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ABSTRACT  
In the study,  algebraic structures and maps (category theory, 
morphisms  and functors) that are inherently tied to the calculus of 
functors (orthogonal calculus) were explored. We emphasized on 
linear polynomial functors and generalized it to the n- polynomial 
functors as in the algebraic and topological settings where the 
topological settings talked about the Goodwillie and the Weiss 
case. 
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1. INTRODUCTION 
In mathematics especially in the algebraic and differential topology, 
the functor calculus i.e. the Goodwillie calculus of homotopy 
functor, the Weiss calculus of functor and finally the embedding 
calculus is a technique to studying functors. These functors are well 
studied by approximating them with sequence of simpler functors. 
These sequence of approximation is almost same as the Taylor 
series of smooth function.  
There are many objects in algebraic and differential topology which 
can be seen as functors. They maybe functors although but it's 
always difficult to analyze directly, so we think of replacing them 
with simpler functors which are sufficiently good approximation for 
the functor in question. 
The calculus of functors was developed by a mathematician known 
as Thomas Goodwillie. Goodwillie came out with a series of three 
papers on the calculus of functors (Goodwillie, 1990) (Goodwillie, 
1991) (Goodwillie,2003) in the 1990s and 2000s. He had his 
inspiration from the work done by Eilenberg and Mac Lane on 
functors in the 1940s (Eilenberg and MacLane, 1945). 
This calculus of functors is known as the Goodwillie calculus of 
homotopy functor which has been the source of motivation for the 
other calculus of functors. 
Micheal Weiss calculus of functor emerged after the papers of 
Goodwillie were published which is known as the orthogonal 
calculus of functors, due to (Weiss, 1995), and this theory is closely 
related to or he had his inspiration from the Goodwillie calculus of 
homotopy functor. The orthogonal calculus of homotopy functor is 
a beautiful tool for calculating the homotopical properties of 
functors from the category of vector spaces to pointed spaces or 
any space enriched over Top∗. With the Weiss calculus we 

consider covariant functor from the category of vector spaces (finite 
dimensional) with an inner product to the category of spaces 

 Top  instead of functors from spaces to spaces as defined by 

Goodwillie (Weiss, 1995). There are intriguing examples of such 

functors and they include classical objects in algebraic and 
geometric topology such as : 

i. 
 BAut V

  

ii. 
 BTop V

  

iii. 
 V VS X 

  
 
Category of such functors from vector spaces to spaces and 

natural transformations between them will be called 0 . 

Orthogonal calculus is based on the notion of n-polynomial functors 
(vector spaces at very high dimension), which are well-behaved 

functors in 0  and which preserves weak equivalences as well. 

With these n-polynomial functors one can often infer the value at 
some vector spaces from the values at vector spaces of higher 
dimension (Barnes and Oman, 2013). In general sense, orthogonal 
calculus approximates a functor (locally around) via polynomial 
functors (approximate into sequence of simpler functors that are 
homotopy equivalent to the functor in question) and attempts to 
reconstruct the global functor from the associated ‘infinitesimal’ 
information. The orthogonal calculus splits a functor, F, into a 

Taylor tower of fibrations, where we can think of the n th   

fibrations to consist of an arrow (map) from the n-polynomial 

approximation of F to the  1n    polynomial approximation of 

F. The homotopy fiber or layer (the difference between n-
polynomial and 

 1n    Polynomial approximation) of this map is then an n 

homogeneous functor and is classified by an  O n  spectrum 

up to homotopy which is usually denoted as nD F . 

 
2. Priliminaries 

Algebraic structures and maps. 
Before looking at polynomials in orthogonal calculus of functors, we 
will highlight on the category theory and functors that are inherently 
tied to calculus of functors and which will commonly be 
encountered. 
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2.1  Category Theory  

Defintion 2.1. A category   consist of  

i. A collection A, B ∈ ξ where A 

and B are objects in ξ 
ii. For all A, B ∈ obj (ξ), a collection ξ (A, B) of maps (arrows) 

from the object A to the object B. 
iii. To every map there exist two objects, its source and target. 

If f is a map with a source A and target B, then we indicate 
this by f : A → B, (Knighten, 2007). 
 

For every object A there exist an associated identity map which is 

written as 1 :A A B . Further if     f : A → B is a map from an 

object A to the object B and g : B → C, is also a map from object 
B to object C then there will exist a composition gf : A → C, which 
will satisfy the following relations. 
 
a) If f : A → B, g : B → C, and h : C → D then  h (gf) = (hg)f : 

A →D (Associativity condition). 

b) If f : A → B, then 1 1A Bf f f   (Identity Morphism). 

