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ABSTRACT 
The purpose of this research is to examine effects of thermal 
radiation and magnetic field on 2D stagnation point flow toward a 
stretching sheet. The governing equations are transformed into a 
system of nonlinear ordinary differential equations by similarities 
transformation method and then, solved, numerically using implicit 
finite difference scheme. The Velocity profile increase for higher 
values of stagnation point parameter, opposite occurred with 
magnetic field. The temperature profile is an increasing function of 
radiative energy.   
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INTRODUCTION  
Considering the impingement of flow on the medium forms a 
stagnation point around the surface (Hayat et al., 2020). The 
disappearance of the flow away from the medium produces 
another stagnation point on the trailing surface (Khan et al., 
2020). Flow and heat transfer of an incompressible viscous fluid 
over a stretching sheet have been deliberated in numerous 
processes, ranging from industry:  extrusion mechanized of 
polymers, cooling of metallic plates, the aerodynamic extrusion of 
plastic sheets, and others (Daniel et al., 2017a; Khashi’ie et al., 
2020; Nandeppanavar et al., 2021; Daniel et al. 2017b; Nadeem 
et al. 2020; Daniel et al. 2019a; Ghasemi & Hatami, 2021 and 
Daniel et al., 2019b). MHD stagnation flow over a stretching sheet 
is imperative due to its applications in several engineering 
challenges such as rapid spray cooling and quenching in metal 
foundries, emergency core cooling systems, cooling of 
microelectronics, polymer extrusion in a melt-spinning process, 
glass manufacturing and purification of crude oil (Oyelakin et al., 
2020; Anuar et al., 2020; Daniel, 2015; Nasir et al., 2020; Daniel 
and Daniel, 2015 and Lund et al., 2020).  When scientific 
processes take place at high thermal energy, such as cooling of a 
metal or glass sheet, thermal radiation impacts begins to display 
significant role which cannot be overlook (Daniel et al., 2017c; 
Zainal et al., 2021 and Chaudhary et al., 2021). The problem of 
MHD flow and heat transfer of incompressible viscous fluids has 
been discussed by a number of researchers including the 
literatures (Maqbool 2020; Daniel et al., 2017; Hussain et al., 
2020, Daniel et al., 2018; Afify et al. 2020 and Daniel 2016) 
among others.  
In the present investigation, a novel stagnation point flow and 
energy conversion study for conjugate conduction–convection 
and radiative heat transfer problem has been performed. The 
magnetic field is to control and to manipulate the flow behaviour 
with the capacity to increase the thermal conductivity and heat 
transfer performance. A convection radiative heat transfer model 

with effect of Lorentz force using electrically conducting fluid 
passing over a stretching surface have been processed.  
 
MATHEMATICAL MODEL 
Consider a two-dimensional steady magnetohydrodynamic (MHD) 
over a linear stretching sheet. Such that the stagnation point flow 
is incompressible and laminar (Maqbool 2020). The velocity of the 
stretching sheet is denoted as 𝑢𝑊(𝑥), where the surface is taken 

at  𝑦 = 0. The incompressible stagnation point flow of viscous 
fluid in the presence of an applied magnetic field 𝐵(𝑥) is taken 

into consideration. The fluid is electrically conducting. The 
stagnation point flow is due to stretching of a sheet from a slot 
through two equal and opposite force and thermally radiative. The 
magnetic field of strength 𝐵(𝑥) is applied normal to the flow field, 
such that the magnetic Reynolds number is selected small. The 
induced magnetic field is smaller to the applied magnetic field. 
Hence the induced magnetic field is absence for small magnetic 
Reynolds number. We choose the Cartesian coordinate system 
such that 𝑥 is chosen along the stretching sheet and 𝑡ℎ𝑒 𝑦-axis 

denotes the normal to the stretching sheet, 𝑢 and 𝑣 are the 

velocity components of the fluid in the 𝑥 and 𝑦-direction. 𝑇 is the 

fluid temperature. The magnetic field control flow. The combined 
effects of thermal radiation, and magnetic field are incorporated. 
The stagnation point flow of the model is the composition of the 
continuity equation, the momentum equation, and energy 
equation which are formulated (Ghasemi, S. E., & Hatami, 2021): 
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The boundary conditions at the sheet for the physical model are 
presented (Khan et al., 2020): 
 
𝑦 = 0:       𝑢 = 𝑢𝑤(𝑥) = 𝑎𝑥,       𝑣 = 0,     𝑇 = 𝑇𝑤            (5) 
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 𝑦 ⟶ ∞:      𝑢 → 𝑢∞(𝑥) = 𝑏𝑥,      𝑇 ⟶ 𝑇∞,                       (6)        
 
