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ABSTRACT

A numerical method based on the inverse Sumudu transform and
the Bernstein polynomials operational matrix of integration is
developed. The derived method is implemented in solving linear
differential, integral and integro-differential equations. Also, a
procedure for overcoming nonlinearity is developed and
implemented to solve nonlinear Volterra integral equations. The
approximate results are compared with the exact solutions and an
existing method. Error estimation shows that the proposed method
has elevated level of accuracy for just a few terms of the
polynomial.

Keywords: Inverse Sumudu transform, Orthonormal Bernstein
Operational matrix of integration, Differential equations, Integral
equations, Inetgro-differential equations.

INTRODUCTION

Watugala (1993) introduced the Sumudu transform as a new
integral transform and applied it to solve differential equations and
control engineering problems. Further work by Weerakoon (1998)
provided the complex inversion formula for the Sumudu transform
and its properties like differentiation, integration, convolution
theorems, shifting theorems, recurrence results and a
comprehensive list of Sumudu transform of functions (Belgacem &
Karablli, 2006). More properties of the Sumudu transform
alongside applications to some dynamic partial differential
equations problems arising in physics and engineering were
provided by Kaya & Yilmaz (2019). Another important work on this
subject was the tutorial based on utilizing a geometric Taylor series
for finding the inverse of the Sumudu transform presented by Atlas
et al. (2019). Recently, the Sumudu transform was applied to solve
regular fractional continuous-time linear systems and fractional
damped Burgers’ equation approximately (Kaisserli & Bouagada,
2021).

A procedure for finding operational matrix of integration,
differentiation and product for the Bernstein polynomials was
introduced by Singh et al. (2009) and a general procedure of
forming these matrices given by Yousefi & Beroozifar (2010). Also,
Ordokhani & Far (2011) discussed the operational matrices of
integration and product of the Bernstein polynomials and employed
them to solve differential equations. The Bernstein polynomials
method has also been used to solve parabolic equation, nonlinear
Volterra-Fredhom-Hammerstein integral equations and systems of
high order linear Volterra-Fredholm integro-differential equations
(Maleknajad et al., 2012a; Maleknajad et a.l, 2012b; Yousefi et al.,
2011).

An improvement on the procedure for finding operational matrix of
integration, differentiation and product for the orthonormal
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Bernstein polynomials was sought by Bencheikh et al. (2016) while
Javadi et al. (2016) applied the shifted orthogonal Bernstein
polynomials to solve the generalized pantograph equations. To
improve the accuracy and efficiency of the method, a modified work
on the Bernstein polynomial operational matrix method was carried
out and applied to solve Riccati differential equation and Volterra
population model (Parand & Rad, 2016) and both linear and non-
linear delay differential equations (Bataineh et al., 2017).
Furthermore, the orthonormal Bernstein operation matrix of
integration was used to investigate the intersect Laplace transform
(Rani, 2018). This approach is based on replacing the unknown
function through a truncated series of Bernstein basis polynomials
while the coefficient of the expansion are obtained using the
operational matrix of integration. The error and convergence
analysis via residual function for this method was done by Bataineh
(2018) while Rani et al. (2019) used this approach to find the
numerical inverse Laplace transform for a class of fractional
differential equation. More recently, Mishra & Rani (2020) worked
on Laplace transform inversion using this method and applied it to
solve differential and integral equations.

The focus of this paper is to use a combination of the inverse
Sumudu transform and the orthonormal Bernstein polynomials
matrix to compute approximate solutions of differential, integral and
integro-differential equations.

MATERIALS AND METHODS
The Bernstein polynomial by, (t) of degree n (Bataineh et al., 2017;
Parand and Rad, 2016; Rani et al., 2019) is defined as

bn (1) = XiLo bin(OB; (1)

where B;'s are the Bernstein coefficients and b;,(t) is the
Bernstein basis polynomial given by
n\ . s
bi,n(t) = (i )tl(l - t)n L
where (?) is a binomial coefficient. Since the Bernstein

polynomials are not orthogonal, they are usually orthonormalised
using the Gram-Schmidt orthonormalization procedure. We shall
denote the orthonormal Bernstein polynomials as B; ,(t), i =
0,1,...,n. The n™ degree of the orthonormal Bernstein
polynomial are defined on the interval [0,1] by

Bin(®) =v2(n—i)+1(1—

0™ Zhoo DK (e @

fori = 0,1,...,n (Javadi et al, 2016). Equation (2) can be written
implicitly as
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in(t) =
VZG=DF 109" Theo (D W @

1
Cni1 = f x"1B(x)dx.
0

3 Let
@) [Nz
-1
The orthonormal Bernstein polynomials satisfy the following |N3
; A=]|:
relation 1
[Nicy1 |
1 L ct
fO Bi'n(X)Bj'n(X)dX = 81,]" 1] = 0,1, Lo (4) n+1
we get

where 8; ; is the Kronecker delta function.
Equation (2) can also be expressed in matrix form as

B(t) = Nt,(t), te[0,1] (5)
where N is the matrix of constant coefficients

ftB(x)dx ~NAAB(t), te[o01]
0

and we have the operational matrix of integration as
M =~ N A A.

