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ABSTRACT  
This work examines the heat transfer on unstable MHD flow of 
fourth grade fluid in horizontal parallel plates. The plates are 
arranged so that the upper plate oscillates and moves while the 
lower plate is stationary. The temperatures prescribed by the plates 
are uniform and asymmetric. Dimensionless parameters are set to 
convert the governing equations to dimensionless form. Solutions 
for momentum and energy equations are explicitly obtained 
through the He-Laplace scheme. The effect of various flow 
parameters on velocity profile and temperature distribution is 
discussed using graphs. Significant results of this study show that 
velocity profile and temperature distribution increase with the 
increase in thermal radiation parameter, while the velocity and 
temperature distribution decrease with the increase in suction 
parameter. The results of this work have significant application in 
refrigeration industry for refrigeration, energy transfer in cooling 
tower, evaporation, etc. 
 
Keywords: Heat transfer, Thermal radiation, MHD, Fourth-grade 
fluid, Suction, He-Laplace. 
 
INTRODUCTION 
The study of heat transfer is of realistic significance to engineers 
and scientists because of its universal incidence in many branches 
of science and engineering. This phenomenon plays a significant 
role in chemical industry, power and cooling industry for dying, 
evaporation, energy transfer in cooling tower and flow in s desert 
cooler, etc Satya et.al (2015). 
Heat transfer in the other hand can be said to be the transmission 
of energy from one region to another as a result of increase in 
temperature difference between them. While mass transfer can 
also be said to be the transportation or movement of materials or 
substances from a region of higher concentration to a region of 
lower concentration through a semi permeable membrane. Heat 
transfer occurs when there is temperature difference between two 
or more regions or surroundings. Much of the understanding of 
plasma came from the study of Magneto hydrodynamics (MHD) as 
it is the study of interactions of electrically conducting fluids and 
electromagnetic fields. When fluid such as ionized gases (plasma, 
mercury and molten iron, electrolytes which are only but a few 
electrically conducting fluids, moves through a magnetic field, 
consequently a current is induced, and in turn the current interacts 
with the magnetic field to produce a body force on the fluid. Such 
forces (current) generated has been used in the generation of 
electricity by the help of (MHD) designed generators. The analysis 
of  suction effect on fluids through magneto hydro dynamics has 
attracted many researches due to its application in geothermal and 

oil reservoir , where it deals with the behaviour of fluids under rest 
and motion, the phenomenon of unsteady Magneto-
hydrodynamics (MHD) flow with suction effect have become very 
popular and a subject of growing interest due to its application in 
many engineering and geophysical processes such as cooling of 
nuclear reactor, geothermal reservoirs, underground energy 
transport, MHD pump ,MHD power generators, etc. 
The fundamental concept behind MHD is that magnetic fields can 
induce currents in a moving conductive fluid, which in turn polarizes 
the fluid and reciprocally changes the magnetic field itself which as 
some many application in the field of engineering and science and 
as such as been a field of studies which have been attracting a 
considerable attention of engineers and scientists all over the world 
but it was Hannes Alfven (1942), a Swedish electrical engineer first 
initiated the study of MHD. 
Fourth-grade fluid is an important subclass of differential type that 
is capable of describing shear thinning and shear thickening 
effects. It is also non-Newtonian. Examples are ketchup, blood, 
paint, cream, nail polish, etc. 
These are non – Newtonian fluids as such, many empirical and 
semi-empirical non-Newtonian models or constitutive equations 
have been proposed. Rehan et al. (2010) considered the steady 
flow of a fourth grade fluid, between two parallel plates. They 
analyzed four types of flows: Couette flow, plug flow, Poiseuille flow 
and generalized Couette flow. The nonlinear differential equation 
describing the velocity field was solved by optimal homotopy 
asymptotic method (OHAM). They observed that the OHAM was 
more efficient and flexible than the perturbation and Homotopy 
analyses method. Islam et al. (2011) considered the steady flow of 
a non-Newtonian fluid with slippage between the plate and the fluid. 
The constitutive equations of the fluids were modelled for fourth-
grade non-Newtonian fluid with partial slip. They employed 
homotopy perturbation and optimal homotopy asymptotic methods 
to solve the non-linear differential equation. Shehzad et al. (2018) 
reported the electro-osmotic Couette-Poiseuille flow of power law 
Al2O3- PVC nanofluid through a channel, in which upper wall is 
moving with constant velocity. The influences of magnetic field, 
mixed convection, joule heating, and viscous dissipation were also 
incorporated. The flow was generated because of constant 
pressure gradient in axial direction. The resulting flow problem was 
coupled nonlinear ordinary differential equations, which were at 
first modeled and then transform into dimensionless form through 
appropriate transformation. Analytical solution of the governing 
equation was carried out.  
Fenuga et al (2020) investigated the mathematical model and 
solution for an unsteady MHD fourth grade fluid flow over a vertical 
plate in a porous medium with the effects of the magnetic field and 
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suction/injection parameters using Homotopy Perturbation Method. 
They displayed graphically and discussed the impact of 
dimensionless second, third and fourth grade parameters with the 
effects of magnetic field and suction/injection parameters on the 
velocity field. They found out that increase in suction parameter 
decreases the momentum boundary layer thickness while injection 
parameter enhances velocity distribution in the boundary layer. 
Magnetic field reduces velocity throughout the boundary layer 
because the Lorentz force which acts as retarding force reduces 
the boundary layer thickness.  
Yurusoy (2020) investigated the time dependent boundary layer 
flow of a modified power-law fluid of fourth grade on a stretched 
surface with an injection or suction boundary condition. The fluid 
model is a mixture of fourth grade and power-law fluids in which the 
fluid may display shear thickening, shear thinning or normal stress 
textures. They the scaling and translation transformations which is 
a type of Lie Group transformation, time dependent boundary layer 
equations were reduced into two alternative ordinary differential 
equations systems (ODEs) with boundary conditions. He found out 
that the boundary layer thickness decreases as the power-law 
index value increases. And also, the fourth-grade fluid parameter, 
as the parameter increases, the boundary layer thickness 
decreases while the velocity in the 𝑦 direction increases. 

