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ABSTRACT  
The orthogonal calculus of functors is a beautiful tool for calculating 
the homotopical properties of functors from the category of inner 
product spaces to pointed spaces or any space enriched over

Top . It splits a functor F into a Taylor tower of fibrations, where 

our n-th fibrations will consist of maps from the n-polynomial 
approximation of  F to the (n − 1)− polynomial approximation of F. 
The homotopy fiber or layer (the difference between n-polynomial 
and (n − 1)− polynomial approximation) of this map is then an n-
homogeneous functor and is classified by an O (n)- spectrum up to 

homotopy which is usually denoted as nD F .This structure is 

considered in this study 
 
Keywords: Orthogonal Calculus; Homotopy Fiber; Homogeneous 
Functor; Homotopy; Spectrum; Approximation. 
 
1. Introduction 
There exist another brand of functors Calculus, which emerged 
after the papers of Goodwillie were published, which is known as 
the orthogonal calculus of functors, due to Weiss, and this theory 
is closely related to or he had his inspiration from the Goodwillie 
calculus of homotopy functor (Goodwillie, 1990), (Goodwillie, 
1991), (Goodwillie, 2003). 
The orthogonal calculus of functor is a beautiful tool for calculating 
the homotopical properties of functors from the category of inner 
product space to pointed spaces or any space enriched over

Top . 

Interesting examples of such functors abound and include classical 
objects in algebraic and geometric topology: 

1.  V VY S X    

2.  BAut V   

3.  ,Emb M N N V    

4.  BTop V   

In the first example X  is a fixed based space, VS  is the one-point 

compactification of V and
VY  denotes the space of continuous 

based maps from VS   toY . 

In the second example BAut(V) is BO(V) or     BO(U). In the third 
example M and N are fixed (topological, smooth, etc.) manifolds 
with the dimension of M smaller than the dimension of N, and

 ,Emb   stands for the space of (topological, smooth, etc.) 

embeddings. In the last example Top (V ) is the group of 
homeomorphisms from V to itself (Arone, 2002), hence we can 
associate a homomorphism of groups such that compositions of 
maps yield compositions of homomorphisms of groups (Zigli et al., 
2017). Category of such functors from vector spaces to spaces and 

natural transformations between them will be call 0 . These 

functors satisfy an extrapolation condition, which allows one to 
identify the value at some vector space from 
the values at vector spaces of greater 
dimension (Barnes and Oman, 2013). Orthogonal calculus is based 
on the notion of n-polynomial functors (vector spaces at very high 

dimension), which are well-behaved functors in 0   and which 

preserves weak equivalences as well. With these n-polynomial 
functors one can often infer the value at some vector spaces from 
the values at vector spaces of higher dimension. 
 
In geometric sense, orthogonal calculus approximates a functor 

(locally around 


) via polynomial functors (approximate into 
sequence of simpler functors that are homotopy equivalent to the 
functor in question) and attempts to reconstruct the global functor 
from the associated 
‘infinitesimal ‘ information. The orthogonal calculus splits a functor 

F in 0  into a Taylor 

tower of fibrations, where our n-th fibrations will consist of maps 
from the n.polynomial approximation of F to the (n − 1)−polynomial 
approximation of F. The homotopy ber or layer (the difference 
between npolynomial and (n−1)−polynomial approximation) of this 
map is then an nhomogeneous functor and is classied by an 
O(n)−spectrum up to homotopy which is usually denoted as

nD F (Barnes and Oman, 2013). 

 
1.1.  Continuous Functors 

 Let consider  to be the category of vector space with an inner 

product and that is finite dimensional with linear maps to preserve 
the internal structure of the vector space. To see our category is 
finitely small let's assume our vector spaces belongs to some larger 

space


 , since orthogonal calculus is based on the notion of  

n polynomial functors (vector spaces at very high dimension), 

which are well-behaved functors in 0  and which preserves weak 
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equivalences as well (Barnes and 
Oman, 2013). With these n-polynomial functors one can often infer 
the value at some vector spaces from the values at some vector 
spaces of higher dimension. 
 
