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ABSTRACT  
In this study, Generalized Additive Models for location, scale and 
shape was deployed to model a typical automobile insurance 
portfolio. The data set used for this study comprises of seven 
variables, which are: Kilometres, Zone, Bonus, Make, Insured, 
Claims and Payments, it was compiled by a Swedish Committee 
on the Analysis of Risk Premium in Motor Insurance. The mean 
was modeled in terms of the explanatory variables although the 
GAMLSS has the capacity to model up to four parameters unlike 
the Generalized Lineal Models (GLMs) and Generalized Additive 
Models (GAMs). This allows for greater flexibility in modeling. In 
checking for over-dispersion, the negative binomial was used such 
that terms were dropped or added.  Analysis revealed that all term 
were important and as such no terms could be dropped. When 
terms were added, analysis further showed that all the two way 
interaction terms are needed in the model except for the interaction 
between Kilometers and Zone. Results from the optimal model 
check gives the best model as those with separate smoothing 
terms for both Bonus and Kilometers. 
 
Keywords: GAMLSS, Automobile Insurance, Negative Binomial, 
Over-dispersion, Parameter Modeling. 
 
1. INTRODUCTION 
Financial data sets like prices of assets and commodities in the 
stock market, claims and payments in the insurance sector, credit 
worthiness in the banks, etc recorded on different time scales have 
collective characteristics which help the analyst when carrying out 
statistical modeling of the financial data. They can be in both 
qualitative and mostly quantitative form which attaches numerical 
values or descriptions to the measure or strength of an observation. 
The science of building and analyzing mathematical models to 
describe the processes by which money flows into and out of an 
Insurance company is called Actuarial science. It is a combination 
of diverse quantitative skills to enable one “make financial sense of 
the future”.  General insurance which includes health insurance, 
property or personal insurance such as motor and home insurance, 
not forgetting large commercial risks and liability insurance is now 
a fast growing area for insurance experts. 
The automobile insurance industry in any country is very important, 
since it helps to remedy the economy, such that financial losses 
due to the factors of risks are reduced, either through sharing or 
pooling the risks to a large number of people. In most cases, 
insurance experts are more concerned with the amount to be paid 
by the insurance company than the circumstances that gave rise to 
the need for compensation (Denuit et al 2007). In so doing, they 
need to have an understanding of the different models for the risk 
consisting of the total or aggregate amount of claims payable by an 

insurance company for a fixed period of time. Insurance data sets 
are known to have relatively huge claim amounts, which may or 
may not be frequent, hence the knowledge of statistical 
distributions with relatively heavy tails and highly skewed like the 
exponential, gamma, Pareto, Weibull, Poisson and lognormal will 
come in handy (Boland, 2007). Looking at the economic 
importance of motor insurance in developing countries, attempts 
have been made by insurance researches to obtain probabilistic 
models for the distribution of the claim amounts reported by insured 
drivers. Finally, constructing interpretable models for claims 
severity can often give one a much added insight into the 
complexity of the large amounts of claims that may often be hidden 
in a huge amount of data (Raz & Shaw, 2000). 
In pricing automobile insurance policies, two very important factors 
must be considered, these are, data on the consumers and level of 
expertise and understanding of the market. In this research, the 
focus will be on the pricing of insurance using data on the 
consumers. 
 