Priyadarsan and Panda (2020) carried out a numerical 
investigation to study the unsteady flow of incompressible and 
electrically conducting fourth-grade fluid through a porous medium 
between two infinite parallel plates under transverse magnetic field 
with time-dependent suction. The lower plate is at rest and the 
upper plate is moving and oscillating in its own plane about a 
constant mean velocity with time-dependent suction. The basic 
equations governing the flow and heat transfer are reduced to a set 
of non-linear partial differential equations. The governing equations 
are simplified using perturbation method with respect to time and 
the resulting sixth-order non-linear differential equations are solved 
numerically using Runge-Kutta method in association with the 
multi-shooting technique. Their investigation revealed that the 
higher-grade fluid parameters influence significantly the fluid 
temperature. Khan et al. (2018) discussed the unsteady flow of 
non- Newtonian fluid with the properties of heat/sink in the 
presence of thermal radiation through a binary mixture embedded 
in a porous. Santhosha et al. (2017) studied the radiation and 
chemical combined effects on MHD free convective heat and mass 
transfer flow of viscous, incompressible, conducting elastic fluid 
through porous medium finite by a porous plate within the presence 
of heat generation. The momentum, energy and mass diffusion 
equation were coupled non-linear partial differential equations. 
They employed two term perturbation method. Joseph et al. (2021) 
investigated the unsteady MHD flow of a fourth-grade fluid in a 
horizontal parallel plate’s channel. They considered the upper plate 
to be oscillating and moving while the bottom plate is stationary. 
Solutions for momentum, energy and concentration equations are 
obtained by the He-Laplace scheme. They found that velocity and 
temperature fields increase with the increase in the thermal 
radiation parameter, while velocity and concentric fields decrease 
with an increase in the chemical reaction parameter. Furthermore, 
velocity, temperature and concentric fields decrease with an 
increase in the suction parameter.  
Taza et al. (2016) studied the unsteady thin film flow of a fourth 
grade fluid over a moving and oscillating vertical belt. They 
employed adomian decomposition method (ADM) and optimal 
homotopy asymptotic method (OHAM) to find the solution of the 

non- linear differential equations that governed the flow. Hayat et 
al. (2007) presented the exact solution for four types of flows 
between two parallel plates, viz; Couette flow, plug flow, Poiseuille 
flow and generalized Couette flow. The nonlinear second-order 
differential equation for the velocity field was solved exactly in each 
case. The nonlinear differential equation describing the velocity 
field was solved by optimal homotopy asymptotic method (OHAM). 
They observed that the OHAM is more efficient and flexible than 
the perturbation and Homotopy analyses method.  
Idowu and Sani (2019) carried out an analysis for unsteady 
magnetohydrodynamic (MHD) flow of a generalized third grade 
fluid between two parallel plates. The fluid flow was as a result of 
the plate oscillating, moving and pressure gradient. Three flow 
problems were investigated, namely: Couette, Poiseuille and 
Couette-Poiseuille flows and a number of nonlinear partial 
differential equations were obtained which were solved using the 
He-Laplace method. Expressions for the velocity field, temperature 
and concentration fields were given for each case and finally, 
effects of physical parameters on the fluid motion, temperature and 
concentration were plotted and discussed. They found that an 
increase in the thermal radiation parameter increases the 
temperature of the fluid and hence reduces the viscosity of the fluid 
while the concentration of the fluid reduces as the chemical 
reaction parameter increases. 
In the above aforementioned investigations however, the heat 
transfer on unsteady MHD flow of fourth-grade fluid in a horizontal 
infinite parallel plates with suction effect have not been given more 
attention. Suction is the act or process of sucking. A force that 
causes a fluid or solid to be drawn into interior space or to adhere 
to surface because of the difference between the external and 
internal pressure. This is considered due to the porosity of the 
channel plates.  
 
FORMULATION OF THE PROBLEM 
We consider the unsteady flow of an electrically conducting 
incompressible fourth grade fluid between two horizontal parallel 
plates channel as shown in figure 1 below. The fluid is subjected to 
a uniform transverse magnetic field. We assumed the bottom plate 
is fixed (stationary) and the top plates is moving with constant 
velocity. 
 

 
Figure 1: Physical Schematic of the Flow Configuration 
 
The state of this fluid is determined by the history of the deformation 
gradient without a preferred reference configuration. Its constitute 
equation can be written as 

𝑇(𝑥, 𝑡) = −𝑃𝐼 + 𝑓𝑠=0
∞ (𝐹𝑡

𝑡(𝑠))   (1) 

Where 𝑃𝐼 is the undetermined part of the stress – tensor, 𝐹 is the 

deformation gradient and 𝑓 is the functional. 
Coleman and Noll (1960) prescribed different sort of 
incompressible fluid category  𝑛  as viscous fluid agreeing on Hayat 
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et al. (2007). Incompressible fluid of differential type of grade 𝑛 is 

the simple fluid obeying the constitutive equation 

1

n

j

j

T PI S


  
             (2) 

obtained by asymptotic expansion of the functional in equation (1) 
through a retardation parameter 𝛼. For 𝑛 = 4 as Hayat et al. 

(2005, 2007), the first four (4) tensors 𝑆𝑗 are given by  

𝑆1 = 𝜇𝐴1     (3) 

𝑆2 = 𝛼1𝐴2 + 𝛼2𝐴1
2     (4) 

𝑆3 = 𝛽1𝐴3 + 𝛽2(𝐴1𝐴2 + 𝐴2𝐴1) + 𝛽3(𝑡𝑟𝐴1
2)𝐴1  (5) 

 

𝑆4 = 𝛾1𝐴4 + 𝛾2(𝐴3𝐴1 + 𝐴1𝐴3) + 𝛾3𝐴2
2 + 𝛾4(𝐴2𝐴1

2 +
𝐴1
2𝐴2) + 𝛾5(𝑡𝑟𝐴2)𝐴2 + 𝛾6(𝑡𝑟𝐴2)𝐴1

2 + [𝛾7𝑡𝑟𝐴3 +
𝛾8𝑡𝑟(𝐴2𝐴1)]𝐴1       (6) 

Where, 𝜇 is the coefficient of shear viscosity, 𝛼𝑖(𝑖 = 1,2),
𝛽𝑖(𝑖 = 1,2,3) and 𝛾𝑖(𝑖 = 1(1)8) are material constants. The 

𝐴𝑛 are the Rivlin – Ericksen tensors defined by the recursion 

relation 

𝐴𝑛 =
𝑑

𝑑𝑡
𝐴𝑛−1 + 𝐴𝑛−1𝐿 + 𝐿

𝑇𝐴𝑛−1 ,   𝑛>1  (7) 

𝐴1 = 𝐿 + 𝐿
𝑇     (8) 

where 𝐿 = ∇𝑉, 
𝑑

𝑑𝑡
 is the material time derivative and 𝑉is the 

velocity. 
We note that when 𝛾𝑖 = 0, the fourth grade model reduces to the 

third grade model. When 𝛽𝑖 = 0, the third grade model reduces to 

second grade model. When 𝛼𝑖 = 0, 𝛽𝑖 = 0 and 𝛾𝑖 = 0 then the 

model reduces to classical Navier – Stoke fluid. 
The thermally radiative flow is heading 𝑥 – direction along infinite 

porous plate with heat generation. Here, 𝑈0 is the uniform velocity 

and 𝑇∞ isthe fluid temperature. 

