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ABSTRACT 
A numerical method based on the inverse Sumudu transform and 
the Bernstein polynomials operational matrix of integration is 
developed. The derived method is implemented in solving linear 
differential, integral and integro-differential equations. Also, a 
procedure for overcoming nonlinearity is developed and 
implemented to solve nonlinear Volterra integral equations. The 
approximate results are compared with the exact solutions and an 
existing method. Error estimation shows that the proposed method 
has elevated level of accuracy for just a few terms of the 
polynomial.    
 
Keywords: Inverse Sumudu transform, Orthonormal Bernstein 
Operational matrix of integration, Differential equations, Integral 
equations, Inetgro-differential equations. 
 
INTRODUCTION 
Watugala (1993) introduced the Sumudu transform as a new 
integral transform and applied it to solve differential equations and 
control engineering problems. Further work by Weerakoon (1998) 
provided the complex inversion formula for the Sumudu transform 
and its properties like differentiation, integration, convolution 
theorems, shifting theorems, recurrence results and a 
comprehensive list of Sumudu transform of functions (Belgacem & 
Karablli, 2006). More properties of the Sumudu transform 
alongside applications to some dynamic partial differential 
equations problems arising in physics and engineering were 
provided by Kaya & Yilmaz (2019). Another important work on this 
subject was the tutorial based on utilizing a geometric Taylor series 
for finding the inverse of the Sumudu transform presented by Atlas 
et al. (2019). Recently, the Sumudu transform was applied to solve 
regular fractional continuous-time linear systems and fractional 
damped Burgers’ equation approximately (Kaisserli & Bouagada, 
2021). 
A procedure for finding operational matrix of integration, 
differentiation and product for the Bernstein polynomials was 
introduced by Singh et al. (2009) and a general procedure of 
forming these matrices given by Yousefi & Beroozifar (2010). Also, 
Ordokhani & Far (2011) discussed the operational matrices of 
integration and product of the Bernstein polynomials and employed 
them to solve differential equations.  The Bernstein polynomials 
method has also been used to solve parabolic equation, nonlinear 
Volterra-Fredhom-Hammerstein integral equations and systems of 
high order linear Volterra-Fredholm integro-differential equations 
(Maleknajad et al., 2012a; Maleknajad et a.l, 2012b; Yousefi et al., 
2011). 
An improvement on the procedure for finding operational matrix of 
integration, differentiation and product for the orthonormal 

Bernstein polynomials was sought by Bencheikh et al. (2016) while 
Javadi et al. (2016) applied the shifted orthogonal Bernstein 
polynomials to solve the generalized pantograph equations. To 
improve the accuracy and efficiency of the method, a modified work 
on the Bernstein polynomial operational matrix method was carried 
out and applied to solve Riccati differential equation and Volterra 
population model (Parand & Rad, 2016) and both linear and non-
linear delay differential equations (Bataineh et al., 2017). 
Furthermore, the orthonormal Bernstein operation matrix of 
integration was used to investigate the intersect Laplace transform 
(Rani, 2018). This approach is based on replacing the unknown 
function through a truncated series of Bernstein basis polynomials 
while the coefficient of the expansion are obtained using the 
operational matrix of integration. The error and convergence 
analysis via residual function for this method was done by Bataineh 
(2018) while Rani et al. (2019) used this approach to find the 
numerical inverse Laplace transform for a class of fractional 
differential equation. More recently, Mishra & Rani (2020) worked 
on Laplace transform inversion using this method and applied it to 
solve differential and integral equations. 
The focus of this paper is to use a combination of the inverse 
Sumudu transform and the orthonormal Bernstein polynomials 
matrix to compute approximate solutions of differential, integral and 
integro-differential equations. 
 