 
Figure 1a: Associativity relation of category theory 
 
Relations such as the associativity and the identity morphism are 
denoted by saying the figures above commutes. 
 

 
Figure 1b: Identity morphism of  category theory. 
 
2.2. Sub- Categories  

Definition 2.2.  A category   is a subcategory of category   
provided : 

i. Each obj (ε) is in obj (ξ) 
ii. f ∈ ε (A, B), implies   f ∈ ξ (A, B) i.e. if f is a map in the sub-

category ε implies f is also a map in the main category ξ. 
iii. f : A → B and g : B → C in ε, implies gf is a composition 

of f following g in ξ. i.e. composition of maps in 

subcategories also holds in the main category. 

iv. If 1A is the morphism (identity) for A in ε, then 
1A   is also 

a morphism (identity) for A in ξ. (Knighten, 2007) 
 
2.3.  Special Morphism 
Relations among morphisms are often shown with diagrams that 
commutes, with points or block letters to represent objects and 
arrows to represent maps or arrows. 
The identity morphisms is a natural map that every object have. 
Aside the natural map (identity) that exist in every type theory, there 
exist other different maps that are useful and interesting to study 
as well. i.e. Morphisms can have any of the following properties. 
 
Isomorphism 
 If f : A → B is a map from the source A to the target B with

1 1Af f 
 and 

1 1Bff  
 as inverses, (Knighten, 2007). 

If there exist an inverse for f, then it should be unique, to justify the 

uniqueness of the notation

1f 

. To see that f is unique up to 
isomorphism lets consider g and h to be inverses of f, then 
g = 1Ag= hfg = h1B = h. 
We will denote an isomorphism with the symbol ‘   ‘ and write  

:f A B
 to show an isomorphism of the morphism f, 

and will denote an isomorphism of A and B as A B  and say 
A is isomorphic to B" if A and B are isomorphic to each other. 
 
Homomorphism 
If M and N are two abelian groups. 
A mapping ϕ : M → N is called homomorphism if for all

,x y M  
     xy x y  

 (Nkrumah et al., 2019). 
To a map of spaces we can associate a homomorphism of groups 
such that compositions of maps yield compositions of 
homomorphisms of groups, (Zigli et al., 2017). 
 
Endomorphism 
A morphism g : B → C is an endomorphism if  B = C. End (B) 
denotes the group of endomorphisms of B. 
 
Automorphism 
An endomorphism that guarantee a return inverse or also an 
isomorphism is known as an automorphism. i.e. is an 
endomorphism that has left and right inverses. The automorphism 
class of the object C is the group of all automorphism of C. And is 
usually represented with Aut (C). 
 
Section And Retract 
The definition of an isomorphism can be separated into two parts 
i.e. isomorphism have both left and right inverses, which is the 
same as we saying an isomorphism has both a section and a 
retraction. 
 
Section  
For any map f : A → B, a section of f is map    s : B → A such that

1Bf s 
. A section is called a right inverse (Panangaden, 

2012). 
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Retract 
 For any map f : A → B, a retraction 
of f is a map r : B → A, such that 
r ◦ f = 1A. A retract is also called a left inverse (Panangaden, 2012).  
In any category a section is a monic and a retraction is an epic, but 
the converses are not always true. 
Note: Morphism that is a section and at the same time a retraction 
is also called an isomorphism. 
 
Epimorphism (Epic) 
In any category, the map 
e : A → B is an epimorphism or epic 
morphism in a way that, 
∀, f, g : B → C,  f ◦ e = g ◦ e implies 

f = g. The equation f ◦ e = g ◦ e implies f and g are two morphism 
with Source B and target C, (Panangaden, 2012). 
 

 
Figure 3: Diagrammatic explanation of anepimorphism 
 
Monomorphism (Monic) 
In any category, the map    m : B → C is said to be 
monomorphism or monic morphism for the fact that ∀ f, g : A → 

B,   m f m g  implies f = g (Panangaden, 2012). 

The equation m f m g   implies f and g are two maps 
with the source A and the same target point B. 

