <1 by Theorem 3.1

Theorem 3.3 If Ais irreducible matrix with weak diagonal
dominance, then ||Rg, || < 1Gellco-

Proof: By Theorem 32, we have |Rg, || =IIGoll% <
1Geslloo-

Theorem 3.4 The refinement of SOR method converges
faster than the SOR method when SOR method is convergent.
Proof: Let X be the solution of linear system (2) obtained by
the refinement of SOR method (10) and X be the solution of (2)
obtained by the SOR method (6).

From (10), we get

=R 2+d
=G, % +d
XD — % =6,°x™ +d X
=G, (x™ —2)+d —x+G,°%
=G, (x™ —2) — % + (G, + d)

Now,
e — 2] = l6, G - D),
< (G| N =21,
< NG5 [|(x™ = 2)],,

Therefore, by Theorems 3.1 and 3.2 the refinement of SOR method
converges faster than the SOR method.
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Numerical Experiments

Problem 1: The solution of the following elliptic linear
second-order partial differential equation

0%u 0%u

- 2 e =

(x+1)ax2+(y +1)ay2+u 1
with the boundary values u(0,y) = y,u(1,y) = y?,u(x,0) =
0,u(x,1) =1, is soughtintheregopn 0 <x <1, 0<y<
1Lwithh =3
Source: (Ndanusa and Adeboye, 2012).
Problem 2: Consider the Poisson equation
Viu =-1

in the region |x| <1, [yl <1, with boundary values u =
0,lxI=1lyl=1

Problem 3: The solution of Problem 1 is sought for h = 1/4.

RESULTS AND DISCUSSION

The spectral radii of iteration matrices of Successive
Overrelaxation (SOR) method, Preconditioned Successive
Overrelaxation (PSOR), Refinement of Successive Overrelaxation
(RSOR) and Refinement of Preconditioned Successive
Overrelaxation (RPSOR) schemes are computed with the aid of
Maple 2019 mathematical software package. In what follows, the
following notations are employed: G, = lteration matrix of the
SOR iteration method; Gp, = lteration matrix of the
preconditioned SOR iteration method of Ndanusa and Adeboye
(2012); Rg,, = lteration matrix of the Refinement of SOR iteration
method; R, = lteration matrix of the Refinement of
Preconditioned SOR iteration method; p(G,,) = Spectral radius of
G p(Gp,) = Spectral radius of Gp,; p(Rg,) = Spectral
radius of R, ; p(Rg,,,) = Spectral radius of Rg,,; R(G) =Rate
of convergence of linear iteration x™*D = Gx™ + k, where
p(G) is the spectral radius for that iterative method.

Table 1: Comparison of spectral radii of G,,, Gps,and R, for

Table 2:
Problem 1

Comparison of spectral radii of R;  and Rg,, for

@ p(G,) p(Gpy)

0.9343841025

p(Re,)

0.8019993632

p(Re,,)

0.1 08407367332 0.8838514629

0.2 08966535877 0.8664813907 0.B03887E565 0.7332539603

03 08403551407 0.7960535419 OQ.7OB1967628 (.6085024884

04 07803331920 07228051902 0.6089198918 (.4807704030

05 07158112293 06463505589 05125288872 (0.3807461035

05 08461456054 0.5662177654 04175041421 (.2796897978

07 05896315402 04816855287 0.3244800030 0.1880785774

0.8 04840647590 0.3917272445 0.2343186910 (0.1108757499

0% 03850038057 0.2046323649 0.1482279306 0.04794195687

Table 3: Comparison of R(G,,) and R(Rg,,,) for Problem 1

Problem 1

Cab

plG,)

p(Gp,)

P(Rg,,)

0.1
02
03
04
0.5
06
07
03
09

0.84587367332

0.8566535877

0.2403551407

0.7803331920

071591122893

0.6451456054

0.5686315402

0.4240647580

0.3850038057

Refinement of Preconditioned Overrelaxation Algorithm for Solution of the

0.5343841025

0.8664813907

0.7960535414

0.7228051902

(0.6463595589

0.5662177654

0.4816855287

03917272444

0.2846323649

0.86395146249

0.7332539603

0.6085924554

0.4507704030

0.3807461035

02796897978

0.1890735774

011087574949

0.04734195687

w R(G,) R(Re,,) Ratio
R(Rg, )/R(G,)
01 0.0223967644 0.06351065565 2.8357067348
02 0.0473753095 0.1347455827 28442153544
03 00755371389 0.2156734123 28551089990
04 01077199197 03091216362 28696794155
05 01451408255 04193645325 28893630104
05 01896606051 05533233750 28173012445
07 02444069720 07233576739 29596562964
08 03150965338 09551634208  3.0313358839
08 04145349775 1319284243 31825643543