Under the above consideration, the equations that described the 
physical circumstances are 
𝜕v

𝜕𝑦
= 0      (9) 

 
𝜕𝑢

𝜕𝑡
+ v

𝜕𝑢

𝜕𝑦
=-
𝜕𝑝

𝜕𝑥
+ν

𝜕2𝑢

𝜕𝑦2
+
𝛼1𝜈

𝜌

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+
𝛽1𝜈

2

𝜌

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+

6(𝛽2+𝛽3)

𝜌
(
𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+
𝛾1𝜈

3

𝜌

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+

2ν(3𝛾2+𝛾3+𝛾4+𝛾5+𝛾7+𝛾8)

𝜌𝐶𝑝
[2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] −

𝜎𝐵0
2

𝜌𝐶𝑝
𝑢 + 𝑔𝛽𝑇(𝑇 − 𝑇∞) −

𝜈

𝑘
𝑢    (10) 

 
𝜕𝑇

𝜕𝑡
+ v

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2
+

𝑄0

𝜌𝐶𝑝
(𝑇𝑤 − 𝑇∞) −

1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦
 (11)  

 
From equation (11), 𝑞𝑟 is the radiative heat flux define as 

 
𝜕𝑞𝑟

𝜕𝑦
= 4𝛼2(𝑇𝑤 − 𝑇∞)   (12i) 

The initial and boundary conditions are 

𝑢 = 𝑈0𝑒
−𝑦ℎ , 𝑇 = 𝑇0 + (𝑇𝑤 − 𝑇∞)𝑒

−𝑦ℎ   𝑎𝑡 𝑡 = 0 𝑓𝑜𝑟  0 ≤ 𝑦 ≥ ℎ

𝑢(𝑦, 𝑡) = 𝑈, 𝑇(𝑦, 𝑡) = 𝑇𝑤, 𝑎𝑡 𝑦 = ℎ 𝑓𝑜𝑟 𝑡 ≥ 0

𝑢(𝑦, 𝑡) → ∞,𝑇(𝑦, 𝑡) → ∞ 𝑎𝑠 𝑦 → ∞ 𝑓𝑜𝑟 𝑡 > 0

}

         (13) 
Where 𝑢 is the fluid velocity, 𝑇 is the temperature, 𝑞𝑟 is the 

radiative heat flux, 𝜌 is the density of the fluid, 𝐶𝑝 is the heat 

capacity, 𝐵0 is the external magnetic field. 

In order to transform equations (10) – (13), we use the following 
dimensionless parameters 

𝑢∗ =
𝑢

𝑈0
,  𝑝∗ =

𝑝

𝜇𝑈0
2 , 𝑡

∗ =
𝑡𝑈0

2

𝜈
, 𝐺𝑟 =

𝑔𝛽𝑇(𝑇𝑤−𝑇∞)𝜈

𝑈0
3 , , 𝐻𝑎2 =

𝜎𝐵0
2𝜈

𝜌𝑈0
2 ,, 𝑦

∗ =
𝑦𝑈0

𝜈
, 𝑥∗ =

𝑥

ℎ
, ℎ =

𝑈0

𝜈
 𝑃𝑟 =

𝑘𝑈0
2

𝜈2
, 𝑆 =

v0

𝑈0
, v =

v

𝑈0
, 𝜃 =

𝑇−𝑇0

𝑇𝑤−𝑇∞
, , 𝛿 =

4𝛼2𝑈0
2

𝜌𝑐𝑝𝜈
, 𝛼 =

𝛼1𝑈0
2

𝜌𝜈2
, 𝛽𝑎 =

𝛽1𝑈0
4

𝜌𝜈3
, 𝛽𝑏 =

(𝛽2+𝛽3)𝑈0
4

𝜌𝜈3
, 𝛾𝑎 =

𝛾1𝑈0
6

𝜌𝜈3
, 𝛾𝑏 =

2(3𝛾2+𝛾3+𝛾4+𝛾5+3𝛾7+𝛾8)𝑈0
6

𝜌𝜈4
  

                (14) 
Substituting equation (14) into equations (9) – (13) and by dropping 
the asterisks, we have the following: 
𝜕𝑣

𝜕𝑦
=0 ⇒ v = −v0              (15) 

𝜕𝑢

𝜕𝑡
− 𝑆

𝜕𝑢

𝜕𝑦
=-
𝜕𝑝

𝜕𝑥
+
𝜕2𝑢

𝜕𝑦2
+ 𝛼

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽𝑎

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+

𝛽𝑏 (
𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾𝑎

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+ 𝛾𝑏 [2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+

(
𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − (𝐻𝑎 +

1

𝐷𝑎
) 𝑢 + 𝐺𝑟𝜃            (16) 

𝜕𝜃

𝜕𝑡
− 𝑆

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2
+ (𝑄0 + 𝛿)𝜃           (17) 

And the initial and boundary conditions becomes 

         

𝑢(𝑦, 𝑡) = 𝑒−𝑦, 𝜃(𝑦, 𝑡) = 𝑒−𝑦 𝑎𝑡 𝑡 = 0 𝑓𝑜𝑟 0 ≤ 𝑦 ≥ 1

𝑢(𝑦, 𝑡) = 1, 𝜃(𝑦, 𝑡) = 1 𝑎𝑡 𝑦 = 1 𝑓𝑜𝑟 𝑡 ≥ 0

𝑢(𝑦, 𝑡) → ∞, 𝑇(𝑦, 𝑡) → ∞ 𝑎𝑠 𝑦 → ∞ 𝑓𝑜𝑟 𝑡 > 0

}  

                (18) 
METHOD OF SOLUTION/SOLUTION OF THE PROBLEM 
In this section we employed the He – Laplace scheme to solve 
equations (16) and (17) subjects to the initial and boundary 
conditions (18). 
Since equation (16) is a coupled non – linear partial differential 
equation, we have to solve equations (17) first. 
Now applying Laplace transform on equation (17), we have; 
Next, we consider equation (17), which is rearranged to give; 
𝜕𝜃

𝜕𝑡
− 𝑆

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2
+ (𝑙1)𝜃, where, 𝑙1 = 𝑄0 + 𝛿        (18i) 

 
 Now applying Laplace transform on equation (18i); 

𝐿 {
𝜕𝜃

𝜕𝑡
} − 𝐿 {𝑆

𝜕𝜃

𝜕𝑦
} =

1

𝑃𝑟
𝐿 {

𝜕2𝜃

𝜕𝑦2
} + 𝐿{𝑙1𝜃}          (19) 

Applying the initial condition and dividing through by 𝑠 and 

rearranging we obtain; 

𝐿{𝜃(𝑦, 𝑡)} =
𝑒−𝑦

𝑠
+
1

𝑠
{
1

𝑃𝑟
𝐿 {

𝜕2𝜃

𝜕𝑦2
} + 𝑆𝐿 {

𝜕𝜃

𝜕𝑦
} + 𝐿{𝑙1𝜃}}    (20) 