MATERIALS AND METHODS 
The Bernstein polynomial bn(t) of degree n (Bataineh et al., 2017; 
Parand and Rad, 2016; Rani et al., 2019) is defined as  
 
bn(t) = ∑n

i=0 bi,n(t)βi (1) 

 
where βi’s are the Bernstein coefficients and bi,n(t) is the 

Bernstein basis polynomial given by  

bi,n(t) = (
n
i
) ti(1 − t)n−i. 

where (
n
i
) is a binomial coefficient. Since the Bernstein 

polynomials are not orthogonal, they are usually orthonormalised 
using the Gram-Schmidt orthonormalization procedure. We shall 
denote the orthonormal Bernstein polynomials as Bi,n(t), i =

0,1, . . . , n. The nth degree of the orthonormal Bernstein 
polynomial are defined on the interval [0,1] by  
 

Bi,n(t) = √2(n − i) + 1(1 −

t)n−i ∑i
k=0 (−1)k( i−k

2n+1−k)( k
i )ti−k (2) 

 
for i = 0,1, . . . , n (Javadi et al, 2016). Equation (2) can be written 
implicitly as  
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Bi,n(t) =

√2(n − i) + 1(1t)n−i ∑i
k=0 (−1)k ( i−k

2n+1−k)( k
i )

( i−k
n−k)

Bi−k,n−k(t)

 (3) 
 
The orthonormal Bernstein polynomials satisfy the following 
relation  
 

∫
1

0
Bi,n(x)Bj,n(x)dx = δi,j,      i, j = 0,1, . . . , n (4) 

 

where δi,j is the Kronecker delta function. 

Equation (2) can also be expressed in matrix form as 
 
B(t) = Nτn(t),        t ∈ [0,1] (5) 

where N is the matrix of constant coefficients  
 

Ni,j = √2(n − i) + 1 ∑

min{i,j}

k=max{0,j−n+i}

αi,j−kβi,k,        i, j

= 0,1, . . . , n 

and τn(t) = [1, t, t2, . . . , tn]T. 
 
The orthonormal Bernstein polynomials can be expressed in terms 
of the operational matrices of integration (Rani et al., 2018). Let 
Mn+1 be an (n + 1) × (n + 1) operational matrix of integration, 
then  

∫
t

0

B(x)dx ≃ Mn+1B(t),          t ∈ [0,1] 

 From (5), we have  

∫
t

0

B(x)dx = N

[
 
 
 
 
 
 
1 0 0 ⋯ 0

0
1

2
0 ⋯ 0

⋮ ⋮ ⋮ ⋮

0 0 0 ⋯
1

n + 1
]
 
 
 
 
 
 

[

t
t2

⋮
tn+1

] = N ∧ τ 

where ∧ is an (n + 1) × (n + 1) matrix,  
 

∧=

[
 
 
 
 
 
1 0 0 ⋯ 0

0
1

2
0 ⋯ 0

⋮ ⋮ ⋮ ⋮

0 0 0 ⋯
1

n+1
]
 
 
 
 
 

 and τ = [

t
t2

⋯
tn+1

]. 

We can now approximate the element of vector τ in terms of 

{Bi,n(t)}i=0
n  by (5) to have τn(t) = N−1B(t), then for k =

0,1, . . . , n  

tk = Nk+1
−1 B(t) 

where Nk+1
−1  is (k + 1)th row of Nk+1

−1  for k = 0,1, . . . , n. That is  

[
 
 
 
N1

−1

N2
−1

⋮
Nk+1

−1 ]
 
 
 

. 

Approximating tn+1 using  

f(t) = ∑

n

i=0

ci,nBi,n(t) 

we have  

tn+1 = cn+1
T B(t) 

where  

cn+1 = ∫
1

0

xn+1B(x)dx. 

Let  

A =

[
 
 
 
 
 
N2

−1

N3
−1

⋮
Nk+1

−1

cn+1
T ]

 
 
 
 
 

 

we get  

∫
t

0

B(x)dx ≃ N ∧ AB(t),        t ∈ [0,1] 

and we have the operational matrix of integration as  
𝑀 ≃ 𝑁 ∧ 𝐴. 