The Sumudu - Bernstein Approach

Consider the Sumudu transform

min{i,} Fw) =S[f®] = —f e uf (t)de. (6)
=y2n-D)+1 ®j-kBi  1j The inverse Sumudu transform is defined as
k=max{0,j—n+i}
=01,...,n _ -1 y+ico i 1) du
and t,(t) = [L,t,t%,...,t"]T. @O =F7w =27 fy ioo €*F (u) u (")

The orthonormal Bernstein polynomials can be expressed in terms
of the operational matrices of integration (Rani et al., 2018). Let
M,41 bean (n+ 1) x (n + 1) operational matrix of integration,

Now, f(t) is considered to be square integrable on [0,1] and can
be expressed in terms of Bernstein polynomials as

then f(8) = Eiso ciBin() = CTB(2) ®)
t
f B(x)dx = M,,;B(t),  te[0,1] where C = [co,C1,Car-evrCp]T and B(t) =
0 T
From (5), we have [Bow Bin Bans - Bunl”
1 0
[ 1 | We shall apply this technique to a time varying differential equation
0 - 0 0 t
t 2 U U !
J B(x)dx = N : : fz =NAT af ' @) +bf' O+ f®) =v®), [fO)=f(0)=0 (9
0 1 [}
0 0 0 - —|"*t where v(t) is the unit step function. Integrating both sides twice
n+1 .
from 0 to ¢ yields
where Ais an (n + 1) X (n + 1) matrix, af () +b [, fOdx + [ [ fx)dxdx =
Lo o Iy Jy vGodxdx. (10)
1 t Taking the Sumudu transform of (10), we get
0 2 0o - 0 X
t
A= 31 andt=| | aF(u)+buF(u)+u2F(u) =u? (a+bu+u?)F(u) =
0 0 0 m tn+1 u F(u)

We can now approximate the element of vector t in terms of
{Bin(D}L, by (5) to have T, (t) = N"1B(t), then for k =

a+bu+u2

Replacing u with associated matrix of integration M,,, 1, we get

01....,n F(Mn+1) = M1%+1(a1 +bMpy + M13.+1)_1 (11)
= Ni4B(® where I is the identity matrix. We can also express the solution
where Ni}, is (k + 1)th row of Nici; fork = 0,1,...,n. Thatis
N f(&)y=CTB(®)
[Nz | by associated matrix of integration as
t

e

Approximating t®*1 using
n

(0 = cinBin(®

i=0
we have
" = ¢l B(D)
where
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f FG)dx = CTMyy1B(D)
0
t t
f f f(x)dxdx = CTM7,1B(D).
0 J0

Also
t ot
ij(x)dxdx=dTMﬁ+lB(t)
0 Jo
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Equation (10) becomes

aCTB(t) + bCT™Mp 1 B(t) + CTM,,.2B(t)
= d"M2,,B(t).
Simplifying, we get

€T =d"MZ i (al + bMyyy + M7 )7

By equation (11), we get
CT = d"F(Mn+1)- (12)

Application to Differential and Integral Equations

The applicability of the proposed method shall be tested on some
differential, integral and integro-differential equations. This shall be
achieved using the Sumudu transform theorems for differentiation,
integration and shifting (Mishra & Rani, 2020). However, to solve
the nonlinear component, we shall use the following approach.
Consider the nonlinear Voltera integral equation of the first kind
with convolution kernel given by

x(8) = a [, K(t = )N(f(s))ds (13)

where K(t —s) is the kernel, x(t) is the known function,
N(f(t)) is the nonlinear term and £ (t) is the unknown function.
Taking the Sumudu transform of (13)

4

FO) = dv ey

The operational matrix of integration is
F(Mpy1) = Myt (U + a?MZ, )37

The coefficient matrix is
CT =d"Mp, (I +a®Mi 1))

Fora =1andn = 6, we get

CT =[0.0000638 0.0005236 0.001958 0.004468
0.007002 0.007842 0.005378]

and

d =[0.515079 0.473804 0.428571 0.377964

0.319438 0.247436 0.142857]".

The approximate solution is

f(t) = 0.0000001590240039 — 0.000008633022005 t
+0.0001124634241 t? — 0.0005968575313 ¢3

+0.04320171335 t* —

—0.003097197322 t°.

