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ABSTRACT 
This paper focuses on the modified logistic differential equation 
model for population growth of organisms in an environment. The 
situation considered was that of a fish population that were stocked 
in an environment, with the fact that the environment has a 
particular carrying capacity and the organisms are increasing as 
the other factors for their survival are kept constant. We 
incorporated a condition where the farmer is constrained to stock 
the same environment with additional fishes and another 
environment. These constraints led to the modification of the 
logistic differential equation model whose solution is based on the 
calculus approach. The results of the modified model demonstrate 
superiority over its classical counterparts in terms of carrying 
capacity with increase in the interval and step sizes. 
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INTRODUCTION 
The models for fish population growth are based on the premise 
that the population grows at a rate proportional to its size. This 
assumption could also be applied to the population of bacteria or 
animals under real-life situation such as absence of adequate 
nutrition, unlimited environment, predators and diseases (Andire, 
2003; Finley, 2011; Gebremedhin et al., 2021). The variables for 
this population model are identified as 
𝑡 = time, an independent variable                             
𝑃 = Population, a dependent variable denoted as β

}    (1) 

The rate of the fish population growth which is proportional to the 
size can be modeled through different differential equations 
(Okuonghae, 2011; Shlyufman et al., 2018; Logofet, 2019). 
Considering the situational phenomenon in Equation (1), different 
differential equations can be modeled from it as follows   
 
𝑑𝛽

𝑑𝑡
= 𝛼𝛽                                      

𝑑𝛽

𝑑𝑡
= 𝛼1𝛽 + 𝛼2𝛽

2                     

𝑑𝛽

𝑑𝑡
= 𝑓(𝛼(𝑡)) + 𝑔(𝛼(𝑡 − 𝜔))}

 
 

 
 

                                             (2) 

 
These formulated models of differential Equations in (2) depict the 
situations given in Equation (1) with the factor of the rate of change 
of the quantity 𝛽, which depends on the amount of the quantity.  If  

𝛽 > 0, we have the exponential growth of the population 

parameter and when 𝛼 < 0 the situation becomes an exponential 
decay population parameter (Stewart, 1999; Il’in, 2007; Ikpotokin 
and Siloko, 2019). Thus, there is need to include more parameters 
in Equation (2) that makes it to be more robust and as such when 
the value of 𝛽 is evaluated at time (t), the instantaneous rate of 

change at time (t) becomes a function of previous time called the 
delay differential equation (Murray, 2002; Abakumov and Izrailsky, 
2022; Siloko and Siloko, 2023).  
This paper modifies the logistic differential equation using the 
calculus approach by incorporating extra variables into the model. 
It presents a brief discussion of the logistic differential equation 
model for population growth of fishes. The analytic solution of the 
logistic differential equation model and the modified logistic 
differential equation model using the calculus approach via 
numerical simulation were obtained. 
 
MATERIALS AND METHODS 
The Logistic Differential Equation Model  
The population of fishes grow exponentially in its early stage of 
development and later begins a level off which tends towards the 
capacity of the organisms’ environment due to lack of resources.  
Thus, if 𝛽(𝑡) is the size of the fish population at time 𝑡, we can 
model this as  
 
𝑑𝛽

𝑑𝑡
≅ 𝜕𝛽,                                                                                    (3) 

 
provided 𝛽 is small while 𝜕 is the initial growth rate of the fish in 
stock. This implies that the population growth rate is almost a 
constant or uniform when the population size of the fish is small, 
but the population growth rate diminishes as the population 𝛽 

increases (Stewart, 1999).  Another unique situation is when 𝛽 
becomes negative. The model for the population growth that 
incorporates these assumptions is the logistic differential equation 
given as 
 