The Sumudu - Bernstein Approach 
Consider the Sumudu transform  

𝐹(𝑢) = 𝑆[𝑓(𝑡)] =
1

𝑢
∫

∞

0
𝑒

−𝑡

𝑢 𝑓(𝑡)𝑑𝑡. (6) 

 The inverse Sumudu transform is defined as 
  

𝑓(𝑡) = 𝐹−1(𝑢) =
1

2𝜋𝑖
∫

𝛾+𝑖∞

𝛾−𝑖∞
𝑒

𝑡

𝑢𝐹 (
1

𝑢
)

𝑑𝑢

𝑢
. (7) 

 
Now, 𝑓(𝑡) is considered to be square integrable on [0,1] and can 
be expressed in terms of Bernstein polynomials as  
 

𝑓(𝑡) ≃ ∑𝑛
𝑖=0 𝑐𝑖𝐵𝑖,𝑛(𝑡) = 𝐶𝑇𝐵(𝑡) (8) 

 

 where 𝐶 = [𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑛]𝑇 and 𝐵(𝑡) =
[𝐵0,𝑛, 𝐵1,𝑛 , 𝐵2,𝑛, . . . , 𝐵𝑛,𝑛]𝑇. 

 
We shall apply this technique to a time varying differential equation  
 
𝑎𝑓′′(𝑡) + 𝑏𝑓′(𝑡) + 𝑓(𝑡) = 𝑣(𝑡),        𝑓(0) = 𝑓′(0) = 0 (9) 
 
where 𝑣(𝑡) is the unit step function. Integrating both sides twice 

from 0 to 𝑡 yields  

𝑎𝑓(𝑡) + 𝑏 ∫
𝑡

0
𝑓(𝑥)𝑑𝑥 + ∫

𝑡

0 ∫
𝑡

0
𝑓(𝑥)𝑑𝑥𝑑𝑥 =

∫
𝑡

0 ∫
𝑡

0
𝑣(𝑥)𝑑𝑥𝑑𝑥. (10) 

Taking the Sumudu transform of (10), we get  
 

𝑎𝐹(𝑢) + 𝑏𝑢𝐹(𝑢) + 𝑢2𝐹(𝑢) = 𝑢2 (𝑎 + 𝑏𝑢 + 𝑢2)𝐹(𝑢) =

𝑢2 𝐹(𝑢) =
𝑢2

𝑎+𝑏𝑢+𝑢2. 

 
Replacing 𝑢 with associated matrix of integration 𝑀𝑛+1, we get  
 

�̃�(𝑀𝑛+1) = 𝑀𝑛+1
2 (𝑎𝐼 + 𝑏𝑀𝑛+1 + 𝑀𝑛+1

2 )−1 (11) 

where 𝐼 is the identity matrix. We can also express the solution 
  

𝑓(𝑡) = 𝐶𝑇𝐵(𝑡) 
by associated matrix of integration as  

∫
𝑡

0

𝑓(𝑥)𝑑𝑥 = 𝐶𝑇𝑀𝑛+1𝐵(𝑡) 

 

∫
𝑡

0

∫
𝑡

0

𝑓(𝑥)𝑑𝑥𝑑𝑥 = 𝐶𝑇𝑀𝑛+1
2 𝐵(𝑡). 

Also  

∫
𝑡

0

∫
𝑡

0

𝑣(𝑥)𝑑𝑥𝑑𝑥 = 𝑑𝑇𝑀𝑛+1
2 𝐵(𝑡) 
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Equation (10) becomes  
 

𝑎𝐶𝑇𝐵(𝑡) + 𝑏𝐶𝑇𝑀𝑛+1𝐵(𝑡) + 𝐶𝑇𝑀𝑛+12𝐵(𝑡)
= 𝑑𝑇𝑀𝑛+1

2 𝐵(𝑡). 
Simplifying, we get  
 

𝐶𝑇 = 𝑑𝑇𝑀𝑛+1
2 (𝑎𝐼 + 𝑏𝑀𝑛+1 + 𝑀𝑛+1

2 )−1. 
 
