
Science World Journal Vol. 16(No 3) 2021 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Effects of Hall Current on Transient MHD Natural Convection Flow in a 

Vertical Microchannel 

241 

EFFECTS OF HALL CURRENT ON TRANSIENT MHD NATURAL 
CONVECTION FLOW IN A VERTICAL MICROCHANNEL 
 
Enefu P.A., Mohammed A.A., Olayiwola R.O., Ugwu U.C. and Oyubu J.P. 
 
Department of Mathematics, Federal University of Technology, Minna, Nigeria. 
 
*Corresponding Author Email Address: ugwuclement16@gmail.com      
 
ABSTRACT  
In this work, we studied the transient Magnetohydrodynamics 
natural convection flow with heat and mass transfer of an 
electrically conducting, viscous, incompressible, chemically 
reacting and optically thin radiating fluid past an infinite vertical 
plate in the presence of Hall current. The criteria for the existence 
of a unique solution of the equations describing the flow were 
established. The exact solutions for momentum and energy 
equations were obtained by transforming the equations and solving 
them using the Fourier Transform method under the relevant initial 
and boundary conditions. The effects of various flow parameters 
on the velocity, temperature and concentration were shown with 
the aid of graphs. Prandtl number is inversely proportional to 
temperature. Prandtl number has no effect on the concentration of 
the fluid, both thermal and solutal Grashof number are directly 
proportional to the velocity of the fluid, chemical reaction has a 
reverse effect on velocity, radiation has a reverse effect on 
temperature, Prandtl number has a reverse effect on the 
concentration of the fluid, Schmidt number has a reverse effect on 
the concentration of the fluid. 
 
Keywords: Convection, MHD, Microchannel, Hall Effect, 
Transient. 
 
1. INTRODUCTION 

Fluid dynamics, a subdivision of fluid mechanics is an important 
science for solving various problems arising in aeronautical, 
chemical, mechanical and civil engineering field. The study of the 
laws governing the conversion of energy from one form to another, 
the direction of heat flow and the availability of energy to do work 
is the subject of thermodynamics. The study of biological systems 
is only one possible application of the knowledge of fluid dynamics. 
Life as we all know would not exist without fluids and without the 
behavior that fluids exhibit. The air we breathe and water we drink 
are fluids. Similarly, most of our body fluids are water based and 
proper motion of these fluids within our bodies even down to the 
cellular level is essential for good health. The study of the physical 
phenomenon (flow processes) occurring in oceans, atmosphere, 
space and down to the micro and nanoscales of biological cell 
activity are very important in fluid dynamics (McDonough, 2009). 
The need for the study of the flow of an incompressible, viscous, 
chemically reacting and electrically conducting fluid through 
various cross sections has increased rapidly in recent years with 
applications in engineering problems such as 
Magnetohydrodynamics(MHD) generators, plasma studies, 
nuclear reactors, geothermal energy extraction and the boundary 
layer control in the field of aerodynamics. The flow and heat 
transfer of electrically conducting fluids in channels under the effect 
of transverse magnetic field occur in (MHD) pump and 
accelerators. The investigation of MHD phenomena in plane layers 