 
Taking the inverse Laplace transform of both sides of equation (20) 
gives, 

𝜃(𝑦, 𝑡) = 𝑒−𝑦 + 𝐿−1 [
1

𝑠
{
1

𝑃𝑟
𝐿 {

𝜕2𝜃

𝜕𝑦2
} + 𝑆𝐿 {

𝜕𝜃

𝜕𝑦
} + 𝐿{𝑙1𝜃}}]  (21) 

 
Applying the Homotopy perturbation technique on equation (21), 
yields                

 
2

1
0 2

( , )

1 1

n y

n

n

r

P y t e

P L L L
s P y













 

      
     

       

            (22) 

Comparing the coefficients of the like powers of ′𝑃′in equation (22), 

the following approximations are obtained; 

𝑃0: 𝜃0(𝑦, 𝑡) = 𝑒
−𝑦               (23) 
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𝑃1: 𝜃1(𝑦, 𝑡) = 𝐿
−1 [

1

𝑠
{
1

𝑃𝑟
𝐿 {

𝜕2𝜃0

𝜕𝑦2
} + 𝑆𝐿 {

𝜕𝜃0

𝜕𝑦
} +

𝐿{𝑙1𝜃0}}]  = 𝐿
−1 {

1

𝑃𝑟
(
𝑒−𝑦

𝑠2
) − 𝑆 (

𝑒−𝑦

𝑠2
) + 𝑙1 (

𝑒−𝑦

𝑠2
)} = (

𝑒−𝑦

𝑃𝑟
−

𝑆𝑒−𝑦 + 𝑙1𝑒
−𝑦) 𝑡    (24) 

 

𝑃2: 𝜃2(𝑦, 𝑡) = 𝐿
−1 [

1

𝑠
{
1

𝑃𝑟
𝐿 {

𝜕2𝜃1

𝜕𝑦2
} + 𝑆𝐿 {

𝜕𝜃1

𝜕𝑦
} + 𝐿{𝑙1𝜃1}}] =

𝐿−1 [
1

𝑠
{
1

𝑃𝑟
𝐿 {(

𝑒−𝑦

𝑃𝑟
− 𝑆𝑒−𝑦 + 𝑙1𝑒

−𝑦) 𝑡} − 𝑆𝐿 {(𝑆𝑒−𝑦 −

𝑒−𝑦

𝑃𝑟
− 𝑙1𝑒

−𝑦) 𝑡} + 𝐿 {𝑙1 (
𝑒−𝑦

𝑃𝑟
− 𝑆𝑒−𝑦 + 𝑙1𝑒

−𝑦) 𝑡}}] =

(
𝑒−𝑦

𝑃𝑟
2 +

2𝑙1𝑒
−𝑦

𝑃𝑟
− 𝑆2𝑒−𝑦 + 𝑙1

2𝑒−𝑦)
𝑡2

2!
   (25) 

 

𝑃3: 𝜃3(𝑦, 𝑡) = 𝐿
−1 [

1

𝑠
{
1

𝑃𝑟
𝐿 {

𝜕2𝜃2

𝜕𝑦2
} + 𝑆𝐿 {

𝜕𝜃2

𝜕𝑦
} + 𝐿{𝑙1𝜃2}}] =

𝐿−1 [
1

𝑠
{
1

𝑃𝑟
𝐿 {(

𝑒−𝑦

𝑃𝑟
2 +

2𝑙1𝑒
−𝑦

𝑃𝑟
− 𝑆2𝑒−𝑦 + 𝑙1

2𝑒−𝑦)
𝑡2

2!
} −

𝑆𝐿 {(
𝑒−𝑦

𝑃𝑟
2 +

2𝑙1𝑒
−𝑦

𝑃𝑟
− 𝑆2𝑒−𝑦 + 𝑙1

2𝑒−𝑦)
𝑡2

2!
} + (𝑆2𝑒−𝑦 −

𝑒−𝑦

𝑃𝑟
2 −

2𝑙1𝑒
−𝑦

𝑃𝑟
− 𝑙1

2𝑒−𝑦)
𝑡2

2!
}] = (

𝑒−𝑦

𝑃𝑟
3 +

3𝑙1𝑒
−𝑦

𝑃𝑟
2 −

𝑆2𝑒−𝑦

𝑃𝑟
+
3𝑙1
2𝑒−𝑦

𝑃𝑟
−

𝑆𝑒−𝑦

𝑃𝑟
−
2𝑙1𝑆𝑒

−𝑦

𝑃𝑟
− 𝑙1

2𝑆𝑒−𝑦 − 𝑙1𝑆
2𝑒−𝑦 + 𝑙1

3𝑒−𝑦 + 𝑆3𝑒−𝑦)
𝑡3

3!
 

     (26) 
 
Therefore, in view of equations (23), (24), (25) and (26), the 
solution to equation (17) is,    
𝜃(𝑦, 𝑡) = 𝜃0(𝑦, 𝑡) + 𝜃1(𝑦, 𝑡) + 𝜃2(𝑦, 𝑡) + 𝜃3(𝑦, 𝑡)⋯ 

𝜃(𝑦, 𝑡) = 𝑒−𝑦 + (
𝑒−𝑦

𝑃𝑟
− 𝑆𝑒−𝑦 + 𝑙1𝑒

−𝑦) 𝑡 + (
𝑒−𝑦

𝑃𝑟
2 +

2𝑙1𝑒
−𝑦

𝑃𝑟
−

𝑆2𝑒−𝑦 + 𝑙1
2𝑒−𝑦)

𝑡2

2!
+ (

𝑒−𝑦

𝑃𝑟
3 +

3𝑙1𝑒
−𝑦

𝑃𝑟
2 −

𝑆2𝑒−𝑦

𝑃𝑟
+
3𝑙1
2𝑒−𝑦

𝑃𝑟
−

𝑆𝑒−𝑦

𝑃𝑟
−
2𝑙1𝑆𝑒

−𝑦

𝑃𝑟
− 𝑙1

2𝑆𝑒−𝑦 − 𝑙1𝑆
2𝑒−𝑦 + 𝑙1

3𝑒−𝑦 +

𝑆3𝑒−𝑦)
𝑡3

3!
+⋯     (29) 

 
Finally, we now solve equation (16), which is rearranged to give 

 
𝜕𝑢

𝜕𝑡
− 𝑆

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+
𝜕2𝑢

𝜕𝑦2
+ 𝛼

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽𝑎

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+

𝛽𝑏 (
𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾𝑎

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+ 𝛾𝑏 [2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+

(
𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙2𝑢 + 𝐺𝑟𝜃 where, 𝐻𝑎 +

1

𝐷𝑎
= 𝑙2 (29i) 