By equation (11), we get  

𝐶𝑇 = 𝑑𝑇�̃�(𝑀𝑛+1). (12) 
 
Application to Differential and Integral Equations 
The applicability of the proposed method shall be tested on some 
differential, integral and integro-differential equations. This shall be 
achieved using the Sumudu transform theorems for differentiation, 
integration and shifting (Mishra & Rani, 2020). However, to solve 
the nonlinear component, we shall use the following approach. 
Consider the nonlinear Voltera integral equation of the first kind 
with convolution kernel given by  
 

𝑥(𝑡) = 𝛼 ∫
𝑡

0
𝐾(𝑡 − 𝑠)𝑁(𝑓(𝑠))𝑑𝑠 (13) 

 
where 𝐾(𝑡 − 𝑠) is the kernel, 𝑥(𝑡) is the known function, 

𝑁(𝑓(𝑡)) is the nonlinear term and 𝑓(𝑡) is the unknown function. 
Taking the Sumudu transform of (13)  
 
𝑆[𝑥(𝑡)] = 𝛼𝑆[𝐾(𝑡)]𝑆[𝑁(𝑓(𝑡))] (14) 
 
 we can rewrite as  

𝑆[𝑁(𝑓(𝑡))] =
𝑆[𝑥(𝑡)]

𝛼𝑆[𝐾(𝑡)]
 

𝑁(𝑓(𝑡)) = 𝑆−1 [
𝑆[𝑥(𝑡)]

𝛼𝑆[𝐾(𝑡)]
]. 

Thus, the approximate solution can be obtained by the proposed 
method as described above. 
Furthermore, the error function could be estimated. Let 𝑓𝑛(𝑡) be 

the approximate solution and 𝑟𝑛(𝑡) be the perturbation function 
which depends on it. Consider  

𝑟𝑛(𝑡) = 𝛼 ∫
𝑡

0
𝐾(𝑡 − 𝑠)𝑁(𝑓𝑛(𝑠))𝑑𝑠 − 𝑥(𝑡) (15) 

 Substracting (15) from (13), we get  

−𝑟𝑛(𝑡) = 𝛼 ∫
𝑡

0
𝐾(𝑡 − 𝑠)𝑒𝑛(𝑠)𝑑𝑠 (16) 

We define the error function 𝑒𝑛 = 𝑁(𝑓(𝑡)) − 𝑁(𝑓𝑛(𝑡)). Solving 
(16) using the same approach above, we get  

 𝑆[𝑒𝑛(𝑡)] =
−𝑆[𝑟𝑛(𝑡)]

𝛼𝑆[𝐾(𝑡)]
. (17) 

 Using the inverse Sumudu and the value of 𝑟𝑛(𝑡) in (15), we get  

 𝑒𝑛(𝑡) = 𝑆−1 [
𝑆[𝑥(𝑡)]

𝛼𝑆[𝐾(𝑡)]
]. (18) 

 
RESULTS AND DISCUSSION 
Example 1: Find the solution of the linear differential equation  

𝑓𝑖𝑣(𝑡) + 2𝑎2𝑓′′(𝑡) + 𝑎4𝑓(𝑡) = cos𝑎𝑡 

with initial conditions 𝑓(0) = 𝑓′(0) = 𝑓′′(0) = 𝑓′′′(0) = 0 

and exact solution 𝑓(𝑡) =
𝑡sin𝑎𝑡−𝑎𝑡2cos𝑎𝑡

8𝑎3 . 

Solution: Taking the Sumudu transform, we get  

1

𝑢4 𝐹(𝑢) +
2𝑎2

𝑢4 𝐹(𝑢) + 𝑎4𝐹(𝑢) =
1

1 + 𝑎2𝑢2 

(1 + 2𝑎2𝑢2 + 𝑎4𝑢4)𝐹(𝑢) =
𝑢4

1 + 𝑎2𝑢2
 

𝐹(𝑢) =
𝑢4

(1 + 𝑎2𝑢2)3. 

 
The operational matrix of integration is  
 

�̃�(𝑀𝑛+1) = 𝑀𝑛+1
4 ((𝐼 + 𝑎2𝑀𝑛+1

2 )3)−1. 
  