and channels with conducting fluids is quite important both for 
understanding the basic mechanisms and for improving the 
existing industrial processes and for developing new MHD devices. 
For instance, Chen and Weng (2005) obtained exact solution of the 
fully developed natural convection in an open-ended vertical 
parallel-plate micro-channel with asymmetric wall temperature 
distributions. The effects of rarefaction and fluid-wall interaction 
were shown to enhance the volume flow rate and to reduce the rate 
of heat transfer.  
This result is further extended by taking into account 
suction/injection on the micro-channel walls by Jha et al. (2014). 
Their results showed that skin-friction as well as rate of heat 
transfer strongly depends on the suction/injection parameter. 
Numerical solutions were obtained by Buonomo and Manca (2012) 
for natural convection in parallel-plate vertical microchannels due 
to asymmetric heating by imposing constant heat flux on the 
boundaries. Avci and Aydin (2009) conducted a study on fully 
developed mixed convective flow in a vertical micro-annulus 
formed by two concentric microtubes. Jha et al. (2015) further 
extended the work of Avci and Aydin (2009) to the case when the 
vertical micro-annulus formed by two concentric micro-tubes is 
porous, i.e. where there is suction or injection through the annulus 
surfaces. Unsteady hydromagnetic Couette flow of a viscous, 
incompressible and electrically conducting fluid between two 
parallel porous plates taking Hall current into account in a rotating 
system was carried out by Seth et al. (2012). Seth and Singh (2015) 
investigated the unsteady hydromagnetic Couette flow of a viscous 
incompressible electrically conducting fluid in a rotating system in 
the presence of an inclined magnetic field and Hall current. 
In this paper, we analyze the equations governing the transient 
magneto-hydrodynamic natural convection flow past an infinite 
vertical plate with hall current effects following Seth et al. (2013); 
establish the criteria for the existence and uniqueness of solution 
of the transformed coupled partial differential equations; obtain an 
analytical solution for the coupled partial differential equations 
using the Fourier Transform method, and give a graphical 
representation of results obtained. 
 
2. Model Formulation 

 
Figure 1: Geometry of the problem (Seth et al., 2013) 
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Following Seth et al. (2013), consider an unsteady hydromagnetic 
natural convection flow with heat and mass transfer of an 
electrically conducting, viscous, incompressible, chemically 
reacting and optically thin radiating fluid past an impulsively moving 
infinite vertical plate embedded in a porous medium in the 
presence of thermal and mass diffusions. We choose the 
coordinate system in such a way that 𝑥′-axis is along the plate in 

upward direction, 𝑦′-axis normal to the plane of the plate and 𝑧′-

axis perpendicular to the 𝑥′𝑦′-plane. The fluid is permeated by 

uniform transverse magnetic field 𝐵0̇ applied in a direction parallel 
to the 𝑦′-axis. Both fluid and plate are in rigid body rotation with 

uniform angular velocity Ω about the 𝑦′-axis. Initially, i.e. at 

time 𝑡′ ≤ 0, both the fluid and plate are at rest and maintained at 

uniform temperature 𝑇∞
′ . Also the level of concentration of fluid is 

maintained at uniform concentration 𝐶∞
′ . At time 𝑡′ > 0, the plate 

starts moving with uniform velocity 𝑢0 in 𝑥′-direction against the 

gravitational field. At the same time the plate temperature is raised 
to uniform temperature 𝑇𝑤

′  and the concentration at the surface of 

the plate is raised to uniform concentration 𝐶𝑤
′ . The fluid 

considered is a gray, emitting-absorbing radiation but non-
scattering medium. It is assumed that there exists a homogeneous 
chemical reaction of first order with constant rate   𝐾2

′  between the 

diffusing species and the fluid. Geometry of the problem is 
presented in figure 1 above. 
Since the plate is of infinite extent along 𝑥′ and 𝑧′ directions and 

is electrically non-conducting, all physical quantities except 
pressure depend on 𝑦′ and 𝑡′ only. The induced magnetic field 

generated by fluid motion is neglected in comparison to the applied 

one, i.e., the magnetic field �̅� ≡ (0, 𝐵0, 0). 
𝜕𝑢′

𝜕𝑡′
+ 2Ω𝑤′ = 𝜈

𝜕2𝑢′

𝜕𝑦′2
− 

𝜎𝐵0
2

𝜌(1+𝑚2)
(𝑢′ + 𝑚𝜔′) − 𝜈

𝑢′

𝐾1′
+

𝑔𝛽′(𝑇′ − 𝑇∞
′ ) + 𝑔𝛽∗(𝐶′ − 𝐶∞

′ )                  (1) 
𝜕𝜔′

𝜕𝑡′
− 2Ω𝑢′ = 𝜈

𝜕2𝜔′

𝜕𝑦′2 +  
𝜎𝐵0

2

𝜌(1+𝑚2)
(𝑚𝑢′ − 𝜔′) − 𝜈

𝜔′

𝐾1′
           (2) 