 
Applying the Laplace transform on both sides of equation (29i) 
gives 

𝐿 {
𝜕𝑢

𝜕𝑡
} − 𝐿 {𝑆

𝜕𝑢

𝜕𝑦
} = 𝐿 {−

𝜕𝑝

𝜕𝑥
+
𝜕2𝑢

𝜕𝑦2
+ 𝛼

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽𝑎

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+

𝛽𝑏 (
𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾𝑎

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+ 𝛾𝑏 [2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+

(
𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙2𝑢 + 𝐺𝑟𝜃}    (30) 

 

But, 𝐿 {
𝜕𝑢

𝜕𝑡
} = 𝑠𝐿{𝑢(𝑦, 𝑡)} − 𝑢(𝑦, 0)  (31) 

Hence, 

𝐿{𝑢(𝑦, 𝑡)} =
𝑢(𝑦,0)

𝑠
+
1

𝑠
 𝐿 {−

𝜕𝑝

𝜕𝑥
+ 𝑆

𝜕𝑢

𝜕𝑦
+
𝜕2𝑢

𝜕𝑦2
+ 𝛼

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+

𝛽𝑎
𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝛽𝑏 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾𝑎

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+ 𝛾𝑏 [2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+

(
𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙2𝑢 + 𝐺𝑟𝜃}    (32) 

 
Taking the inverse Laplace transform of both sides of equation 
(32), we have; 

𝐿−1{𝐿{𝑢(𝑦, 𝑡)}} = 𝐿−1 {
𝑢(𝑦,0)

𝑠
−
𝜕𝑝

𝜕𝑥
+
1

𝑠
 𝐿 {+𝑆

𝜕𝑢

𝜕𝑦
+
𝜕2𝑢

𝜕𝑦2
+

α
𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽a

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝛽𝑏 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾a

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+

𝛾𝑏 [2
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙2𝑢 +

𝐺𝑟

𝑠
(𝑒−𝑦 + (

𝑒−𝑦

𝑃𝑟
−

𝑆𝑒−𝑦 + 𝑙1𝑒
−𝑦) 𝑡 + (

𝑒−𝑦

𝑃𝑟
2 +

2𝑙1𝑒
−𝑦

𝑃𝑟
− 𝑆2𝑒−𝑦 + 𝑙1

2𝑒−𝑦)
𝑡2

2!
+

(
𝑒−𝑦

𝑃𝑟
3 +

3𝑙1𝑒
−𝑦

𝑃𝑟
2 −

𝑆2𝑒−𝑦

𝑃𝑟
+
3𝑙1
2𝑒−𝑦

𝑃𝑟
−
𝑆𝑒−𝑦

𝑃𝑟
−
2𝑙1𝑆𝑒

−𝑦

𝑃𝑟
− 𝑙1

2𝑆𝑒−𝑦 −

𝑙1𝑆
2𝑒−𝑦 + 𝑙1

3𝑒−𝑦 + 𝑆3𝑒−𝑦)
𝑡3

3!
+)}}  (33) 

Or,  

𝑢(𝑦, 𝑡) = 𝜆 + 𝑒−𝑦 + (𝐺𝑟𝑒
−𝑦)𝑡 + (

𝑒−𝑦

𝑃𝑟
− 2𝑆𝑒−𝑦 +

𝑙1𝑒
−𝑦)

𝑡2

2!
+ (

𝑒−𝑦

𝑃𝑟
2 +

2𝑙1𝑒
−𝑦

𝑃𝑟
+ 𝑙1

2𝑒−𝑦)
𝑡3

3!
+ 𝐿−1 {

1

𝑠
 𝐿 {+𝑆

𝜕𝑢

𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2
+ α

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽𝑎

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝛽𝑏 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
+ 𝛾a

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+

𝛾𝑏 [2
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙2𝑢}}   (34) 

 
Applying the Homotopy perturbation method to equation (34), gives 

0

( , )n

n

n

P u y t





𝜆 + 𝑒−𝑦 + (𝐺𝑐𝑒

−𝑦 + 𝐺𝑟𝑒
−𝑦)𝑡 +

(
𝑒−𝑦

𝑃𝑟
− 2𝑆𝑒−𝑦 + 𝑙1𝑒

−𝑦)
𝑡2

2!
+ (

𝑒−𝑦

𝑃𝑟
2 +

2𝑙1𝑒
−𝑦

𝑃𝑟
+ 𝑙1

2𝑒−𝑦)
𝑡3

3!
+

(
𝑒−𝑦

𝑃𝑟
3 +

3𝑙1𝑒
−𝑦

𝑃𝑟
2 −

𝑆2𝑒−𝑦

𝑃𝑟
+
3𝑙1
2𝑒−𝑦

𝑃𝑟
−
𝑆𝑒−𝑦

𝑃𝑟
−
2𝑙1𝑆𝑒

−𝑦

𝑃𝑟
− 𝑙1

2𝑆𝑒−𝑦 −

𝑙1𝑆
2𝑒−𝑦 + 𝑙1

3𝑒−𝑦)
𝑡4

4!
+ 𝑃 (𝐿−1 {

1

𝑠
 𝐿 {𝑆

𝜕𝑢

𝜕𝑦
+
𝜕2𝑢

𝜕𝑦2
+

α
𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽a

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝛽𝑏𝐻𝑎(𝑢𝑛) + 𝛾1

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+

𝛾𝑏 [2𝐻𝑏(𝑢𝑛) + 𝐻𝑐(𝑢𝑛)
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] −

𝑙2𝑢}})      (35) 

 
Where, 𝐻𝑎(𝑢𝑛), 𝐻𝑏(𝑢𝑛) and 𝐻𝑐(𝑢𝑛) are the He’s polynomials 

for (
𝜕𝑢

𝜕𝑦
)
2
,
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
 and (

𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
 respectively. 

The He’s polynomials for (
𝜕𝑢

𝜕𝑦
)
2
are as follows 

{
 
 

 
 

𝐻0(𝑢) = (𝑢0
′ )2

𝐻1(𝑢) = 2𝑢0
′𝑢1

′

𝐻2(𝑢) = 2𝑢0
′𝑢2

′ + (𝑢1
′ )2

𝐻3(𝑢) = 2𝑢1
′𝑢2

′

⋮

    (36) 

The He’s polynomials for 
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
𝜕2𝑢

𝜕𝑡𝜕𝑦
 are as follows 
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{
 
 

 
 

𝐻0(𝑢) = 𝑢0
′′′𝑢′0𝑡

′

𝐻1(𝑢) = 𝑢0
′′′𝑢′1𝑡

′ + 𝑢1
′′′𝑢′1𝑡

′

𝐻2(𝑢) = 𝑢0
′′′𝑢′2𝑡

′
+ 𝑢1

′′′𝑢′1𝑡
′
+ 𝑢2

′′′𝑢′0𝑡
′

𝐻3(𝑢) = 𝑢1
′′′𝑢2𝑡

′′ + 𝑢2
′′′𝑢1𝑡

′′

⋮

  (37) 