Orthogonal calculus is concerned with covariant functors that are 

continuous i.e. E from  to spaces. A functor been Continuous 

implies 
(V, W) × E (V ) → E (W) is continuous, for every ,V W   

(Weiss, 1995). Some examples are    E V BO V , 

    E V BTop V ,     E V BG S V   

Suggesting that orthogonal groups are associated with classical 
spaces, like BO, BTop, BG equipped with a sophiscated filtration 

indexed by finite dimension linear subspaces V of 


. 
 
1.2. The Tower of Classification 

For a covariant functor 0F Top , Weiss calculus constructs 

the n polynomial approximations nT F   and the n 

homogeneous approximations nD F . These can be clearly 

shown in a tower of brations. For all n ≥ 0 

there exist a sequence of fibration 1n n nD F T F T F   

which can be arranged as below. 
 

 
Tower of fibration 
 
For this tower of fibration to be useful we must understand the 
functor F, the polynomial approximation of the functor F and also 
the homogeneous functors as well (Barnes and Oman, 2013). 
 
1.3.  Derivative of a functor 

We will denote 


 with µ (as infinite-dimensional vector space 

with a positive definite inner product) with the standard inner 

product, and regard all finite dimensional vector spaces 


 as 
subspaces of µ, inheriting its inner product. Througout our work we 
will denote our nite dimensional vector spaces with object U, V, W 

and denote the one point compactification of V with CV . We write    
nR V   to mean .nV . Let' think of 

n
 to be a suitable 

subspace of 


, so that 0 1 2 ...      

then 0. 1. 2. 3. ... .V V V V nV       

this will also denote the one point 
compactification. 
Let's consider Mor (V, W) to be a linear isometries from V to W. 
which preserves the inner product.  
 

Also lets consider the category  of vector spaces preserving 

inner product with objects been U, V, and W such that Mor (V, W) 
is the set of maps from V to W.  

Also let n  be of the same object as   with the category of 

objects U, V, W. . . .  and with  ,nmor U V  as the set of maps 

from U to V. n  is considered as a topological category which is 

pointed with class of objects that are discrete. 
The morphisms set are topological spaces that are pointed. Just as 
the non equivariant case, we can form inclusiion

0 1 2 3 ...      and a notion of derivatives. 

More that 0  differs slightly from    such that  0 ,mor V W  

is mor (V, W) with an added base point. We now concentrate on 
functors that are continuous; i.e. if E is a covariant functor

 0 Top   pointed spaces, then it has a derivative 

 1

1:E Top   which itself has a derivative 

 2

2:E Top   which will also have the derivative 

 3

3:E Top   and 

bso on as in the non equivariant case. 
The derivative is defined in terms of 
the adjoint to the restriction functor. 
 

Thus restriction from n   to m   for m, n with m ≤ n gives us a 

natural transformation  
n

mres . we can think of m, n as positive 

integers. more generally we can obtain a restriction map 

:n

m n mres    for m ≤ n by successive composition. There 

exist a map which helps to transform one functor to the other or 
preserves the structure of functor which is known as the natural 
transformation. Hence the natural transformation above will be 
continuous if it is invertible and a homomorphism. 

E.g.    : nat , ,n n n

m n m m mres E F nat res E res F   

is continuous. 
 

Proposition 1.1. A fuctor 
n

mres  has :n

m m nind    as its 

right adjoint, and its defined as 

     , ,n

m m nind X V Nat Mor V X   With the 

right hand side denoting the topological space of the morphism 

between two objects of m . 