Here 𝑢𝑤(𝑥) is the velocity of the sheet surface. Where 𝑢 and 𝑣 
represent the velocity components along the 𝑥 and 𝑦-axis 

respectively. 𝛼, 𝜇, 𝜈, 𝜎, 𝜌 𝜌𝑓,  and 𝜌𝑝 stand for the thermal 

diffusivity, the dynamics viscosity, the kinematic viscosity, the 
Steffan-Boltzmann constant, the density, the fluid density, and 
particles density respectively.  
The radiative heat flux 𝑞𝑟 via Rosseland approximation (Daniel et 

al., 2018) can be written as 𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
. We assumed less 

temperature gradient within the viscous fluid flow in such a way 
that 𝑇4 can be expressed as a linear function of temperature. By 

expanding 𝑇4 using Taylor’s series approach about a free stream 

temperature 𝑇∞ is presented by (Daniel et al., 2017c): 
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Neglecting higher order terms, equation (7) resulted to an 
approximated: 
 

      𝑇4 ≅ 4𝑇∞
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4                                                                    (8)  

 
Hence equation (4) can be rewritten as (Daniel et al., 2019b): 
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The stream function can be defined as (Daniel et al., 2019a):  
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The dimensionless variables are taken as: 
 

𝑢 = 𝑎𝑥𝑓′(𝜂),           𝜃 =
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,                                      (11) 

 
Substituting equations (10) & (11) into equation (1) the continuity 
equation is identically satisfied. After evaluating the order of 
magnitude analysis on y-direction momentum equation (3) which 
is normal to the sheet and boundary layer approximations in 
equations (3)-(4) and (9) define as (Daniel et al., 2017a): 
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The resultant equations of momentum, and energy in 
dimensionless form become: 
 

𝑓′′′ + 𝑓𝑓′′ − 𝑓′2
+ 𝜆2 + 𝑀(𝜆 − 𝑓′) = 0                         (13) 
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𝑅𝑑) 𝜃′′ + 𝑃𝑟𝑓𝜃′ = 0                                               (14) 

 
The boundary conditions are given by  

 
 𝑓 = 0,        𝑓′ = 1,         𝜃 = 1,     at  
                                     𝜂 = 0                                                  (15) 

 
   𝑓′ = 𝜆,                 𝜃 = 0,           as     

                                       𝜂 ⟶ ∞                                              (16) 

 
Here 𝑓 and  𝜃 are the dimensionless velocity and temperature, 

respectively. Where prime represents differentiation with respect 

to 𝜂. 𝑃𝑟 = 𝑣 𝛼⁄  is the Prandtl number, 𝑀 = 𝜎𝐵0
2 𝑎𝜌𝑓⁄  is the 

magnetic field parameter,  𝑅𝑑 = 4𝜎∗𝑇∞
3 𝑘∗𝑘1⁄  is the radiation 

parameter, and 𝜆 = 𝑏/𝑎  denotes the ratio of the rates of free 

stream velocity to the velocity of the stretching sheet respectively. 
  
RESULTS AND DISCUSSION 
Fig.1 depicts that velocity profile outcomes in the increasing 
function of stagnation point parameter 𝜆, when 𝜆 < 1. As such 

the stretching velocity 𝑢𝑤(𝑥) is much smaller in contrast to free 

stream velocity 𝑢∞(𝑥). It is worthy of noted that there is no 

formation of boundary layer, as it progresses, when 𝜆 = 1, 

reason is that both fluid and medium are moving with similar 
velocity. From Fig 2, it is observed that the velocity profile is a 
decreasing function of magnetic field 𝑀. This rise in parameter 

leads to increase in Lorentz force. This kind of force is a resistive 
force, consequently, weakening the velocity profile. In addition, it 
is witnessed that the effect of magnetic parameter is weaker in 
the plate compared to the surface. The strength of radiation 
parameter 𝑅𝑑 on temperature profile is examined in Fig 3. It 

demonstrates that an upsurge in the parameter enhances the 
temperature distribution. Actually, more heat is transferred to the 
fluid as results of higher values of radiative parameter. Besides, it 
is observed that radiative impacts are resilient on the surface 
compared to the plate. 

 
Fig.1 Effect of 𝜆 on the velocity profile 𝑓′(𝜂)  
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Fig.2 Effect of 𝑀 on the velocity profile 𝑓′(𝜂)  

 
Fig.3 Effect of 𝑀 on the velocity profile 𝜃(𝜂)  

 
Conclusions 
We have considered the effect of radiative flow of stagnation point 
using MHD fluid over a stretching sheet. A numerical solution is 
used to examine the steady state of two-dimension stagnation 
point flow and heat transfer due to linear stretching sheet in an 
electrical conducting fluid. The impacts of different pertinent 
parameters on the heat transfer characteristics were scrutinized. 
The Velocity field increase along 𝜂 for higher values in the ratio of 

the rates of free stream velocity to the velocity of the stretching 
sheet, whereas, contrary happened with magnetic field strength. 
The temperature profile is an increasing function of radiative heat 
along the stretching sheet surface.  
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