0.00196572208 t°

S[x(®)] = aS[KO]SIN(f ()] (14) Table 1: Absolute Errors for Example 1atn = 6.
we can rewrite as t |Exact: f(t) Approximate: f(t) |Eror: |f(t) —
SINGF(EN] = SO (o)
aS[K ()] 0 (0 0.000000159024004 |1.590240 %
S]] o
Nf@®) =51
aS[KO]) 0.10.000004162501488 |0.000004120915430 [4.158605 x
Thus, the approximate solution can be obtained by the proposed 108
method as described above. 0.2 |0.000066400380670 |0.000066451585984 [5.120531 x
Furthermore, the error function could be estimated. Let f,, (t) be 108
the approximate solution and 7, (t) be the perturbation function 0.3]0.000334472247137 [0.000334474988868 |2.741731 x
which depends on it. Consider 10-9
() = @ fy K(t—)N(fu(s))ds —x(t)  (15) 0.4 0.001049697235375 |0.001049649828513 |4.740686 x
Substracting (15) from (13), we get 108
) =a fot K(t — s)e,(s)ds (16) 0.5 0.002539641103689 |0.002539635738898 5.?124790 X
We define the error function e,, = N (£ (£)) — N (£, (t)). Solving 10
(16) using the same approach above, we get 0.6 |0.005208082833692 |0.005208129479809 14(.)624612 X
—S[ra®)] -
Slen(®] = as[k®)]’ (" 0.7 |0.009522463662123 |0.009522471151009 |7.488886 x
Using the inverse Sumudu and the value of r;, (t) in (15), we get 102
e (t) =571 [M] (18) 0.8 {0.015999072342179 |0.015999020424353 [5.191783 x
as[K ()] 10-8
RESULTS AND DISCUSSION 0.9 10.025186268045687 |0.025186302793820 3.%4813 X
Example 1: Find the solution of the linear differential equation 10
F() + 2a2f"(£) + a*f(t) = cosat 1.0 |0.037646084867470 |0.037645925843469 1.5:30240 X
with initial conditions £(0) = f'(0) = £"'(0) = f""'(0) = 0 10
and exact solution f(t) = W
Solution: Taking the Sumudu transform, we get
1 v 2a? v Ap ey =
u4 (u) + u4 (u) +a (u) - 1 1_ azuz
24,2 4,,4 —
(14 2a*u® +a*u*)F(u) = Y
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Example 2: Find the solution of the linear Volterra integral equation

ft cos(t — s)f(s)ds = tsint
0

with the exact solution f(t) = 2sint.
Solution: Taking the Sumudu transform, we get

u 2u?
1+ u? FQu) = (1 4+ u?)#
Simplifying, we get
2u
Fw=1re

The operational matrix of integration is
F(Mp41) = 2Mp1 (1 + M%+1)_1-

The coefficient matrix is
CT =d"2Mp (I + M7 )™

Forn = 7, we get the approximate solution as
f(t) = —0.000000001832443488 + 2.000000129 ¢
—0.000002187209184 t? — 0.3333178318 ¢3
—0.00005556355224 t* + 0.01677471441 t>
—0.0001119356381 t® — 0.0003453551998 ¢”.

2
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Figure 1: Exact and Approximate solution for Example 2.

Example 3: Find the solution of the linear integro-differential
equation

t
F =1+ j f(s)ds
0

with the exact solution f(t) = sinh(t).
Solution: Taking the Sumudu transform, we get

1

ZF(u) =1+ uF ().
Simplifying, we obtain

u
Fe) =1
The operational matrix of integration is
F(Mp41) = Mp1 (I - M721+1)_1'
The coefficient matrix is
CT = d"2Mpyy (I + M2,1) 7L

Forn = 8, we obtain the following
f(t) = 0.0000000000643842 + 0.9999999942 t
+0.0000001261738432 t2 + 0.1666654955 t3
+0.000005673420278 t* + 0.008317569844 t°

Sumudu-Bernstein Solution of Differential,

Equations

+0.00002600661051 t° + 0.0001733083844 t’
+0.00001301932268 5.

0.5

-0.5r
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t

approximate —=&— exact

Figure 2: Exact and Approximate Solutions for Example 3

Example 4: Find the solution of the nonlinear integral equation
t
tet = f et=9)ef)ds
0
with the exact solution f(t) = t.

Solution: Taking the Sumudu transform, we get
LI Ls[ef(t)]
(1-w? 1-u '
Simplifying, we get
1

—Uu

S[ef(t)] = 1

Thatis e/® = S~1F () where F (1) = —. [fwe take e/ (® =

1-u’

X(t), the solution will be £(t) = InX(t).