𝑑𝛽

𝑑𝑡
= 𝜕𝛽 (1 −

𝛽

𝛿
)                                                                     (4) 

 
where 𝛿 represents the capacity of the organism’s environment 
(Stewart, 1999; Abakumov and Izrailsky, 2016; Ikpotokin et al., 
2020).  The constraints of the model in Equation (4) expressed as 
(𝑡, 𝛽) implies that if 𝛽 > 𝛿, then 1 − 𝛽 𝛿⁄   is negative, so that 

 
𝑑𝛽

𝑑𝑡
< 0 thereby leading to a decrease in the fish population. This 

makes Equation (4) the objective function model for determining 
the extra optimum stock of the fish variable in the model. Adopting 
the calculus approach that involves integration of Equation (4), we 
have 

∫
𝑑𝛽

𝑑𝑡
= ∫𝜕𝛽 (1 −

𝛽

𝛿
)                                                          (5) 

 
Applying integration by partial fraction method on Equation (5), we 
have  
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∫(
1

𝛽
+

1

𝛿 − 𝛽
) 𝑑𝛽 = ∫𝛿 𝑑𝑡                                                 (6) 

 
If 𝐴 = ±exp (−𝜋), where 𝜋 is the constant of integration and 

letting 𝑡 = 0 and 𝛽 = 𝛽0 called the initial population of the fish 
stock, then the solution of the logistic differential equation model 
for fish stock given in Equation (4), has its solution given as 
 

𝛽(𝑡) =
𝛿

1 + 𝐴𝑒x𝑝(−𝜕𝑡)
 

=
𝛿

1 + (
𝛿−𝛽0

𝛽0
) exp(−𝜕𝑡)

                                                    (7) 

 
The Modified Logistic Differential Equation Model  
The proposed method is an extension of the logistic differential 
equation model by incorporating more parameters that depict the 
fish population growth rate. The Mathematical structure of this 
model is given as 
𝑑𝛽

𝑑𝑡
= 𝜕𝛽 (1 −

𝛽

𝛿
) − 𝛼𝜗,                                                        (8) 

where 𝛼 is the maximum growth rate capacity, 𝜗 represents the 
extra optimum stock of the fish, 𝛿 is the carrying capacity of the 

organism (fish) environment, 𝛽 is the population of the organism 

(fish) in stock, 𝑡 is the time of instantaneous growth of the organism 
(fish). The constraints of the modified logistic differential equation 
model in Equation (8) is expressed as 𝜗max(𝑡, 𝛽) which is the 
objective function for determining the extra optimum stock of the 
fish variable in the proposed model. Applying the calculus 

approach by letting 𝜏 = 𝜕𝛽 (1 −
𝛽

𝛿
) on Equation (8), we have 

𝑑𝛽

𝑑𝑡
= 𝜏 − 𝛼𝜗                                                                             (9) 

 Integrating both sides of equation (9), we have   

{
 

 ∫
𝑑𝛽

𝜏 − 𝛼𝜗
= ∫𝑑𝑡            

𝜗 =
𝜏

𝛿
−
𝑎𝛿

𝛿
𝑒x𝑝(−𝜕𝑡) 

                                                  (10) 

Equation (10) shows that as 𝑡 → ∞, we have that 
𝑎𝛿

𝛿
𝑒x𝑝(−𝜕𝑡) = 0 which implies that 𝜗 =

𝜏

𝛿
.  Adopting the 

variable transformation techniques on Equation (10) by letting 
𝑑𝜏

𝑑𝑡
=

𝑑x

𝑑𝑡
 and 

𝑑𝜗

𝑑𝑡
=

𝑑2x

𝑑𝑡2
, we explicitly transform the modified logistic 

differential equation model into a second-order differential equation 
of the form 

𝑑2x

𝑑𝑡2
+ 𝑘

𝑑x

𝑑𝑡
= 𝜏                                                                (11) 

 
The solution of the non-homogeneous differential equation of 
(11) produces the maximum stock of fish in any environment in 
the modified logistic differential equation model (8). Hence, 
incorporating the solution of Equation (11) into the Euler’s 
transformation, we have 