 

Proposition 1.2. For all V and 0W    and all n ≥ 0 there is a 

natural homotopy cofiber sequence 

http://www.scienceworldjournal.org/
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 

   1

,

, ,

n

n

n n

Mor V W S

Mor V W Mor V W

  


  

 

Proof.  Identifying nS  as the closure of the subspace

   , , $,ni x V V   where i  is the standard 

inclusion, the composition map

   

 

, ,

,

n n

n

Mor V W Mor V V

Mor V W

   
  

 
Restricts to a morphism 

   , , .n

n nMor V W S Mor V W    The 

homotopy cofiber of the restriction is then the quotient of 

   0, , n

n V W    . The desired 

homeomorphism, away from the base point, is indeed by the 
association below. 
 
Consider a quadruple 

   

  

0, , , ,

,n n

t f Mor V W

y W f V z

    
 
      

  

We send this to the element    1| , ,nf v x Mor V W  

where      * *| | 1 $,x y f z t f    and 

1: nW W    identifies 

   1n nW W W


     

From this cofiber sequence we can make a fiber sequence by 
applying the functor 

 , $ $ $.
n nNat F for F     

Lemma 1.0.1 For all nV   and nF   there is a natural 

homotopy fiber sequence. 

     1 1n n n

n nres ind F V F V F V      

 
2. Structure to Polynomial Functors 

Which functor E in 0Top  deserves to be called polynomial 

functors of degree n  ? This question has to be certainly 

answered at some point in time if we want do calculus. One easy 
to see requirement of the n-polynomial functor is that it's 

 1n Th   derivative of the functor E should vanish. 

However this does not hold for all 
cases especially the case n = 0 shows that this definition is not 
enough.   
A functor E deserves to be called polynomial of degree 0   iff E(f) is 

a homotopy equivalence for all nonzero morphisms f in  0.   

 
 

2.1. Polynomial Functor  
Polynomial functors has appeared to be very important in physics, 
also in mathematics with special areas like topology (Bisson and 
Joyal, 1995), (Pirashvili, 2000), and in algebra (Macdonald, 1998) 
and also nd it route in mathematical logic (Girard, 1988),(Moerdijk 
and Palmgren, 2000) and computer science (theoretical),(Jay and 
Cockett, 1994),(Abbott et al., 2003), (Setzer and Hancock, 2005) 
and useful in the representation theory of symmetric groups 
(Macdonald, 1998). Hence we want to study a well behaved 

collection of such functors in 0   those whose derivatives are 

eventually trivial. By analogy with functions on the real numbers, 
we call these functors polynomial. In this section we introduce this 
class of functors and examine their structures.  
 

Definition 2.1. For 0E Top  or for 0E   define 

   
10

lim
nn

U R
E V ho E U V

 
   We can think of the 

covariant functor E to be n-polynomial if the canonical map

     :n

E nV E V E V   Is homotopy equivalence 

for every genre vector space V of    

 

Remark. The non-zero linear subspace 1nU    form a poset 

P whereT U  means T U   

With the above theorem we sometimes think of such functor E to 
be n-polynomial. The value of the functor E which is n-polynomial 
at the vector space V is determined up to homotopy by the values 

 E U V   and the arrows between them for the nonlinear 

subspace 1nU    

This definition captures the idea of the value of the functor E at 
some vector space V being recoverable from the value of E at 
vector spaces of higher dimension. 
I.e. we can think of the n-polynomial functor as one where it is 
possible to extrapolate the information of ( )E V  from the spaces  

 .E U V   

The homotopy fiber of 

     :n

E nV E V E V   measures how far E is from 

being n-polynomial, its always helpful for us identifying what the 
fibers are. Also let’s recall that a sphere bundle 

   1 , ,p

nS V W mor V W    if we fix V  and 

vary W , we will get a natural transformation

   1 , ,nS V mor V      We then have a map 

  

  

*

1

: , ,

, ,n

nat mor V E

nat S V E



 

 


  

Hence by the yonneda lemma we get 

    *

1: , ,nE V nat S V E     And its 

polynomial of degree n  iff  

    *

1: , ,nE V nat S V E      is homotopy 

equivalence for all V 
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Definition 2.2 For 0E  , we define 0nE   such that 