 

The He’s polynomials for (
𝜕𝑢

𝜕𝑦
)
2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
 are as follows 

 
 

     

           

               

   

2
' '' '

0 0 0 0t

2 2
' '' ' ' '' ' ' ' '' '

1 0 0 1t 0 1 0t 0 1 0 0t

2 2 2
' '' ' ' '' ' ' '' ' ' ' '' '

2 0 0 2t 0 1 1t 0 2 0t 0 1 0 1t

' ' '' ' ' ' '' '

0 1 1 0t 0 2 0 0t

H u = u u u

H u = u u u + u u u +2u u u u

H u = u u u + u u u + u u u +2u u u u +

2u u u u +2u u u u

.                                            

.                                            

 
 
 
 
 
 
 
 
 
 
 

      (38) 
 

Now, comparing the like powers of "𝑃" in equation (25) and 

equating their coefficients gives 

𝑃0; 𝑢0(𝑦, 𝑡) = 𝜆 + 𝑒
−𝑦 + (𝐺𝑟𝑒

−𝑦)𝑡 + (
𝑒−𝑦

𝑃𝑟
− 2𝑆𝑒−𝑦 +

𝑙1𝑒
−𝑦)

𝑡2

2!
+ (

𝑒−𝑦

𝑃𝑟
2 +

2𝑙1𝑒
−𝑦

𝑃𝑟
+ 𝑙1

2𝑒−𝑦)
𝑡3

3!
+ (

𝑒−𝑦

𝑃𝑟
3 +

3𝑙1𝑒
−𝑦

𝑃𝑟
2 −

𝑆2𝑒−𝑦

𝑃𝑟
+
3𝑙1
2𝑒−𝑦

𝑃𝑟
−
𝑆𝑒−𝑦

𝑃𝑟
−
2𝑙1𝑆𝑒

−𝑦

𝑃𝑟
− 𝑙1

2𝑆𝑒−𝑦 − 𝑙1𝑆
2𝑒−𝑦 +

𝑙1
3𝑒−𝑦)

𝑡4

4!
      (39) 

 

𝑃1; 𝑢1(𝑦, 𝑡) = 𝐿
−1 {

1

𝑠
 𝐿 {𝑆

𝜕𝑢0

𝜕𝑦
+
𝜕2𝑢0

𝜕𝑦2
+ α

𝜕3𝑢0

𝜕𝑦2𝜕𝑡
+

𝛽𝑎
𝜕4𝑢0

𝜕𝑦2𝜕𝑡2
+ 𝛽𝑏(𝑢0

′ )2(𝑢0
′′) + 𝛾𝑎

𝜕5𝑢0

𝜕𝑦2𝜕𝑡3
+ 𝛾𝑏[2𝑢0

′′′𝑢′0𝑡
′ +

(𝑢0
′ )2(𝑢0

′′𝑢0𝑡
′ )] − 𝑙2𝑢0}}    (40) 

Or, 
 

𝑢1(𝑦, 𝑡) = (𝑒
−𝑦 − 𝑆𝑒−𝑦 + 𝛼𝐺𝑟𝑒

−𝑦 +
𝛽𝑎𝑒

−𝑦

𝑃𝑟
− 𝛽𝑏𝑒

−𝑦 +

𝛾𝑎𝑒
−𝑦

𝑃𝑟
2 +

2𝛾𝑎𝑙1𝑒
−𝑦

𝑃𝑟
+ 𝛾𝑎𝑙1

2𝑒−𝑦 + 2𝛾𝑎𝐺𝑟𝑒
−2𝑦 + 𝛾𝑏𝐺𝑟𝑒

−3𝑦 −

𝑙2𝑒
−𝑦 − 𝜆𝑙2) 𝑡 + (𝐺𝑟𝑒

−𝑦 − 𝐺𝑟𝑆𝑒
−𝑦 − 2𝛼𝑆𝑒−𝑦 −

𝛼𝑒−𝑦

𝑃𝑟
+

𝛼𝑙1𝑒
−𝑦 +

𝛽𝑎𝑒
−𝑦

𝑃𝑟
2 −

2𝛽𝑎𝑙1𝑒
−𝑦

𝑃𝑟
+𝛽𝑎𝑙1

2𝑒−𝑦 + 3𝛽𝑏𝐺𝑟𝑒
−3𝑦 +

𝛾𝑎𝑒
−𝑦

𝑃𝑟
3 +

3𝛾𝑎𝑒
−𝑦

𝑃𝑟
2 −

𝛾𝑎𝑆
2𝑒−𝑦

𝑃𝑟
+
3𝛾𝑎𝑙1

2𝑒−𝑦

𝑃𝑟
−
𝛾𝑎𝑆𝑒

−𝑦

𝑃𝑟
− 𝛾𝑎𝑙1

2𝑆𝑒−𝑦 −

𝛾𝑎𝑙1𝑆
2𝑒−𝑦 + 𝛾𝑎𝑙1

3𝑒−𝑦 − 3𝛾𝑏𝐺𝑟
2𝑒−3𝑦 − 𝑙2𝐺𝑟𝑒

−𝑦)
𝑡2

2!
+

(
𝑒−𝑦

𝑃𝑟
+ 𝑙1𝑒

−𝑦 −
𝑆𝑒−𝑦

𝑃𝑟
+ 𝑆𝑙1𝑒

−𝑦 +
𝛼𝑒−𝑦

𝑃𝑟
2 +

2𝛼𝑙1𝑒
−𝑦

𝑃𝑟
+

𝛼𝑙1
2𝑒−𝑦 +

𝛽𝑎𝑒
−𝑦

𝑃𝑟
3 +

3𝛽𝑎𝑙1𝑒
−𝑦

𝑃𝑟
2 −

𝛽𝑎𝑆
2𝑒−𝑦

𝑃𝑟
+
3𝛽𝑎𝑙1

2𝑒−𝑦

𝑃𝑟
−
𝛽𝑎𝑆𝑒

−𝑦

𝑃𝑟
−

2𝛽𝑎𝑙1𝑆𝑒
−𝑦

𝑃𝑟
− 𝛽𝑎𝑙1

2𝑆𝑒−𝑦 − 𝛽𝑎𝑙1𝑆
2𝑒−𝑦 + 𝛽𝑎𝑙1

3𝑒−𝑦 +

𝛽𝑎𝑆
3𝑒−𝑦 − 6𝛽𝑏𝐺𝑟

2𝑒−3𝑦 −
𝑙2𝑒

−𝑦

𝑃𝑟
+ 2𝛾𝑏𝐺𝑟

3𝑒−3𝑦 −

𝑙1𝑙2𝑒
−𝑦)