𝜌𝑐𝑝
𝜕𝑇′

𝜕𝑡′
= 𝑘

𝜕2𝑇′

𝜕𝑦′2
+ 16𝑎∗𝜎∗𝑇∞

′ 3
(𝑇∞

′ − 𝑇′)                                    (3) 

𝜕𝐶′

𝜕𝑡′
= 𝐷

𝜕2𝐶′

𝜕𝑦′2 − 𝐾2
′(𝐶′ − 𝐶∞

′ )                                                             (4) 

 
Subject to the initial and boundary conditions: 
𝑡′ ≤ 0: 𝑢′ = 0, 𝜔′ = 0, 𝑇′ = 𝑇∞

′ , 𝐶′ = 𝐶∞
′  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦′,  

𝑡′ > 0: 𝑢′ = 𝑢0, 𝜔′ = 0, 𝑇′ = 𝑇𝜔
′ , 𝐶′ = 𝐶𝜔

′  𝑎𝑡 𝑦′ = 0,       (5)                                                  

     𝑢′ → 0, 𝜔′ → 0, 𝑇′ → 𝑇∞
′ , 𝐶′ → 𝐶∞

′  𝑎𝑠 𝑦′ → ∞.                 
Where,  
𝑢′ is the fluid velocity in the 𝑥′ direction, 𝜔′ is the fluid velocity in 

the 𝑧′ direction, 𝜈 is the kinematic coefficient of viscosity,  𝜌 is the 

fluid density, 𝜎 is the electrical conductivity, 𝑚 = 𝜔𝑒𝜏𝑒 is the Hall 

current parameter, 𝜔𝑒  is the cyclotron frequency, 𝜏𝑒  is the electron 

collision time, 𝑔 is the acceleration due to gravity, 𝛽′ is the 

volumetric coefficient of thermal expansion, 𝑇 is the fluid 

temperature, 𝐶 is the species concentration, 𝑐𝑝     is the specific 

heat at constant pressure, 𝑘 is the thermal conductivity of the fluid, 

𝐾1
′  is the permeability of the porous medium, 𝑞𝑟 is the radioactive 

flux vector, 𝐷 is the chemical molecular diffusivity. 

 
2. METHOD OF SOLUTION 

Non – dimensionalization 
The governing equations (1) to (4) are non–dimensionalize using 
the following dimensionless variables. 

𝑡 =
𝑡′

𝑡0
, 𝑦 =

𝑦′

𝑢0𝑡0
, 𝑢 =

𝑢′

𝑢0
, 𝜔 =

𝜔′

𝑢0
, 𝜃 =

𝑇′ − 𝑇∞
′

𝑇𝑤
′ − 𝑇∞

′ , 𝜙

=
𝐶′ − 𝐶∞

′

𝐶𝑤
′ − 𝐶∞

′ , 𝐾2 =
Ω𝜈

𝑢0
2 , 𝑀 =

𝜎𝐵0
2𝜈

𝜌𝑢0
2 , 

𝐺𝑟𝜃 =
𝜈𝑔𝛽′(𝑇𝑤

′ −𝑇∞
′ )

𝑢0
3 , 𝐺𝑟𝜙 =

𝜈𝑔𝛽∗(𝐶𝑤
′ −𝐶∞

′ )

𝑢0
3 , 𝑃𝑟 =

𝜌𝜈𝑐𝑝

𝑘
, 𝑆𝑐 =

𝜈

𝐷
, 𝑅 = 16𝑎∗𝜎∗𝜈2𝑇∞

′ 3
,                             (6) 

    𝐾1 =
𝐾1

′𝑢0
2

𝜈2
, 𝐾2 =

𝜈𝐾2
′

𝑢0
2 , 𝜈 = 𝑡0𝑢0

2, 𝑐𝑝 =
1

𝜌𝑢𝑜
2 . 

and obtain 
𝜕𝑢

𝜕𝑡
+ 2𝐾2𝜔 =

𝜕2𝑢

𝜕𝑦2
− 

𝑀

(1+𝑚2)
(𝑢 + 𝑚𝜔) −

𝑢

𝐾1
+ 𝐺𝑟𝜃𝜃 +

𝐺𝑟𝜙𝜙                                                       (7) 
𝜕𝜔

𝜕𝑡
− 2𝐾2𝑢 =

𝜕2𝜔

𝜕𝑦2
+ 

𝑀

(1+𝑚2)
(𝑚𝑢 − 𝜔) −

𝜔

𝐾1
                       (8) 