     
0 1 , ,n nE V Nat S V E   

   We also have 

natural transformation of self functors on  :n nId   This 

natural transformation comes from the map 

   1 0, ,nS V W Mor V W  
  And by yonneda 

lemma. 
 By Michael Weiss there is another description of 

 1 ,nS     It is the homotopy colimit : 

   
11

0
, lim

nn
U

S V A hoco E U V
 

 
    

Where the right hand side is the Bousfield-Kan formula for the 

homotopy colimit of the functor  0U Mor U V   as U 

varies over the topological category of nonzero subspace of 
1n

 and inclusions. Thus we see that 

   
10

lim
nn

U
E V ho E U V

 
   . 

We choose to define n  in terms   1 ,nS     and we then 

define polynomial functors in terms of n  (Barnes and Oman 

2013). 
 

Proposition 2.1. For any 0E   , and any n , the 

sequence, 

     1 1

0 0

n n

nres ind E V E V E V       

Is a fibration sequence up to homotopy and hence  

 1 1

0 0

n nres ind E V 
 vanishes if E is a polynomial of degree

n   

 
Proof: Let’s define  

    
0

1 1

0 0 1 , ,n n

nres ind E V Nat mor V E

 

    

then for the natural co-fiber sequence

     1 0 1, , ,n nS V A Mor V A Mor V A   
 

 Which is natural in A with respect to 0 .  This converge to give a 

cofiber sequence of : 0 spaces 

     1 0 1, , ,n nS V Mor V Mor V  
      

Considering the induced maps of spaces

  

  

  

0

0

0

1

0

1

, ,

, ,

, , .

n

n

Nat Mor V E

Nat Mor V E

Nat S V E





 



 

 

 



  

Hence the above can be identified with

       1

0 0

n n

nres ind E V E V E V    

Which is a fibration sequence up to homotopy for all vector space 
V. (Barnes and Oman, 2013) 

Proposition 2.2 If E in   is polynomial of degree 1,n   

then it is polynomial of n  degree. 

 

Proof. We will actually show that any nS equivalence   is 

an  1nS equivalence  Thus we are to prove that 

    1 0 0, ,n nS S V Mor V V  
      is 

an 1nS equivalence   for any V. We can reduce this to 

proving that the map

   1: , ,n nS V S V    
    is an 1nS   - 

equivalence. The standard inclusion 1n n  induces a 

map of vector bundles    1, ,n nV W V W    and 

hence a map of their respective unit spheres bundles:

   1: , ,n nS V S V    
    We can write

 1 ,nS V  
  as the fiberwise product over 

 0 ,Mor V   (denoted  ) of

   1, $ $ ,nS V and S V 
 

   Thus we can write 

 1 ,nS V  
  as the homotopy pushout of the following 

diagram 
   

   

1

2

1 1

, ,

, ,

n nS V S V

S V S V





 

 

   

  
  

 

Where  1  and 2  are the projection maps. Now we can identify 

the codomain  2  with the stiefel manifold 

 , $Mor V   and in fact  2  itself is just the bundle. 

Writing 
n  for the n-dimensional trivial bundle, it clear that there 

is a pullback square: 
 

 
 

The projection map 2  can be identified with 

    0, , .n

nS V Mor V


        

Hence the vector bundle  1 ,nS V  
   
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is the homotopy pushout of 

    
 

2

0

, ,

, .

n

n nS V S V

Mor V

 
 

     



 




 

If 2  is an 1nS  -equivalence, then so is its homotopy pushout, 

which is .   

The unit sphere of the Whitney sum of vector bundles is equal to 
the fiberwise join of the unit sphere bundles. Hence we can write 

domain of  2   as the homotopy pushout 

 

 

 

1

1

0

,

,

, .

n

n

n

n

S V S

S V S

Mor V















   

   

 

  

The map   is an  1nS   -equivalence, hence the top map in the 

commutative diagram below is an   1nS   -equivalence: 

 

 
 
 

Since the diagonal map is an element of 1nS    it follows that 2  

is an 1nS  -equivalence, as desired (Barnes and Oman, 2013). 