𝑡3

3!
+ (−

𝑆𝑒−𝑦

𝑃𝑟
2 −

2𝑙1𝑆𝑒
−𝑦

𝑃𝑟
− 𝑙1

2𝑆𝑒−𝑦 +
𝑒−𝑦

𝑃𝑟
2 +

2𝑙1𝑒
−𝑦

𝑃𝑟
+

𝑙1
2𝑒−𝑦 +

𝛼𝑒−𝑦

𝑃𝑟
3 +

3𝛼𝑙1𝑒
−𝑦

𝑃𝑟
2 −

𝛼𝑆2𝑒−𝑦

𝑃𝑟
+
3𝛼𝑙1

2𝑒−𝑦

𝑃𝑟
−
𝛼𝑆𝑒−𝑦

𝑃𝑟
−

𝛼𝑙1𝑆𝑒
−𝑦

𝑃𝑟
− 𝛼𝑙1

2𝑆𝑒−𝑦 − 𝛼𝑙1𝑆
2𝑒−𝑦 + 𝛼𝑙1

3𝑒−𝑦 + 6𝛽𝑏𝐺𝑟
3𝑒−3𝑦 −

𝑙2𝑒
−𝑦

𝑃𝑟
−
2𝑙1𝑙2𝑒

−𝑦

𝑃𝑟
− 𝑙1

2𝑙2𝑒
−𝑦)

𝑡4

4!
+ (

𝑒−𝑦

𝑃𝑟
3 +

3𝑙1𝑒
−𝑦

𝑃𝑟
2 −

𝑆2𝑒−𝑦

𝑃𝑟
+

3𝑙1
2𝑒−𝑦

𝑃𝑟
−
𝑆𝑒−𝑦

𝑃𝑟
−
2𝑆𝑙1𝑒

−𝑦

𝑃𝑟
− 𝑙1

2𝑆𝑒−𝑦 − 𝑙1𝑆
2𝑒−𝑦 + 𝑙1

3𝑒−𝑦 −

𝑆𝑒−𝑦

𝑃𝑟
3 −

3𝑙1𝑆𝑒
−𝑦

𝑃𝑟
2 +

𝑠3𝑒−𝑦

𝑃𝑟
−
3𝑙1
2𝑆𝑒−𝑦

𝑃𝑟
+
𝑆2𝑒−𝑦

𝑃𝑟
+
2𝑙1𝑆

2𝑒−𝑦

𝑃𝑟
+

𝑙1
2𝑆2𝑒−𝑦 − 𝑙1𝑆

3𝑒−𝑦 − 𝑙1
3𝑆𝑒−𝑦 −

𝑙2𝑒
−𝑦

𝑃𝑟
3 −

3𝑙1𝑙2𝑒
−𝑦

𝑃𝑟
2 +

𝑙2𝑆
2𝑒−𝑦

𝑃𝑟
−
𝑙2𝑆𝑒

−𝑦

𝑃𝑟
+
2𝑙1𝑙2𝑆𝑒

−𝑦

𝑃𝑟
+ 𝑙1

2𝑙2𝑆𝑒
−𝑦 + 𝑙1𝑙2𝑆

2𝑒−𝑦 −

𝑙1
3𝑙2𝑒

−𝑦)
𝑡5

5!
    (41) 

 
Therefore, the solution to equation (16) is; 
𝑢(𝑦, 𝑡) = 𝑢0(𝑦, 𝑡) + 𝑢1(𝑦, 𝑡) + ⋯   (42) 

 
Where, 𝑢0(𝑦, 𝑡) and 𝑢1(𝑦, 𝑡) are defined in equations (40) and 

(41) respectively. 
The physical momentum, heat and mass properties such as skin 
friction 𝐶𝑓 and Nusselt number 𝑁𝑢 are given as follows  

 

{

𝐶𝑓 = (
𝜕𝑢

𝜕𝑦
)
𝑦=0

𝑁𝑢 = (
𝜕𝜃

𝜕𝑦
)
𝑦=0

     (43) 

 
RESULTS AND DISCUSSION 
Theoretical work on unsteady MHD flow of fourth-grade fluid in 
horizontal parallel plates channel with thermal radiation, chemical 
reaction and suction effects has been analyzed. The impact of 
thermal radiation, chemical reaction, suction, third and fourth-grade 
parameters along with other pertinent flow parameters are plotted 
graphically on different flow fields. The default values for the 
pertinent flow parameters are taken as Arifuzzaman (2018), 𝜆 =
0.30, 𝛼 = 0.20, 𝛽𝑎 = 0.05, 𝛽𝑏 = 0.05, 𝛾𝑎 = 0.05, 𝛾𝑏 =
0.05, 𝑆𝑐 = 0.50, 𝐺𝑟 = 5,𝐺𝑐 = 5, 𝑃𝑟 = 0.71,𝐻𝑎 =
0.30, 𝛿 = 0.05,𝐷𝑎 = 1.00,𝐾𝑟 = 0.50.  

To validate the present work; when 𝐺𝑟 = 0 and 𝑆 = 0, then our 

results would be in agreement with Zaman et al. (2014). The 
impression of system parameters on skin friction 𝐶𝑓 and Nusselt 

number 𝑁𝑢 are also investigated and presented in table 1 below. 

 
Table 1: Computational values of Skin friction 𝐶𝑓 and Nusselt 

number 𝑁𝑢 

 
 
Table 1 presented the effect of flow parameters on skin friction 𝐶𝑓 

and Nusselt number 𝑁𝑢. It is seen that the skin friction develops 

due to the increase in thermal radiation parameter 𝛿, Grashof 
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number 𝐺𝑟 and Prandtl number 𝑃𝑟 but diminish due to the increase 

in suction parameter 𝑆 and Hartmann number 𝐻𝑎. The Nusselt 

number increases with the increase in Prandtl number 𝑃𝑟 and 

radiation parameter 𝛿. But it decreases with the increase in suction 

parameter 𝑆 . 
 
Figs. 2 and 3 depict the velocity and temperature fields for 
increment of thermal radiation parameter 𝛿 (0.05 ≤ 𝛿 ≥ 0.40). 
Thermal radiation is known as electromagnetic radiation or the 
conversion of thermal energy which generates the thermal motion 
of particles in matter. Thermal radiation could be attributed due to 
thermal excitation. Both velocity and temperature fields are 
affected significantly with increase in thermal radiation 
parameter (𝛿). Thermal radiation for a medium which contains it 

inevitably has pressure and density gradients, and the treatment 
requires the use of hydrodynamics. 
 