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2
− 𝑅𝜃                                                                      (9) 

𝜕𝜙

𝜕𝑡
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑦2
− 𝐾2𝜙                                                                          (10) 

Subject to the following initial and boundary conditions: 
𝑢(𝑦, 0) = 0, 𝜔(𝑦, 0) = 0, 𝜃(𝑦, 0) = 0, 𝜙(𝑦, 0) = 0,   
𝑢(0, 𝑡) = 1, 𝜔(0, 𝑡) = 0, 𝜃(0, 𝑡) = 1, 𝜙(0, 𝑡) = 1,           (11) 

𝑢(∞. 𝑡) = 0, 𝜔(∞, 𝑡) = 0, 𝜃(∞, 𝑡) = 0, 𝜙(∞, 𝑡) = 0.                 
Further simplification gives 
𝜕𝐹

𝜕𝑡
=

𝜕2𝐹

𝜕𝑦2
− 𝑁𝐹 + 𝐺𝑟𝜃𝜃 + 𝐺𝑟𝜙𝜙                                                  (12)  

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 − 𝑅𝜃                                                                      (13) 

𝜕𝜙

𝜕𝑡
=

1

𝑆𝑐

𝜕2𝜙

𝜕𝑦2 − 𝐾2𝜙                                                                   (14) 

With initial and boundary conditions: 
     𝑡 ≤ 0: 𝐹 = 0, 𝜃 = 0, 𝜙 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦,  
      𝑡 > 0: 𝐹 = 1, 𝜃 = 1, 𝜙 = 1  𝑎𝑡 𝑦 = 0,                               (15) 

      𝐹 → 0, 𝜃 → 0, 𝜙 → 0 𝑎𝑠 𝑦 → ∞.  
 
Where, 

𝐹 = 𝑢 + 𝑖𝑤 ,  𝑁 =
𝑀(1−𝑖𝑚)

(1+𝑚2)
+

1

𝐾1
− 2𝑖𝐾2 ,  𝐾2 is the rotation 

parameter, 𝑀 is the magnetic parameter, 𝐺𝑟𝜃 is the thermal 

Grashof number,  𝐺𝑟𝜙 is the solutal Grashof number, 𝑃𝑟 is the 

Prandtl number, 𝑆𝑐 is the Schmidt number, 𝑅 is the radiation 

parameter, 𝐾1 is the permeability parameter, 𝐾2 is the chemical 

reaction parameter, 𝑚 is the Hall current parameter. 

 
Existence and Uniqueness of Solution 
Theorem 3.1: Let 𝑆𝑐 = 𝑃𝑟 = 𝑁 = 𝑅 = 𝐾2 = 𝐺𝑟 𝜙 = 𝐺𝑟𝜃 = 1. 

Then the equations (12) to (14) with initial and boundary conditions 
(15) has a unique solution for all 𝑡 ≥ 0. 
Proof: Let 𝑆𝑐 = 𝑃𝑟 = 𝑁 = 𝑅 = 𝐾2 = 𝐺𝑟 𝜙 = 𝐺𝑟𝜃 = 1 and 

𝜓(𝑦, 𝑡) = 𝜃(𝑦, 𝑡) +  𝜙(𝑦, 𝑡).We obtain: 

 

     
𝜕𝐹

𝜕𝑡
=

𝜕2𝐹

𝜕𝑦2 − 𝐹 + 𝜃 +  𝜙    

     𝐹(𝑦, 0) = 0, 𝐹(0, 𝑡) = 1, 𝐹 → 0 𝑎𝑠 𝑦 → ∞,               (16) 

 

    
𝜕𝜓

𝜕𝑡
=

𝜕2𝜓

𝜕𝑦2 − 𝜓  

𝜓(𝑦, 0) = 0. 𝜓(0, 𝑡) = 2, 𝜓 → 0 𝑎𝑠 𝑦 → ∞.                (17) 

 
Using Fourier sine transform, we obtain the solution of (17) as: 

    𝜓(𝑦, 𝑡) =
4

𝜋
∫

𝑠

𝑠2+1
(1 − 𝑒−(𝑠2+1)𝑡) sin 𝑠𝑦 𝑑𝑠.