 

Proposition 2.3. Let :g F E    be a map in  0  such that 

1

0

nind E
 is object wise contractible and F in n-polynomial.  Then 

the covariant functor 

   gV hofiber F V E V  
 is also 

polynomial of degree n .  

 
Remark.  In particular, it proves that the homotopy fiber of a map 
between n-polynomial objects is n-polynomial. 
 

Proposition 2.4. We say that a functor  0E   is connected at 

infinity if the space   lim k

k
hoco E  is connected. 

Remark. Polynomial functors can be  determined by their 
behaviour at very high dimension. i.e. by considering the behaviour 
of the vector space V at a very high dimension and which is always 
the best possible approximation to the functor in question. 
If a functor E is polynomial functor of degree ,n  then all 

morphisms in the diagram

...n n nE E E        are 

equivalences.  

For arbitrary E in 0  the space 

   : lim i

i
E hoco E   , and the spectra 

     1 2 3
, , ,...E E E    are determined up to homotopy 

equivalence by the behaviour of E at infinity. 
 

Proposition 2.5. For a morphism :g E F in 0  such that 

   ghofiber E V F V  
is contractible for all V. 

Lets think of  F to be  connected at infinity, and that the covariant 

functors E and F are polynomial of degree n .  

Then g is a homotopy equivalence.  
 
Proof. The problem lies in the fact that at each stage of V, the 
homotopy fiber is defined via a fixed choice of base point in F(V), 
but we need an isomorphism of homotopy groups between E(V) 
and F (V) for all choices of base points.  

Let   bF V  be the Subspace of F(V) consisting of only the 

basepoint component of F(V). bF F  We prove that 

bF F  is an equivalence after applying the functor   

lim k

n n
k

hoco   . 

Note that since E and F are n–polynomial, the maps  nE E    

and  nF F  are objectwise weak equivalences.  

 

Consider the map lim lim $.k

n b n
k k

hoco F hoco F    

For each choice of basepoint, the homotopy fiber of 
k k

n b nF F   is empty or contractible.  

If C is some component in    $,k

nF V F V  then 

because f is connected at infinity, there is some l  such that the 

image of C in  l

nF V  is in the basepoint component.   

This holds since  l

nF V  is defined using only the terms 

 F V U    for U of dimension greater than or equal to l.  

Hence C is contained in  l

n bF V    and there can be no empty 

fibers. We thus have objectwise weak equivalences

$.n b nT F T F     

Consider the map    n nT E V T F V  and choose some 

basepoint x  in  nT F V  , then we see that  k

nx F V  

for some  k. 
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 As k   increases, eventually x  is in the same component as the 

canonical basepoint of   $.k

n F V  Hence by our 

assumptions, the homotopy fibre for this choice x is contractible.  

So n nT E T F   is an objectwise weak equivalence and it 

follows that E F  is a objectwise weak equivalence. 

 Now we show from Weiss that  m  preserves n–polynomial 

functors. The proof is simply that homotopy limits commute, 

 n m m n     and that homotopy limits preserve weak 

equivalences. 
 

Lemma 2.0.1. If E is an n-polynomial object of 0 , then so is mE  

for any 0m (Weiss, 1995). 

 
Proof. We Start by showing that the canonical map 

   

 

1

1 1

0

0 0

lim

lim lim

m

n m

m
U

W U

E V ho E U V

ho ho E W U V




 

 

   

  

 
  

Is a homotopy equivalence, for all generic object  V in  . Target 

can be written as  
1 10 0

lim lim
m nW U

ho ho E W U V
    

  . 