 
Figure 2: Effect of Thermal radiation parameter 𝛿 on Velocity 

profile 𝑢 with 𝐺𝑟 = 4, 𝑃𝑟 = 0.71, 𝑆 = 0.10,𝐻𝑎 = 1, 𝜆 =
0.3, 𝛼 = 0.20, 𝛽𝑎 = 0.05, 𝛽𝑏 = 0.05, 𝛾𝑎 = 0.05, 𝛾𝑏 =
0.05 𝑄0 = 1.0 and 𝑡 = 0.5 

 

 
Figure 3: Effect of Thermal radiation parameter 𝛿 on Temperature 

distribution 𝜃 with 𝑃𝑟 = 0.71, 𝑆 = 0.10,𝑄0 = 1.0 and 𝑡 = 0.5 

 
 

 
Figure 4: Effect of Prandtl number 𝑃𝑟 on Velocity profile 𝑢 with 

𝐺𝑟 = 4, 𝑆 = 0.10, 𝛿 = 0.05,𝐻𝑎 = 1, 𝜆 = 0.3, 𝛼 =
0.20, 𝛽𝑎 = 0.05, 𝛽𝑏 = 0.05, 𝛾𝑎 = 0.05, 𝛾𝑏 = 0.05 𝑄0 =
1.0 and 𝑡 = 0.5 

 

 
Figure 5: Effect of Prandtl number 𝑃𝑟 on Temperature distribution 

𝜃 with 𝑆 = 0.10, 𝛿 = 0.05,𝑄0 = 1.0 and 𝑡 = 0.5 

 
Figure 6 illustrates the drag force effect on fluid flow. The velocity 
profile decreases with the increment of Hartmann number (1.0 ≤
𝐻𝑎 ≥ 4.0). The role of Hartmann number which is the magnetic 
parameter is to suppress turbulence. Physically, when magnetic 
field is applied to any fluid, the apparent viscosity of the fluid 
increases to the point of becoming viscous elastic solid. It is of great 
interest that yield stress of the fluid can be controlled very 
accurately through variation of the magnetic field intensity. The 
result is that the ability of the fluid to transmit force can be controlled 
with help of electromagnet which give rise to many possible control 
– based applications, including MHD power generation, 
electromagnetic casting of metals, MHD propulsion etc. 
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Figure 6: Effect of Hartman number 𝐻𝑎 on Velocity profile 𝑢 with 

𝑃𝑟 = 0.71, 𝑆 = 0.10, 𝛿 = 0.05,𝐺𝑟 = 4, 𝜆 = 0.3, 𝛼 =
0.20, 𝛽𝑎 = 0.05, 𝛽𝑏 = 0.05, 𝛾𝑎 = 0.05, 𝛾𝑏 = 0.05 𝑄0 =
1.0 and 𝑡 = 0.5 

 
Grashof number which is the dimensionless quantity with heat 
transfer that approximates the ratio of buoyancy to viscous force 
acting on a fluid. The effect of this dimensionless parameter is 
depicted in figure 7. It is observed that as Grashof number 𝐺𝑟 

increases (1.0 ≤ 𝐺𝑟 ≥ 4.0), the velocity profile 𝑢 increases. To 

this effect, at higher Grashof number 𝐺𝑟 the flow at the boundary 

is turbulent while at lower 𝐺𝑟 the flow at the boundary is laminar. 
 

 
Figure 7: Effect of Grashof number 𝐺𝑟 on Velocity profile 𝑢 with 

𝑃𝑟 = 0.71, 𝑆 = 0.10, 𝛿 = 0.05,𝐻𝑎 = 1, 𝜆 = 0.3, 𝛼 =
0.20, 𝛽𝑎 = 0.05, 𝛽𝑏 = 0.05, 𝛾𝑎 = 0.05, 𝛾𝑏 = 0.05 𝑄0 =
1.0 and 𝑡 = 0.5 

 
The impact of suction parameter 𝑆 on velocity, temperature and 

concentration profiles are depicted in figures 8 and 9 respectively. 
It is clearly seen that velocity profile and temperature distribution 
diminish with the increase (0.10 ≤ 𝑆 ≥ 0.40) of 𝑆. This is due 

to the porosity of plates. 
 

 
Figure 8: Effect of Suction parameter 𝑆 on Velocity profile 𝑢 with 

𝐺𝑟 = 4, 𝑃𝑟 = 0.71, 𝛿 = 0.05,𝐻𝑎 = 1, 𝜆 = 0.3, 𝛼 =
0.20, 𝛽𝑎 = 0.05, 𝛽𝑏 = 0.05, 𝛾𝑎 = 0.05, 𝛾𝑏 = 0.05 𝑄0 =
1.0 and 𝑡 = 0.5 

 

 
Figure 9: Effect of Suction parameter 𝑆 on Temperature 

distribution 𝜃 with 𝑃𝑟 = 0.71, 𝛿 = 0.05,𝑄0 = 1.0 and 𝑡 = 0.5 

 
Conclusion  
Heat transfer on unsteady MHD flow of fourth-grade in a horizontal 
infinite parallel plates with suction effects have been investigated. 
The solution for the nonlinear partial differential equations are 
obtained by He-Laplace scheme. The effects of flow parameters on 
velocity profile and temperature distribution depicted in figures and 
discussed. From the results obtained, the findings are: 
(i) Velocity profile and temperature distribution rise due to 

the increment of thermal radiation parameter. 
(ii) Velocity profile and temperature distribution diminish 

due to the increment of suction parameter. 
(iii) Strong values of Hartman number suppresses the 

turbulence, hence, decrease the velocity of the flow. 
(iv) Higher values of Grashof number accelerates the 

velocity of the flow. 
(v) Nusselt number distribution rise due to the 

enhancement in thermal radiation parameter and drop 
due to the increase in suction parameter. 
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(vi) Strong values of thermal radiation parameter, Prandtl 
number increase the skin friction while higher values of 
suction parameters diminish the skin friction. 
 

Nomenclature 
𝐵0  – external magnetic field  

𝑇    – temperature of the fluid  

𝑞𝑟   – radiative heat flux 

𝑢    – fluid velocity  

𝐶𝑓  – skin friction 

𝑆  – suction parameter 
𝑁𝑢  – Nusselt number 

𝐻𝑎  – Hartmann number 

𝑃𝑟  – Prandtl number 

𝐺𝑟  – Grashof number due to heat transfer 

𝑇𝑤  – temperature at the surface 

𝑇∞  – ambient temperature as 𝑦 → ∞   

𝑥, 𝑦  – cartesian coordinates 

 
Greek Symbols 
     𝜇  – coefficient of shear viscosity 

     𝛼   – second grade parameter 

𝛽𝑎 , 𝛽𝑏    – third grade parameters 

𝛾𝑎, 𝛾𝑏    – fourth grade parameters 

  𝛽    – thermal expansion coefficient  

𝛿   – thermal radiation parameter 

𝜎   – Stefan – Boltzmann constant 

𝜌   – density of the fluid 

𝜈   – kinematic viscosity 
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