∞

0
           (18) 

And the solution of (16) as: 
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𝐹(𝑦, 𝑡) =
2

𝜋
∫

𝑠

(𝑠2+1)
((1 − 𝑒−(𝑠2+1)𝑡) +

2

(𝑠2+1)
(1 −

∞

0

𝑒−(𝑠2+1)𝑡) − 2𝑡𝑒−(𝑠2+1)𝑡) sin 𝑠𝑦 𝑑𝑠.                   (19) 

Then we obtain:  

𝜃(𝑦, 𝑡) =
4

𝜋
∫

𝑠

𝑠2+1
(1 − 𝑒−(𝑠2+1)𝑡) sin 𝑠𝑦 𝑑𝑠 −  𝜙(𝑦, 𝑡)

∞

0
.    (20) 

 𝜙(𝑦, 𝑡) =
4

𝜋
∫

𝑠

𝑠2+1
(1 − 𝑒−(𝑠2+1)𝑡) sin 𝑠𝑦 𝑑𝑠 − 𝜃(𝑦, 𝑡).

∞

0
   (21) 

Hence there exists a unique solution of problem (12) to (15). This 
completes the proof of the theorem. 
 
Analytical Solution 
We now solve the equations (12), (13) and (14) subject to the initial 
and boundary conditions (15) using Fourier Sine transform and we 
obtain, 

𝜃(𝑦, 𝑡) = [1 − erf (
√𝑦2+𝑅

2√𝑡(𝑃𝑟)−1
)] = erf 𝑐 (

√𝑦2+𝑅

2√𝑡(𝑃𝑟)−1
)         (22) 

𝜙(𝑦, 𝑡) = [1 − erf (
√𝑦2+𝐾2

2√𝑡(𝑆𝑐)−1
)] = erf 𝑐 (

√𝑦2+𝐾2

2√𝑡(𝑆𝑐)−1
)         (23) 

𝐹(𝑦, 𝑡) = 𝑒−𝑁𝑡 [erf 𝑐 (
√𝑦2+𝑁

2√𝑡
) + 𝐺𝑟𝜙 (erf 𝑐 (

√𝑦2+𝑁+𝐾2

2√𝑡
) −

erf 𝑐 (
√𝑦2+𝑁

2√(1+
1

𝑆𝑐
)𝑡

 ) ) + 𝐺𝑟𝜃 (erf 𝑐 (
√𝑦2+𝑁+𝑅

2√𝑡
) −

erf 𝑐 (
√𝑦2+𝑁

2√(1+
1

𝑃𝑟
)𝑡

))]                                                           (24) 

The computation were done for solutions (22) – (24) 
 
4. RESULTS AND DISCUSSION 
The system of partial differential equations describing the heat and 
mass transfer flow of MHD natural convective flow past an infinite 
vertical plate, were solved analytically using the Fourier transform 
method. It was observed as the fluid is been heated and 
temperature increases, the thermal conductivity increases while 
the fluid becomes less viscous. It is quite evident that Prandtl 
number has no effect on the concentration of the fluid. We also 
noticed from the graph that an increase in Prandtl number 
decreases temperature therefore Prandtl number can be used for 
cooling of the system. If the Grashof number is increased, it 
increases the buoyancy of the fluid which will invariably increase 
the velocity of the fluid. Fig. 4.3 shows the variation of solutal 
Grashof number on velocity of the fluid. The solutal Grashof 
number has the same effect as the thermal Grashof number on the 
velocity of the fluid. As the solutal Grashof number increases, it 
increases the buoyancy force of the fluid and velocity increases as 
shown in Fig. 4.4 below. It is quite evident that Prandtl number has 
no effect on the concentration of the fluid as shown from the graph. 
 