𝜗𝑚𝑎x(𝑡, 𝛽) =
𝐺(𝑡, 𝛽)𝑡

𝜕
−
𝐺(𝑡, 𝛽)

𝜕2
(1 − 𝑒x𝑝(−𝜕𝑡))      (12) 

 
RESULTS AND DISCUSSION  
The efficiency of the proposed model depends on its potency to 
accommodate extra maximum fishes that could be stock in the 
environment with a fixed carrying capacity. In the implementation, 
we assumed 𝛿 = 100,000 and the initial population of the fish 
stock denoted by 𝛽0 = 100 which were substituted into Equations 
(4), (7) and (12) called the Logistic Differential Equation (LDE) 
model, Analytic Logistic Differential Equation (ALDE) model and 
Modified Logistic Differential Equation (MLDE) model using the 
Euler’s method with varied step sizes (𝛼𝑖) and periodic times(t) in 
weeks. The presentation in Table 1 and the graphical display are 
results of the models adopted in this study. The numerical 
computations were carried out at four varied growth rates with a 
comparison of results in Table 1.  
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The presentation of the results in Table 1 with different step sizes 
started with the Analytic Logistic Differential Equation (ALDE) 
model, Logistic Differential Equation (LDE) model and Modified 
Logistic Differential Equation (MLDE) model and from the results, 
the Modified Logistic Differential Equation (MLDE) model 
outperformed the other two models investigated. 
 

 
Figure 1: Graph of Maximum Fish Stock Using the Analytic Model 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 2: Graph of Maximum Fish Stock Using the Logistic Model 
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Figure 3: Graph of Maximum Fish Stock Using the Modified 
Model 
 

 
Figure 4: Graph of Maximum Fish Stock Using the Analytic Model 
 

 
Figure 5: Graph of Maximum Fish Stock Using the Logistic Model 
 

 
Figure 6: Graph of Maximum Fish Stock Using the Modified 
Model 
 
The graphical results of the analytic logistic differential equation,  
logistic differential equation model and modified logistic differential 
equation model at varied periods in weeks are in Figures (1–3). 
Also, the graphs of the varied step sizes of the various models with 
the fish stock population that is increasing from the initial stock 
values in thousands are in Figures (4–6). The increased trend is 
also noticed as the sizes of the fishes increase from the first week 
of stocking to the period of maturity. As observed in Figures (1–3) 
and Figures (4–6), the modified logistic differential equation model 
outperformed the other existing models because it produces the 
maximum fish stock at varied periods in weeks and step sizes. The 
modified model is capable of accommodating more organisms 
(fishes) and this is due to the extra parameters incorporated into 
the model. 
 

 
Figure 7: Graph of Model Comparison at the Rate of 0.02 
 

 
Figure 8: Graph of Model Comparison at the Rate of 0.04 
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Figure 9: Graph of Model Comparison at the Rate of 0.06 
 

 
Figure 10: Graph of Model Comparison at the Rate of 0.08 
 
The graphical comparison of models at varied rates are in Figures 
(7–10) and as seen from the graphs, the modified logistic 
differential equation model gives maximum amount of fish stock in 
the environment than the analytic logistic differential equation 
model and the logistic differential equation model. Again, at rates 
of higher values, the performance of the analytic logistic differential 
equation model tends to appreciate when compared with the 
logistic differential equation model as demonstrated in Figure 9 and 
Figure 10 respectively. Hence; it has been observed that higher 
rates are associated with better performance numerically and 
graphically. 
 
CONCLUSIONS 
It is evident from the graphical analysis and numerical results that 
the modified logistic differential equation model gives the maximum 
fish stock with a small interval of periods. This simply means that 
the model projected an increase when the size of the fish 
increases. Thus, fish farmers and agro-based industries should 
adopt the modified logistic differential equation model during fish 
stocking processes. This model is recommended in model 
selection due to the incorporation of the necessary parameters 
designed for its success. 
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