The coefficient matrix is  

𝐶𝑇 = 𝑑𝑇𝑀𝑛+1
4 ((𝐼 + 𝑎2𝑀𝑛+1

2 )3)−1. 
 For 𝑎 = 1 and 𝑛 = 6, we get  

𝐶𝑇 = [0.0000638    0.0005236    0.001958    0.004468 

 0.007002    0.007842    0.005378] 
 and  

𝑑 = [0.515079    0.473804    0.428571    0.377964 

 0.319438    0.247436    0.142857]𝑇 . 
 
 The approximate solution is 
  

𝑓(𝑡) = 0.0000001590240039 − 0.000008633022005 𝑡 

+0.0001124634241 𝑡2 − 0.0005968575313 𝑡3 

+0.04320171335 𝑡4 − 0.00196572208 𝑡5 

−0.003097197322 𝑡6. 
 
 
 
 
Table  1: Absolute Errors for Example 1 at 𝑛 = 6. 
 

  𝑡   Exact: 𝑓(𝑡)   Approximate: 𝑓(𝑡)   Error: |𝑓(𝑡) −

𝑓(𝑡)| 
 0   0   0.000000159024004   1.590240 ×

10−7  

0.1   0.000004162501488   0.000004120915430   4.158605 ×
10−8  

0.2   0.000066400380670   0.000066451585984   5.120531 ×
10−8  

0.3   0.000334472247137   0.000334474988868   2.741731 ×
10−9  

0.4   0.001049697235375   0.001049649828513   4.740686 ×
10−8  

0.5   0.002539641103689   0.002539635738898   5.364790 ×
10−9  

0.6   0.005208082833692   0.005208129479809   4.664612 ×
10−8  

0.7   0.009522463662123   0.009522471151009   7.488886 ×
10−9  

0.8   0.015999072342179   0.015999020424353   5.191783 ×
10−8  

0.9   0.025186268045687   0.025186302793820   3.474813 ×
10−8  

1.0   0.037646084867470   0.037645925843469   1.590240 ×
10−7  
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Example 2: Find the solution of the linear Volterra integral equation  

∫
𝑡

0

cos(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠 = 𝑡sin𝑡 

with the exact solution 𝑓(𝑡) = 2sin𝑡. 
Solution: Taking the Sumudu transform, we get  

𝑢

1 + 𝑢2 𝐹(𝑢) =
2𝑢2

(1 + 𝑢2)2. 

Simplifying, we get  

𝐹(𝑢) =
2𝑢

1 + 𝑢2. 

The operational matrix of integration is  

�̃�(𝑀𝑛+1) = 2𝑀𝑛+1(𝐼 + 𝑀𝑛+1
2 )−1. 

 
The coefficient matrix is  

𝐶𝑇 = 𝑑𝑇2𝑀𝑛+1(𝐼 + 𝑀𝑛+1
2 )−1. 

 
For 𝑛 = 7, we get the approximate solution as  

𝑓(𝑡) = −0.000000001832443488 + 2.000000129 𝑡 

−0.000002187209184 𝑡2 − 0.3333178318 𝑡3 

−0.00005556355224 𝑡4 + 0.01677471441 𝑡5 

−0.0001119356381 𝑡6 − 0.0003453551998 𝑡7. 

Figure  1:  Exact and Approximate solution for Example 2. 
 
Example 3: Find the solution of the linear integro-differential 
equation  

𝑓′(𝑡) = 1 + ∫
𝑡

0

𝑓(𝑠)𝑑𝑠 

with the exact solution 𝑓(𝑡) = sinh(𝑡). 
Solution: Taking the Sumudu transform, we get  

1

𝑢
𝐹(𝑢) = 1 + 𝑢𝐹(𝑡). 

Simplifying, we obtain  

𝐹(𝑢) =
𝑢

1 − 𝑢2 

The operational matrix of integration is  

�̃�(𝑀𝑛+1) = 𝑀𝑛+1(𝐼 − 𝑀𝑛+1
2 )−1. 