 
Figure 4: Diagramatic explanation of 
monomorphism 
 
2.4. Dual Category  

Definition 2.3. C been a category, would imply 
opC  is its dual 

category and it is defined as follows (Knighten, 2007) 

i. They objects in 
opC  is exactly the same objects as to that 

of C. 

ii. The maps of 
opC are the reversed version of arrows of C, 

i.e. for every arrow     f : A → B, there exist a morphism 
# :f B A

 in 
opC . 

iii. The composition of arrows 

# #g f
 in 

opC   is nothing 

but
 

#
f g

. 
 
 
 

Product in a category 
A product diagram for the objects A and B consists of an object p 

and morphisms 
1 2A P B
 

   satisfying the 
following universal mapping property : 

Given any diagram
1 2x x

A P B  , there exist a 

unique :u X P  such that the following diagram 
commutes : 

 

We denote the product of A and B as A B   (Robin, 2020). 
 
Coproduct in a category 
Is a concept describing the (categorical anlogues of the) 
construction of a direct sum of modules or a decrete union of sets 

in the language of morphism. Let 
,iA i I

 be an indexed family 

of objects in a category . An object S, together with morphisms 

:i iA S 
 is called a coproduct of the family 

,iA i I
 if 

for any family of morphism
: ,iA X i I  

, there exist a 

unique morphism :S X   such that 
,ii I   

. 

The morphisms i  are called imbeddings of the coproduct, the 

coproduct is denoted by 
 i ii I

A 



(Hazewinkel, 2013). 

 
Pullback 
In any category C, a pullback of arrows f, g with 

   cod f cod g
 

 

 
Consist of arrows 
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Such that 1 2,f g   and universal with this property. Ie given 

any 1 :z Z A  and 2 :z Z B  with 1 2,fz gz  

there exist a unique :u Z P  with 1 1z u  and 

2 2z u (Awodey, 2010). 

 
Pushout 

 

We have that the object of 
B

 are diagrams in  of the form 

 

 
And arrows to the diagonal functor are pairs of arrows h and k 
making the diagram 
 

 

commute. Equationally : h f k g . The universal such an 

arrow (if it exists) is called the pushout of f and g. Spelling out the 

details, it consist of a pair of arrows p and q in  such that 

p f q g  

 

 
and with the universal property that for every commuting square 
there exists a unique arrow r such that r ◦ p = h and r ◦ q = k (turi, 
2001). Diagrammatically: 
 

 
The diagram is then called a pushout square. 
 

3. Functors 
Functors or covariant functor is morphism or an arrow that 
preserves the structures between categories. 
Functors are now applied almost everywhere in modern 
mathematics to relate various categories. 
 
Definition 3.1. A covariant functor F : C → D is a map that 
preserves the structures that exist between categories C and D and 
also associates each object A in category C to an object F(A) in 
category D; and each morphism f : A → B in category C to a 

morphism F (f) : F (A) → F (B) in D, such that    1 1A F A
F    

for every object A in category C; and

     c DF g f F g F f   for every map  f : A → 

B and g : B → C for which compositions C   and D   are defined 

in categories C and category D (Philips, 2010). 
 
 
 
 
 
 
 
 
 

 
 

http://www.scienceworldjournal.org/


Science World Journal Vol. 16(No 3) 2021 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Structure to Polynomial Functors in Orthogonal Calculus I 

 

373 

Functor Diagram 
 

 
 
Figure 5: Diagramatic explanation of a functor 
 
Where we represent the categories with dashed rectangles, and 

the functors are represented with 0F   and the functor arrows 

between morphisms are omitted. Composition of Functor and 
functor isomorphism are defined analogously to 
morphisms (above). I.e. the functor composition of 

F : C → D and G : D → E is the functor :G F C E  

sending all the objects A in category C to objects 

 G F A E  ; and morphisms f : A → B ∈ C to morphisms, 

     :G F f G F A G F B   such that 

identity morphism and composition holds. 

I.e.    1 1A G F A
G F   and 

       C EG F g f G F g G F f . 