The operational matrix of integration is
F(Mpy) = — Mn+1)_1-

The coefficient matrix is
CT=d"(I = Myy1)™

For n = 9, we obtain the following

X(t) = 1.0 + 1.0 t + 0.4999999928 t2
+0.1666667492 t3
+0.04166616695 t* + 0.008335106664 t>
+0.001385021617 t® + 0.0002036372065 t”
+0.00002058033641 t8 +
0.000004573415464 ¢°.

Therefore, the approximate solution is

f(®) =Inx ().
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Figure 3: Exact and Approximate Solutions for Example 4.

Example 5: Find the solution of the nonlinear integral equation
lt2 - lt3 + it"‘ = ft(t —5)f%(s)ds
2 3 12 o

with the exact solution f(t) = 1 + ¢t.

Table 2: Absolute Errors for Example 5 at n = 6.

1

t |f(®) |Approximate: f(t) Error: |f(£) — F(£)|
0 1 1 0
01 |11 1.100000000000000 0
02 |12 1.200000000000001 1.110223 x 10715
0.3 |13 1.299999999999997 3.108625 x 10715
04 |14 1.400000000000008 7.993606 x 10715
05 |15 1.500000000000001 1.110223 x 10715
06 |16 1.599999999999990 9.992007 x 10715
0.7 |17 1.700000000000005 5.107026 x 10715
08 |18 1.800000000000023 2.287059 x 10~
09 |19 1.900000000000038 3.819167 x 10714
1.0 (2.0 1.999999999999947 5.306866 x 10714
Table 3: Comparison of Relative Errors for Example 5 at n = 6.
t Method in [20] Proposed Method
0 2.4 x10°° 0
0.2 1.0 X 1075 1.1 X 10715
0.4 44 %107 5.6 x 10715
0.6 1.9 X 10~° 6.3 X 10715
0.8 3.4 x 1075 1.3 x 10714
1.0 1.6 X 1075 2.6 X 10714

Example 1 is a fourth order linear differential equation which is
transformed to a Sumudu transform with the aid of the Sumudu
function differentiation theorem and then solved based on the
proposed method when a =1 and n = 6. The approximate
solution is obtained with its absolute errors presented in Table 1.
Example 2 is a linear Volterra integral equation of the first kind
which is transformed to a Sumudu transform with the aid of the
Sumudu function integration theorem and then solved at n = 7
and its graph with the exact solution plotted in Figure 1. Example
3 is a first order linear integro-differential equation which is

Sumudu-Bernstein Solution of Differential,

Equations

Solution: Taking the Sumudu transform, we get
l(ZI uz) + l(gl u3) + l (4[ u4) — qu[fZ(t)]
2 3 12+ '

That is
u? + 2u3 + 2ut = u2S[f2(D)]
S[F2(O)] =14+ 2u + 2u2
Thus f2(t) = STY[F (w)], where F(u) = 1 + 2u + 2u?. Ifwe

take f2(t) = X(t), then the solution will be £(t) = /X (t).

The operational matrix of integration is
F(Mpy1) =1+ 2Mpyq +2M7 4.

The coefficient matrix is
CT =d"(I + 2Mpq + 2M2, ).
Forn = 6, we get
X()=1+2t+ t?>+ 21316282 x 1071*¢3
—1.1901591 x 10713 ¢4
—4.7384319 x 10713 ¢° + 3.5482728 x 10713 ¢°,

Therefore, the approximate solution is

f® =Vx(@©®

transformed to a Sumudu transform with the aid of the Sumudu
function differentiation and integration theorems and then solved
based on the proposed method when n = 8.

Example 4 is a nonlinear Volterra integral equation of the first kind
whose linear part is tranformed into the Sumudu trasnform using
the Sumudu exponential shifting theorem while the nonlinear
component is transform using the approach presented in Section
4. The approximate solution is obtained at n = 9 and its graph with
the exact solution is plotted in Figure 3. Similarly, Example 5 is a
nonlinear Volterra integral equation whose approximate solution is
obtained at n = 6 and its absolute errors presented in Table 2.
Table 3 is a comparison of the relative errors between a Laplace
transform based method presented in Mishra & Rani (2020) and
the proposed method.

CONCLUSION

The Sumudu-Bernstein method was developed and applied to
solve differential, integral and integro-differential equations.
Numerical examples were presented including linear differential,
intgeral, integro-differential and nonlinear integral equations after
an approach to solve the nonlinear component was provided. The
result of the absolute errors between the exact and the
approximate solutions for Examples 1 and 5 respectively presented
in Tables 1 and 2 and the graphs of Examples 2 to 4 respectively
presented in Figures 1 to 3 shows that the proposed method gives
elevated accuracy for just a few terms of the polynomial. A
comparison of the propsed method with an existing method
presented in Table 3 shows that the proposed method is more
accurate. All computations were done using MATLAB 2021.
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