The coefficient matrix is  

𝐶𝑇 = 𝑑𝑇2𝑀𝑛+1(𝐼 + 𝑀𝑛+1
2 )−1. 

 
For 𝑛 = 8, we obtain the following  

𝑓(𝑡) = 0.0000000000643842 + 0.9999999942 𝑡 

+0.0000001261738432 𝑡2 + 0.1666654955 𝑡3 

+0.000005673420278 𝑡4 + 0.008317569844 𝑡5 

+0.00002600661051 𝑡6 + 0.0001733083844 𝑡7 

 +0.00001301932268 𝑡8. 

Figure  2:  Exact and Approximate Solutions for Example 3 
 
Example 4: Find the solution of the nonlinear integral equation  

𝑡𝑒𝑡 = ∫
𝑡

0

𝑒(𝑡−𝑠)𝑒𝑓(𝑠)𝑑𝑠 

with the exact solution 𝑓(𝑡) = 𝑡. 
 
Solution: Taking the Sumudu transform, we get  

𝑢

(1 − 𝑢)2 =
𝑢

1 − 𝑢
𝑆[𝑒𝑓(𝑡)]. 

 
Simplifying, we get  

𝑆[𝑒𝑓(𝑡)] =
1

1 − 𝑢
. 

 

That is 𝑒𝑓(𝑡) = 𝑆−1𝐹(𝑢) where 𝐹(𝑢) =
1

1−𝑢
. If we take 𝑒𝑓(𝑡) =

𝑋(𝑡), the solution will be 𝑓(𝑡) = ln𝑋(𝑡). 
  
The operational matrix of integration is  

�̃�(𝑀𝑛+1) = (𝐼 − 𝑀𝑛+1)
−1. 

 
The coefficient matrix is  

𝐶𝑇 = 𝑑𝑇(𝐼 − 𝑀𝑛+1)
−1. 

 
For 𝑛 = 9, we obtain the following 
  

𝑋(𝑡) = 1.0 + 1.0 𝑡 + 0.4999999928 𝑡2

+ 0.1666667492 𝑡3 

+0.04166616695 𝑡4 + 0.008335106664 𝑡5 

+0.001385021617 𝑡6 + 0.0002036372065 𝑡7 

  +0.00002058033641 𝑡8 +
0.000004573415464 𝑡9. 
  
Therefore, the approximate solution is  

𝑓(𝑡) = ln𝑋(𝑡). 
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Figure  3:  Exact and Approximate Solutions for Example 4. 
 
Example 5: Find the solution of the nonlinear integral equation  

1

2
𝑡2 −

1

3
𝑡3 +

1

12
𝑡4 = ∫

𝑡

0

(𝑡 − 𝑠)𝑓2(𝑠)𝑑𝑠 

with the exact solution 𝑓(𝑡) = 1 + 𝑡. 

 
Solution: Taking the Sumudu transform, we get  

1

2
(2! 𝑢2) +

1

3
(3! 𝑢3) +

1

12
(4! 𝑢4) = 𝑢2𝑆[𝑓2(𝑡)]. 

 
That is  

𝑢2 + 2𝑢3 + 2𝑢4 = 𝑢2𝑆[𝑓2(𝑡)] 
𝑆[𝑓2(𝑡)] = 1 + 2𝑢 + 2𝑢2. 

Thus 𝑓2(𝑡) = 𝑆−1[𝐹(𝑢)], where 𝐹(𝑢) = 1 + 2𝑢 + 2𝑢2. If we 

take 𝑓2(𝑡) = 𝑋(𝑡), then the solution will be 𝑓(𝑡) = √𝑋(𝑡). 

 
The operational matrix of integration is  

�̃�(𝑀𝑛+1) = 𝐼 + 2𝑀𝑛+1 + 2𝑀𝑛+1
2 . 

 
The coefficient matrix is  

𝐶𝑇 = 𝑑𝑇(𝐼 + 2𝑀𝑛+1 + 2𝑀𝑛+1
2 ). 