 
Figure 4.1: Variation of Prandtl number 𝑃𝑟 on Concentration for 

present study. 
𝑃𝑟 = 0.3 (Red) 

 

 
Figure 4.2: Variation of prandtl number, 𝑃𝑟  on Temperature for 

present study. 
𝑃𝑟 = 0.3 (Red), 𝑃𝑟 = 0.5 (Blue), 𝑃𝑟 = 0.71 (Green). 

 

 
Figure 4.3: Variation of thermal Grashof number, 𝐺𝑟𝜃 on Velocity 

for present study 
𝐺𝑟𝜃 = 2 (Red), 𝐺𝑟𝜃 = 4 (Blue), 𝐺𝑟𝜃 = 6(Green). 

 

http://www.scienceworldjournal.org/


Science World Journal Vol. 16(No 3) 2021 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Effects of Hall Current on Transient MHD Natural Convection Flow in a 

Vertical Microchannel 

244 

 
Figure 4.4: Variation of solutal Grashof number, 𝐺𝑟𝜙 on Velocity 

for present study. 
Grϕ = 3 (Red), Grϕ = 5 (Blue), Grϕ = 7 (Green) 

 
5. Conclusion 
In this research work, we solved analytically the mathematical 
model for studying Hall current effects on transient 
magnetohydrodynamic natural convection flow in a vertical 
microchannel. The formulated coupled partial differential equations 
(PDEs) were then solved analytically using the Fourier Sine 
Transform method and the effects of the dimensionless flow 
parameters were analyzed as shown from the graph. 
(i) Prandtl number is inversely proportional to temperature. 
(ii) Prandtl number has no effect on the concentration of the 

fluid. 
Both thermal and solutal Grashof number is directly proportional to 
the velocity of the fluid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
Avci, M. & Aydin, O. (2009). Mixed Convection in a Vertical 

Microannulus between Two concentric microtubes, J. Heat 
Transf. Trans. ASME 131, 014502. 

Buonomo, B. & Manca, O. (2012). Natural Convection Flow in a 
Vertical Micro-channel  With Heated at Uniform Heat Flux, Int. 
J. Therm. Sci. 49 (2012) 1333–1344. 

Buonomo, B. & Manca, O. (2012). Transient Natural Convection 
Flow in a Vertical  Micro-channel with Heated at Uniform Heat 
Flux, Int. J. Therm. Sci. 56 :35–47. 

Chen, C.K, Weng, H.C. (2005). Natural Convection in a Vertical 
Microchannel, Journal of Heat Transfer 127 (2005) 1053–
1056. 

Jha, B.K., Aina, B., Joseph, S.B. (2014). Natural Convection Flow 
in Vertical Micro-channel with Suction/Injection, J. Process 
Mech. Eng. 228 (3) (2014) 171–180. 

Jha, B.K., Aina, B., Sani, I. (2015). Transient 
Magnetohydrodynamic Free Convective Flow in Vertical 
Microconcentric- annuli, Proc. IMechE Part N: J. Nanoeng. 
Nanosyst., http://dx.doi.org/10.1177/1740349915578956. 

Mc – Donough, J.M. (2009). Lectures in Elementary Fluid 
Dynamics: Physics, Mathematics and Applications.   

Seth, G.S., Singh, J.K., Mahato, G.K. (2012). Effects of Hall current 
and rotation on unsteady hydromagnetic couette flow within a 
porous channel, Int. J. Appl. Mech. 4 (02) (2012) 1250015. 

Seth, G. S., Nandkeolyar, R., Ansari, M. S. (2013). Effects of 
Thermal Radiation and Rotation on Unsteady Hydromagnetic 
Free Convection Flow past an Impulsively Moving Vertical 
Plate with Ramped Temperature in a Porous Medium. J. 
Appl. Fluid Mech., 6, 27. 

Seth, G.S. & Singh, J.K. (2015). Mixed Convection Hydromagnetic 
Flow in a Rotating Channel with Hall and Wall Conductance 
Effects, J. Appl. Math. Model. 40 : 2783–2803 

http://www.scienceworldjournal.org/
http://dx.doi.org/10.1177/1740349915578956