 
3.1. Contravariant Functor  
A functor (contravariant) from category C to category D is a functor 
from Cop to D.Also we can say, F is a contravariant functor if 

i. F sends objects A ∈ ob (C) to      object FA ∈ ob (D) 

ii. F sends morphisms f ∈ C (A, B) to morphisms Ff ∈ 
D (FB, FA) 

iii. The identities are preserved 
iv. F (f ◦ g) = Fg ◦ Ff 

 
3.2.  Forgetful/ Underlying Functors 

A functor is defined as an underlying 
functor or forgetful functor if it drop 
some or all the input structure or 
properties. Examples of forgetful functors are  
(Leinster, 2016) 

i. The functor U : Top∗ → Top which embeds the 

category of pointed topological space into the category 
of topological space by forgetting that the topological 
space is pointed. 

ii. The functor U : Group → Set 
which forgets that a group have 
more structure than just the underlying set it captured 
or remembered. 

iii. Similarly there exist a functor 
U : Ab → Grp defined by 
U(A) = A for A been an abelian group. This functor 
forgets the property that abelian groups are abelian. 
The forgetful functors in this example forget the 
property on the objects. 

 
4. RESULTS AND DISCUSSION 
 
4.1. Polynomial Functors  
Polynomial functor is just categorification of `polynomial functions'. 
Polynomial functors has appeared to be very important in physics, 
also in mathematics with special areas like 
topology (Bisson and Joyal, 1995), (Pirashvili, 2000), and in 
algebra (Macdonald, 1998) and also and it route in mathematical 
logic (Girard, 1988) ,(Moerdijk and Palmgren, 2000) and computer 
science (theoretical), (Jay and Cockett, 1994), (Abbott et al., 2003), 
(Setzer and Hancock, 2005) and useful in the representation theory 
of symmetric groups (Macdonald, 1998). Depending on the 
properties of polynomial functions one takes as guideline for the 
Categorification, different notions result which might deserve to be 
called polynomial functors. 
A continuous function f : R → R is linear if f (a + b) = f (a) + f (b) for 
all a, b ∈ R.           To be precise, we might think of a function been 

affine linear if  
f (a + b) − f (a) − f (b) + f (0) = 0 equivalently f (a + b) − f (0) =(f (a) 
−        f (0)) + (f (b) − f (0)). 
 One of the nice properties of 
functions of real numbers is the property that f (a + b) − f (a) − f (b) 
+ f (0) = 0 implies that  f is actually an affine linear polynomial in the 
sense that if we take f (x) = mx + c for some real numbers m and c.   
Conversely, a function   f (x) = mx + c is known as polynomial of 
degree 1.  

 
4.2. Polynomial linear functor 
 
Algebraic settings 
The study of group theory naturally leads to problem of finding 
elements of a group that belongs to cyclic subgroups of the group. 
(Ezearn and Obeng-Denteh, 2015) 
 
Definition 4.1. Lets think of C and D 
to be an Abelian group, F is additive 
iff 
a) Firstly it takes the no object in C to the no object in D. i.e. 

 0 0C DF  . 

b) Secondly if it preserves finite product or co-product i.e. 

     F A B F A F B     

 
Example 4.1. Given C and D as categories which are both abelian. 
Thus we can think of C and D as 
abelian categories of modules over some commutative rings. 

 RMod . A covariant functor F : C → D is additive if it respects 

the enrichment of C and D in abelian groups. If we look at 

   , ,FHom A B Hom FA FB  is an Abelian 

group homomorphism for every A and B. i.e. The covariant functor 
F is an enriched over the category of Abelian group. 

http://www.scienceworldjournal.org/
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Topological – Algebraic Settings 
 
Definition 4.2. Lets think of C to be pointed category with co-
products, and D be an Abelian group. F : C → D Is additive if it 
preserves  

i. 
 0 0C DF 

  and  

ii. 
     F A B F A F B 

  
Example 4.2. The reduced homology

:H Top grAb   . Ie   0H    and 

     H A B H A H B     satisfies this 

property.    
Remark. The additivity of the reduced homology group is captured 
by 

 
 
Figure 6 : Pushout squares of pointed category with coproduct and 
abelian groups 
 
Which preserves this kind of pushout ? Hence is additive when the 
reduced homology group preserves this kind of pushout. 
Homology also has interesting property when applied to dfferen 
types of pushout squares produces the Mayer-victoris sequence 
 

 
Figure 7: homotopy pushout to mayer victoris sequence 
 
This is a stronger property than pure additivity condition. Hence 

H    is excisive since it has the Mayer-victoris sequence for 

homotopy pushout squares. 
 
Topological Settings (Goodwillie Case) 
 
Example 4.3. Consider the homotopy functor        F : T op∗ → sp 

(f weq ⇒ Ff weq). F is additive (reduced degree ≤ 1) if  

a) 
 F   

  

b) 
     F A F B F A B  

  
 
 
Excisive codition 
The covariant functor F is 1-excisive if it preserves homotopy 
pushout squares. Equivalently F takes homotopy pushout squares 

to homotopy pullback squares. (in this case
s  has the Mayer-

Victoris sequence). 
 