Table 4:  Comparison of spectral radii of G, Gp,and Rg,, for

Problem 2

7]

plG,,)

plGp,)

p(Rg,,)

]

01
02
0.3
04
0.3
0.6
0.7
0.8
0.9

0.9696286079
0.9368857754
0.9014029066
0.8627103743
0.8201941016
0.7730194340
0.7200000000
0.6593323909

0.3870020047

0.9620727092
0.9213681941
0.8774831690
0.8200100531
0.7770023048
0.7208539381
0.6572651779
0.3853927211

0.3022223351

0.9203517002
0.83810133872
0.7532048856
0.6656475727
0.3754596164
0.4827432133
0.3877107540
0.2907493976

0.1923093378
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Table 8: Comparison of spectral radii of R;, and Rg,  for

Table 5:  Comparison of spectral radii of R and R, for Problem 3
Problem 2 @  plGy) p(Gpy) p(Re,) p(Rg,,)
w P(Ewl P(GPu] P{RGDI) P(Hﬂpw}

01 09704634607 0.9620727092 0.9417993369 (.5203289803

01 0 . . .
0.8686266079  0.8620727092  0.8407054007  0.8203517002 0.2 05385935809 0.5213681941 0.8800579568 0.8380204801

0.2 09388857754 0.8213681941 087775495658 0.8381013872 03 00040263188 08774831690 08172635850 0.7530280378

0.3 05014020068 O0.8774831690 08125272020 0.7532048858 04 [0AGE20B0G16 08200100531 07504724008 06553350812

0.4 08627105745 08209100531 07442605348 0.6856473727 05 08262024823 07778028048 06802002055 0.5740717221

05 08201941016 07779928048 08727133665 05754506164 05 07787177235 07208530881 (0.6064013837 0.4820408531

08 07730194340 07208539881 0.5675500458 04827432133 07 07268771927 06572651779 0.5283504733 03867605619

0.7 07200000000 08572851778 05183899998 0.3877107540 05 0BETS138755 (5853097711 04455748497 [.9805305479

02 06503325000 05853027211 0.4347104650 0.2607485076 08 05076821338 05022225352 03572230254 01010285666

0.2 05870020047 05022225351 03457357622 0.1825093378

Table 9: Comparison of R(G,,) and R(Rg,, ) for Problem 3

Table 6: Comparison of R(G,,) and R(Rg, ) for Problem 2 @ R(G,) R(Rg,,) Ratio

@ R(G,) R(Rg,,) Ratio R(Rg,,)/R(G,,)
R(REP«-] 'HR(G”j 0.1 00130208118 0.036050680223 27691746708

01 001339457957 0.036046181068 2.6011020888 02 00275224203 007674535766 27884672505

0.2 002831335483 007670344051 27080904971 03 00438189258 01231888532 28113161368

04 0.0823326574 0.1TE9595769  2.8380344788
0.3 004508104587 01230868716 27303464087

0.5 00836500407 02403535140 28733221405

0.4 008413487365 O0ATETEETTTE  2.7860002145 06 04085199407 03160160635 2 9176600674

05 008808335825 02300851481 27878227915 07 01385330578 04125578175  2.9779191643
08 01118095876  0.3162838231 28287719317 0.8 0.1755397023 0.5383056078  3.0665746879
07 01426675036  0.4114921527  2.8842738608 09 02235207261 0.T1EO01GE3T  3.2161345860

08 0180858545656  0.5364B0ETTT 2 BERGRET012

Table 1 shows the spectral radii for iteration matrices of
0.5 02305273450  0.7185481999 31026097070 Gy, Gpwand Rg,  respectively, for various values of the relaxation
parameter w, between 0 and 1, for Problem 1. The refinement of
preconditioned SOR, RPSOR, exhibits faster convergence than the

Table 7: Comparison of spectral radii of G, Gp,,and Rg,,, for PSOR and SOR methods, i.e., p(G,) < p(Gpy,) < p(RGPw) <
Problem 3 1, for all values of relaxation parameter w. It further reveals that
] plG,) p(Gp,) plBe,) optimum convergence is attained at w = 0.9 for all methods.