 
3. Homogeneous Functors.  
When working with actual smooth functions, the n-th Taylor 
approximation (around 0) to :f   is giving by

     
0

0
!

nn
n

n

i

x
T x f

n

 . In particular, the difference 

between two consecutive Taylor approximations is giving by

       1 0
!

n
n

n n

x
T x T x f

n
   . 

The analogue of taking the “difference”, when working with (stable)  

 -categories, is to find the fiber of the map 1 .n nT F T F   

The classification of homogeneous functors takes a similar form.  It 
is the space of sequence of a fibration whose fibers are the 

derivatives 
   k

F    with orthogonal group actions.  

Let’s consider some examples of homogeneous functors and also  
define what it means for a functor to be homogeneous and consider 
some examples and also define what makes a functor 
homogeneous. 
 

Definition 3.1. Let  0 *:F Top   be a functor. Define 

nD F  to be the fiber of the natural transformation

1n nT F T F  , then nD F  is a homogeneous functor of 

degree n. 

If it is a polynomial functor of degree n   and  1nT F V  is 

contractible for every 0V    

 i.e.   1 *n nT D F V    for all 0V    

 

Remark. For contravariant functor F, choose a basepoint in 0 . 

This bases F(V) for all 0V  . This is then a homogeneous 

functor of degree n. That is the polynomial of degree n . 

To see that   1 *n nT D F V     for every V, first observe 

that 1nT    commutes with homotopy fibers and next observe that

1 1n n nT T F T F  . 

 
Theorem 3.1 The full subcategory of n-homogenous functors 

inside  0Ho Top     is equivalent to the homotopy category 

of spectra with the orthogonal group action on n.  

For a given spectrum  E    with orthogonal group action on n 

the functor below is an n-homogeneous functor of 0 .Top  

   /
n V

EV S ho n   
 

  

We can think of, 
n VS 

 from the theorem as the one-point 

compactification of n V  .  

 
This has   orthogonal group action (O(n)-action) induced from the 
regular representation of the smash product is equipped with the 

diagonal action of ( ),O n E   indicates a spectrum with the 

orthogonal group action ( )O n . $O(n)$  denotes homotopy orbits 

alias the Borel construction. 

We now look at how to obtain the spectra  .E  We begin by 

recalling that   denotes the category of finite dimensional  inner 

product space with maps the linear maps that preserves the 

internal structures. Let define a vector bundle over  ,U V  

for ,U V   

       , , | : , n

n U V f x f U V x V f U     

 The total space of the vector bundle has a natural action of O(n) 

due to the 
n

  factor.  We assume

   , : ,n nU V T U V  , the associated Thom space. 

Hence this is the cofiber in the sequence:  

 ,nS U V         , ,n nD U V T U V    

   , 1f x x       , 1f x x    

Recall that  *n nT S    and  T X X X    

as defined already. In particular if we choose 0n  , then 

   0 , ,U V U V


     

http://www.scienceworldjournal.org/


Science World Journal Vol. 16(No 3) 2021 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Structure to Polynomial Functors in Orthogonal Calculus II 
 

383 

When looking at the vector bundles there exist a natural 
composition 

     , , ,n n nV W U V U W      

 ,g y               , , nf x g f y g x   

where     :n n ng V f U W      

This composition induces associative and unital maps 

     , , ,n n nV W U V U W    Which are 

O(n) equivariant and functorial in the inputs (Barnes and Oman, 
2013).  
 
4. Conclusion  
The study explained that calculus is not only about derivatives or 
fluxions but is also about approximation by polynomials. 

This was shown by splitting our functor  F V  into tower of 

fibrations where nT F  is the n polynomial approximation and 

nD F  is the n homogeneous functors where 

1n n nD F T F T F  , is the sequence of fibration for all 

2n… . 

The study also reviewed continuous functors and derivatives of 
orthogonal calculus of functors by concentrating on categories of 
vector spaces to pointed spaces. 
 
Finally our research work has analyzed some structures of 
polynomial and homogeneous functors in the orthogonal calculus 
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