Example 4.4. A homotopy functor 
F : T op∗ → T op∗ is excisive if the covariant functor F takes 

homotopy pushout to homotopy pullback squares. (If we take 
homotopy group of the functor F this will have the Mayer- victoris 
sequence a-rming the excisive condition of the functor F). 
 
Manifold Calculus 
 
Example 4.5. Contravariant functor                        

 : nF Top  . Where we can think of F to be a functor 

on the category of open subsets of Rn. 
Hence F is is excisive or degree ≤ 1 if we consider the homotopy 
pushout of this category. 
 

 
Figure 8 : excisive diagram of manifold calculus 
 
Hence the contravariant functor F is 1-excisive since it preserves 
the homotopy pushout squares. 
Equivalently F takes homotopy pushout squares to homotopy 
pullback squares. 
 
5. Constructing Approximation 
 
5.1.  Approximation via Cross-Effect. 
 
Example 5.1 Considering the settings              F : C → D with C 
being pointed with co product and D as abelian group. F : C → D 

Reduced implies  0 0C DF  . The second crosseffect 

measures the failure of F to be additive. Hence we can define the 
linear 
cross-effect of the covariant functor  
F : C → D as

    2 , : kerCr F A B F A B FA FB      

∴    2 ,F A B FA FB Cr F A B      

Therefore F is additive if  2 , 0Cr F A B  , ,A B C 

.  
Example 5.2. Considering F : Top∗ → Sp. 

We can define the linear cross-effect of the functor as 

    2 ,Cr A B hofiber F A B FA FB     

   2 ,F A B FA FB Cr F A B              

Hence F is additive iff   2 , 0Cr F A B    
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5.2. Approximation via Suspension (To get Excisive 

Functors) 
Example 5.3. Considering F : Top∗ → Top∗ reduced homotopy 

functor. Want to naively force F to be 1-excisive or excisive. 
Note. The difference between additive  functors and excisive 
functors is that one can take push out squares that don't just have 
the initial object in this top hand corner. 
For any base space X, there is a nice homotopy pushout that takes 
the form below, 
 

 
 
Figure 9 : Homotopy pushout of excisive functors 
 

Where CX  is the cone and X  is the suspension (reduced). 

And from definition of excisive functors, a functor is excisive if it 
takes homotopy pushout squares to homotopy pull back squares. 
Hence if F is excisive then the output of the figure 9 will be a 
pullback and FX will be equivalent to the pullback of the remaining 
parts of the square. 
Hence FX should be a pullback of the remaining square. 
i.e. 

 
Figure 10 : Pullback of the remaining square 
 

If F is excisive then 1F T F . But 1T F   need not be 

excisive. However 1T F   is closer to being excisive than the 

original functor FX. 
If we iterate this construction then we will eventually be arriving at 
something excisive. 
Thus the essence of Goodwillie construction. 

Hence  1 1 1 1lim ...PF ho F T F TT F           

1F PF  is an excisive approximation. 

5.3.  Higher Degree Polynomial  
A continuous function f : R → R is quadratic if 

       

       0

f x y z f x y f y z f z x

f x f y f z f

        

  

 
5.4. Higher Cross effect 
We have talked about the second cross-effect being the basic 
object of additivity. 
Hence to talk about the higher versions of additivity we would need 
higher cross effect to measure the failure of the functor being 
n-additive. From the setting F : C → D where C was pointed with 

co-product and D being an abelian group. Hence we can define the 
nth 
cross-effect of the functor F : C → D as 

 

  
1

1 1 2 1

...

... , ,

n n

n n n n n

Cr F A A

Cr F Cr F A A A A  




  

Then     
 

1

1,...,

...v n is i S
s n

F A A Cr F A




   

F is degree   n (n – additive) if 1 0nCr F  

 
6. Conclusion   
The study focuses on linear polynomial functors. i.e. the study 
explained polynomial functors in the algebraic and topological 
settings with the topological setting focusing on the Goodwillie 
case, the embedding case and the orthogonal case (thus 
concentrating on the linear case and generalizing it to the n-
polynomial case) From the study we looked at approximating a 
functor via the cross-effect and suspension to get excisive functors. 
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