For 𝑛 = 6, we get  

𝑋(𝑡) = 1 + 2 𝑡 + 𝑡2 + 2.1316282 × 10−14 𝑡3

− 1.1901591 × 10−13 𝑡4 

−4.7384319 × 10−13 𝑡5 + 3.5482728 × 10−13 𝑡6. 
  
Therefore, the approximate solution is  

𝑓(𝑡) = √𝑋(𝑡) 

 
Table 2: Absolute Errors for Example 5 at 𝑛 = 6. 

  𝑡   𝑓(𝑡)   Approximate: 𝑓(𝑡)   Error:   |𝑓(𝑡) − 𝑓(𝑡)| 

 0   1   1      0  

0.1   1.1   1.100000000000000      0  

0.2   1.2   1.200000000000001   1.110223 × 10−15  

0.3   1.3   1.299999999999997   3.108625 × 10−15  

0.4   1.4   1.400000000000008   7.993606 × 10−15  

0.5   1.5   1.500000000000001   1.110223 × 10−15  

0.6   1.6   1.599999999999990   9.992007 × 10−15  

0.7   1.7   1.700000000000005   5.107026 × 10−15  

0.8   1.8   1.800000000000023   2.287059 × 10−14  

0.9   1.9   1.900000000000038   3.819167 × 10−14  

1.0   2.0   1.999999999999947   5.306866 × 10−14  

 
Table  3: Comparison of Relative Errors for Example 5 at 𝑛 = 6. 

𝑡 Method in [20] Proposed Method 

0 2.4 × 10−6 0 

0.2 1.0 × 10−5 1.1 × 10−15 

0.4 4.4 × 10−6 5.6 × 10−15 

0.6 1.9 × 10−5 6.3 × 10−15 

0.8 3.4 × 10−5 1.3 × 10−14 

1.0 1.6 × 10−5 2.6 × 10−14 

 
Example 1 is a fourth order linear differential equation which is 
transformed to a Sumudu transform with the aid of the Sumudu 
function differentiation theorem and then solved based on the 
proposed method when 𝑎 = 1 and 𝑛 = 6. The approximate 
solution is obtained with its absolute errors presented in Table 1. 
Example 2 is a linear Volterra integral equation of the first kind 
which is transformed to a Sumudu transform with the aid of the 
Sumudu function integration theorem and then solved at 𝑛 = 7 

and its graph with the exact solution plotted in Figure 1. Example 
3 is a first order linear integro-differential equation which is 

transformed to a Sumudu transform with the aid of the Sumudu 
function differentiation and integration theorems and then solved 
based on the proposed method when 𝑛 = 8. 
Example 4 is a nonlinear Volterra integral equation of the first kind 
whose linear part is tranformed into the Sumudu trasnform using 
the Sumudu exponential shifting theorem while the nonlinear 
component is transform using the approach presented in Section 
4. The approximate solution is obtained at 𝑛 = 9 and its graph with 

the exact solution is plotted in Figure 3. Similarly, Example 5 is a 
nonlinear Volterra integral equation whose approximate solution is 
obtained at 𝑛 = 6 and its absolute errors presented in Table 2. 
Table 3 is a comparison of the relative errors between a Laplace 
transform based method presented in Mishra & Rani (2020) and 
the proposed method. 
 
CONCLUSION 
The Sumudu-Bernstein method was developed and applied to 
solve differential, integral and integro-differential equations. 
Numerical examples were presented including linear differential, 
intgeral, integro-differential and nonlinear integral equations after 
an approach to solve the nonlinear component was provided. The 
result of the absolute errors between the exact and the 
approximate solutions for Examples 1 and 5 respectively presented 
in Tables 1 and 2 and the graphs of Examples 2 to 4 respectively 
presented in Figures 1 to 3 shows that the proposed method gives 
elevated accuracy for just a few terms of the polynomial. A 
comparison of the propsed method with an existing method 
presented in Table 3 shows that the proposed method is more 
accurate. All computations were done using MATLAB 2021. 
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