Table 2 specifically compares the spectral radius of refinement of
SOR (RSOR) method, p(Rg, ), with that of refinement of

01 05704534607 0.9620727092 0.5203289803

0.2 085385035809 0.8213681941  0.2380204801 preconditioned SOR (RPSOR) method, p(Rg,,), for various
values of w, in order to demonstrate the effect of preconditioning
03 05040263188 08774831690 07530280378 on the refinement technique. As is shown in the table, the RPSOR

converges faster than RSOR; while RSOR converges faster than

0.4 08662930615 0.8299100531 (.8653350812 )
PSOR. In Table 3, the rate of convergence of refinement of

05 08243024823 07779928048 05740717221 preconditioned SOR method, RPSOR is compared with the rate of
convergence of SOR method. It revealed that the RPSOR
08 07787177235 (.7208539881 (0.4820409531 converges almost thrice as fast as the SOR method.

In Table 4, the spectral radii for iteration matrices of G, Gpand

0.7 07268771927 0.6572651779  0.3867605619 R, are compared, for Problem 2, for various values of the

08 (08RTS138T55 05353927211 0.2895305479 relaxation parameter w, between 0 and 1. The refinement of

preconditioned SOR, RSOR, exhibits faster convergence than the

09 05976821338 0.5022225352 0.1910285665 PSOR and SOR methods, ie., p(G,,) < p(Gp) < p(Rg,) < 1,
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for all values of relaxation parameter w. It also revealed that
optimum convergence is attained at w = 0.9 for all methods.
Table 5 specifically compares the spectral radius of refinement of
SOR (RSOR) method, p(Rg, ), with that of refinement of
preconditioned SOR (RPSOR) method, p(Rg,, ), for various
values of w, in order to demonstrate the effect of preconditioning
on the refinement technique. As is shown in the table, the RPSOR
converges faster than RSOR. In Table 6, the rate of convergence
of refinement of preconditioned SOR method, RPSOR is compared
with the rate of convergence of SOR method. It revealed that the
RPSOR converges thrice as fast as the SOR method

In Table 7 the spectral radii for iteration matrices of G,,, Gpand
R, are compared, for Problem 3, for various values of the
relaxation parameter w, between 0 and 1. The refinement of
preconditioned SOR, RSOR, exhibits faster convergence than the
PSOR and SOR methods, i.e., p(G,) < p(Gp) < p(Rg,) < 1,
for all values of relaxation parameter w. It also reveals that
optimum convergence is attained at w = 0.9 for all methods.
Table 8 specifically compares the spectral radius of refinement of
SOR (RSOR) method, p(RGw), with that of refinement of
preconditioned SOR (RPSOR) method, p(Rg,,,), for various
values of w, in order to demonstrate the effect of preconditioning
on the refinement technique. As is shown in the table, the RPSOR
converges faster than RSOR. In Table 9, the rate of convergence
of refinement of preconditioned SOR method, RPSOR is compared
with the rate of convergence of SOR method. It revealed that the
RPSOR converges thrice as fast as the SOR method.

Conclusion

A refinement iteration technique for the Successive Overrelaxation
(SOR) iterative method is proposed; this refinement iteration is
applied to a preconditioned linear system of equations arising from
discretization of elliptic partial differential equations. The main
thrust of refinement of preconditioned successive overrelaxation
(RPSORY) is to reduce to the barest minimum the spectral radius of
the iteration matrix so as to increase the rate of convergence of the
method in comparison to the successive overrelaxation (SOR)
method. Convergence theorems were advanced and the
refinement of preconditioned SOR method is shown to be
convergent; for irreducible matrix with weak diagonal dominance
then the RPSOR converges for any initial approximation. Also, the
RPSOR is shown to converge almost thrice as fast as the SOR
method. Sample numerical experiments conducted further
corroborate the theoretical analysis.
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