Generalized Linear Models (GLM) is widely used in the insurance 
industry as seen in De Jong et al. (2008) and Ohlsson and 
Johansson (2010). David (2015) looked at the applications of 
GLMs for the calculation of the insurance premium. These models 
are based on several assumptions one of which is the 
independence of the observations. In so many statistical problems 
this assumption is violated, which can be caused by personal 
characteristics such as driving skills, reflexes, concentration or 
aggressiveness behind the wheels. In majority of studies, the 
Poisson model is noted to be commonly used to model Claim 
frequencies while the Gamma distribution model models claim 
sizes (See Chaku et al, 2017). Spedicato et al (2014) applied 
GAMLSS triangles on a loss database in order to assess the 
distribution of unpaid loss reserve in term of best estimate as 
distributional form. The results obtained were critically compared 
with those of classical stochastic reserving approach. It was seen 
that the result yield a lower RMSE than the chain ladder method 
used when predicting payment. One of the most recent research 
on motor insurance modeling is by Tzougas (2020) who presented 
the Poisson-Inverse Gamma regression model with varying 
dispersion for approximating heavy-tailed and over dispersed claim 
counts. With the development of an Expectation-Maximization 
(EM) type algorithm, the empirical analysis examines a portfolio of 
motor insurance data in order to investigate the efficiency of the 
proposed algorithm. 
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2.0 METHODOLOGY 
2.1 Data Size and Description 
The scope of this research is around the application of GAMLSS 
models on a Swedish automobile insurance portfolio for modeling 
claims and losses due to claims. The data covers all third party 
motor insurance claims in Sweden in 1977. The data size is 2182 
and was compiled by a Swedish Committee on the Analysis of Risk 
Premium in Motor Insurance. The data set comprises of seven 
variables, which are: Kilometres, Zone, Bonus, Make, Insured, 
Claims and Payments. The raw data can be obtained electronically 
from the Statlib data base with web page, 
https://www.kaggle.com/floser/swedish-motor-insurance. Also, 
studies will be carried out on some simulated data sets and 
situations based on some certain algorithms. 
The size of the data is 2182 with no missing values. In Sweden all 
motor insurance companies apply identical risk arguments to 
classify customers, and so their portfolios and their claim statistics 
can be combined. The data was compiled by a Swedish Committee 
on the Analysis of Risk Premium in Motor Insurance. The data 
parameter and descriptions are given below as 
 
• KILOMETRES: Distance (Kilometres) driven by a vehicle, 

grouped into five categories  
1: < 1000 
2: 1000-15000 
3: 15000-20000 
4: 20000-25000 
5: > 25000 
 

• ZONE: Geographical zone of the vehicle, grouped into seven 
categories 

Geographical zone 
1: Stockholm, Göteborg, Malmö with surroundings 
2: Other large cities with surroundings 
3: Smaller cities with surroundings in southern Sweden 
4: Rural areas in southern Sweden 
5: Smaller cities with surroundings in northern Sweden 
6: Rural areas in northern Sweden 
7: Gotland 
 
• BONUS: No Claims bonus equal to the number of years, plus 

one, since the last claim- 7 categories 
• MAKE: The type of vehicle-9 categories 
• INSURED: The number of policy holders in years 
• CLAIMS: Number of claims 
• PAYMENT: Sum of payments  
Claims and Payments will be the response variables while 
Kilometres, Zone, Bonus, Make and Insured are explanatory 
variables. 
 
2.2 Generalized Additive Model for Location, Scale and Shape 
(GAMLSS) 
The Generalized Additive Model for Location, Scale and Shape 
(GAMLSS) framework is one which encompasses the properties of 
the GLMs, GLMM and GAMs. It was introduced by Rigby and 
Stasinopoulos (2002) to address the limitations GLMs and GAMs. 
These are: 
1. The previous models only allow the modelling of the location 

parameter (mean). 
2. The distribution of the response variable must be from the 

EFD. 

Here, the response distribution must not be an EFD instead, the 
primary goal are distributions with computable first and second 
order derivatives which allows flexibility in modeling. The GAMLSS 

assumes independent response observations iy
 for 

1,2,...,i n
 with pdf 

( | )i

if y 
 conditional on 

1 2 31 4( , , , ) ( , , , )i

i i i i i i i         
 

A vector of 4k  distribution parameters, where each parameter 
can be a function of the predictor variables. If 

1 2( , ,..., )i ny y y y
is the length of the response variable, 

iy
, such that

1,2,3,4k 
parameters. Assume that 

(.)kg

is an unknown link function that is monotonic which relates the 
distribution parameters to the predictor variables by 

 
( )k k k k k jk jkg X Z     

 
 
3.0 ANALYSIS AND RESULTS 
 
3.1 GAMLSS Modeling 
In our earlier modeling of the number of claims using the negative 
binomial distribution, a log-link was used with a constant shape 
parameter. Generally, it is written as: 
 

 ~ , , log log , logT Ty NB where n x z       

 

Where z is the vector containing explanatory variables for  and 


 and is the corresponding coefficient vector. 
In modeling using GAMLSS, four parameters are used to model in 
terms of the explanatory variables unlike the GLM that allows only 
one, i.e. the mean to be modeled in terms of the explanatory 
variables. Generally, GAMLSS is a framework for modeling 
univariate regression type of statistical problems. It allows more 
flexibility than GAMs and GLMs in identifying distributions of the 
response variable up to including highly skewed and/or kurtotic 
distributions. Here also, distribution parameters can be modeled 
flexibly like functions of explanatory variables.  
Using a Poisson model, over-dispersion is checked comparing the 
negative binomial and the Poisson distribution model and we have 
the below table 3.1. 
 
Table 3.1: GAMLSS Deviance Reduction 

 
Source: Author’s computation 
 
The reduction in deviance is obvious and suggests a reduction in 
the dispersion as this was measured by dividing the deviance by 
the degree of freedom. 

4.7.1 Modeling Mean (


) Claims In Terms of the Explanatory 
Variables 
The GAMLSS modeling was done in R and the below output was 
obtained 
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Table 3.2: GAMLSS Modeling 

 
Source: Author’s computation in R 
 
This results in a deviance of 12296.14. The GAMLSS model was 
plotted and the below output and plots obtained 
 
Table 3.3. GAMLSS Parameter Estimation 

 
Source: Author’s computation using R 
 

 
Figure 3.1: GAMLSS Quantile Plots 
Source: Author’s computation using R 
 
Quantile residuals are hinged on the concept of taking the inverse 
of the estimated distribution of every observation hoping to get 
exact standard normal residuals. For discrete distributions (such as 
Poisson and Binomial), a bit of randomization is introduced to get 

continuous normal residuals. For situations of large dispersion in 
GLMs, quantile residuals are the residual of choice when the 
deviance and Pearson residuals can be non-normal. Quantile 
residuals are the only useful residuals for Poisson or Binomial data 
when the response takes only a small number of distinct values 
(Smyth and Dunn, 1996). 
The above plots the residual plots from the negative binomial 
distribution model. The two top plots are the residuals plotted 
against the fitted values of mean claims and an index, while the 
bottom left plot gives a kernel density plot whereas the downright 
gives a normal Q-Q plot. The residuals are not random. The Q-Q 
plot shows a string of five outliers, four in the upper tail of the plot 
and one in the lower tail of the plot. It is seen that the negative 
binomial distribution model does not provide a reasonable fit to the 
data. 
 
The gamlss package in R is equipped with functions that help with 
selecting explanatory variable terms. The functions adterm () and 
dropterm () are used in this regard for addition and removal of a 
term in models respectively. 
 
An attempt to demonstrate the drop term on the model gives the 
following results 
 
Table 3.4: Drop Term on Model GAMLSS 2 

 
Source: Author’s computation using R 
 
The Chi square test shows that no terms can be dropped from the 
above model, which implies that all terms must be included in the 
model for the mean of claims. 
 
On the other hand, the addterm () function was deployed  but not 
without stating the terms we hope to add up. Here, we suggest an 
interactive term like: 
(factor(Kilometres)+factor(Make)+factor(Zone)+cs(Bonus))^2. 
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Table 3.5: Addterm on Model GAMLSS 2 

 
Source: Author’s computation using R 
 
The above test reveals that all two way interactions are needed in 
the model except for the two interaction between Kilometres and 
Zone. Thus for modeling the mean claims, all two way interaction 
terms are going to be beneficial. 
A further check on the model selection to get the optimal model is 
done below. 
 
Table 3.6: Optimal Model Check 

 
Source: Author’s computation using R 
 
The first model has the least AIC and as such means that the best 
model is between the model with smoothing term for Bonus and the 
one without. The final model is obtained as 
 

Table 3.7: Model with Smoothing Term 

 
Source: Author’s computation using R 
 
Conclusion 
The modeling of mean in terms of response variables reveals that 
all terms are critical in the model. When terms are added, analysis 
further showed that all the two way interaction terms are needed in 
the model except for the interaction between Kilometers and Zone. 
Results from the optimal model check gives the best model as 
those with separate smoothing terms for both Bonus and 
Kilometers. 
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