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ABSTRACT  
In this work, panel data that were characterized by features of no 
first order autocorrelation was modelled using three estimation 
models: Pool Regression, Fixed Effect, Random Effect models. 
Panel data like other aspects of econometrics, exploits regression 
analysis as one of the statistical tools to formulate and illustrate 
models. The regression analysis requires some assumptions 
which, if violated, results to one problem or the other. In such case, 
the Pooling method of estimation remains linear, unbiased and 
normally distributed but might not be efficient as the estimates of 
the parameters might become indeterminate, the confidence 
intervals may be too wide and the standard errors might become 
large. Simulation studies were carried out at different panel 
structures and autocorrelation level. The experiment was repeated 
for 10,000 times and Root Mean Square Error (RMSE) was used 
to judge the performance of the models. The results from this work 
showed that for small sample panel structure N = 25, T = 5 and n 
= 5, irrespective of autocorrelation levels, fixed effect model is 
preferable at all level. But when moderate for N = 50, T = 10, n = 
5, irrespective of autocorrelation level, random effect model is 
preferred, while for large panel structure for N = 450, T = 30, n = 
15, irrespective of autocorrelation level, random effect model is 
preferred.  

 
Keywords: Pooled Regression, Fixed Effect, Random Effect, 
Autoregression 

 
INTRODUCTION 
A panel dataset is one where there are repeated observations on 
the same units. The units may be individuals, households, firms, 
regions or countries. Panel data have the combination of the 
features of both time-series and cross-sectional data. Hence, one 
of the problem that naturally afflict time-series data is 
autocorrelation is inherited by panel data and therefore need to be 
addressed while analyzing such data. Many distinctive features 
usually characterize panel data as abound in many econometrics 
settings, thus, the use of classical ordinary least squares (OLS) 
estimator for modelling such data becomes grossly inefficient. One 
of the critical assumptions of the classical linear regression model 
(CLRM) is that the error terms in the model are independent. If this 
assumption is violated, then serial correlation (or autocorrelation) 
is suspected (i. e cov uit, uis) ≠ 0, for t ≠ s) Garba et al 
(2015).  
Adenomon et al (2015) examined Short Term Forecasting 
Performances of Classical VAR and Sims-Zha Bayesian VAR 
Models for Time Series with Collinear Variables and Correlated 
Error Terms Forecasts they worked short term forecast because of 
the problem of limited data or time series data that often encounter 
in time series analysis. The simulation studied considers the 
performances of the classical VAR and Sims-Zha Bayesian VAR 

for short term series at different levels of collinearity and correlated 
error terms. The results from 10,000 iteration reveal that the BVAR 
models are excellent for time series length of T = 8 for all levels of 
collinearity while the classical VAR is effective for time series length 
of T = 16 for all collinearity levels except when ρ = −0.9 and ρ = 
−0.95. Therefore, we recommend that for effective short term 
forecasting, the time series length, forecasting horizon and the 
collinearity level should be considered.  
Olajide et al (2017) Studied Dynamic Panel Data (DPD) model 
estimation that has been limited by two major problems; 
autocorrelation resulting from the inclusion of a lagged dependent 
variable among the explanatory variables and the unobserved main 
effects and interaction effects characterizing the heterogeneity 
among the individuals which may lead to invalid parameter 
estimate. Their investigated the performance of some Generalized 
Method of Moment (GMM) estimators of DPD models in the 
presence of autocorrelated disturbance term. One-way error 
component model (ECM) of a random effects dynamic model with 
one exogenous variable was considered using a Monte Carlo 
experiment with 500 replications when cross-section dimension (N) 
is large and time series dimension (T) is finite for varying degrees 
of autocorrelated disturbance terms. The bias and root mean 
square error (RMSE) criterions were used to assess the 
performance of the estimators. The result of Simulation revealed 
that Blundell-Bond System (SSY) GMM estimator performed better 
when T is small while Arelano-Bond (AB) GMM estimator 
performed better when T is large. 
Badi et al (2003) worked on spatial panel data regression model 
with serial correlation on each spatial unit over time as well as 
spatial dependence between the spatial units at each point in time. 
In addition, the model allows for heterogeneity across the spatial 
units using random effects. The result derived several Lagrange 
Multiplier tests for panel data regression model including a joint test 
for serial correlation, spatial autocorrelation and random effects. 
The tests draw upon two strands of earlier work. The first is the LM 
tests for the spatial error correlation model and the second is the 
LM tests for the error component panel data model with serial 
correlation. Hence the joint LM test derived in their work 
encompasses those derived in both strands of earlier works. In fact, 
in the context of the general model, the earlier LM tests become 
marginal LM tests that ignore either serial correlation over time or 
spatial error correlation. Their derived conditional LM and LR tests 
that do not ignore these correlations and contrast them with their 
marginal LM and LR counterparts. The small sample performance 
of these tests is investigated using Monte Carlo experiments. As 
expected, ignoring any correlation when it is significant can lead to 
misleading inference. 
Tobechukwu and Azubuike (2020) examined some panel data 
estimators in the presence of serial and spatial autocorrelation with 
panel heteroscedasticity. The study was done using two different 
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sets of data simulated separately with ρ=0.95 and 0.50. For each 
set of simulations, short and long panels were considered for 
different sample sizes. The analysis considered two settings were 
rho is considered to be panel-specific (ρi) and where rho is 
considered to be common for all panels (ρ). The estimators were 
examined based on bias, overconfidence and relative efficiency. 
The results revealed evidence that the size of the autocorrelation 
coefficient ρ affects the general performance of an estimator. 
Comparison of the estimators showed that Panel Corrected 
Standard Error Estimator (PCSE) produced better results than the 
other estimators considered in their work. But it was seen to do very 
well in small samples and short panels. In terms of relative 
efficiency Park-Kmenta estimator was found to be more efficient 
that PCSE and PWLS (Panel Weighted Least Square Estimator). 
The results also show that the size of rho at the long run has an 
impact on the performance of the estimators, while at small size of 
rho tends to increase overconfidence.  
Badi (2008) considered a panel data regression model with 
heteroskedastic as well as serially correlated disturbances, and 
derives a joint LM test for homoskedasticity and no first order serial 
correlation. The restricted model is the standard random individual 
error component model. It also derives a conditional LM test for 
homoskedasticity given serial correlation, as well as, a conditional 
LM test for no first order serial correlation given heteroskedasticity, 
all in the context of a random effects panel data model. Monte Carlo 
results show that these tests along with their likelihood ratio 
alternatives have good size and power under various forms of 
heteroskedasticity including exponential and quadratic functional 
forms 
Benjamin and Jorg (2010) investigated three new tests for serial 
correlation in the disturbances of fixed effects panel data models 
with a small number of time periods. First, modify the panel Durbin-
Watson statistic such that it has a standard normal limiting 
distribution for fixed T and N → ∞. The second test was based on 
LM statistic and the third test employs an unbiased estimator for 
the autocorrelation coefficient. The first two tests are robust against 
cross-sectional but not time dependent heteroskedasticity and the 
third statistic is robust against both forms of heteroskedasticity. 
Furthermore, all test statistics can be easily adapted to unbalanced 
data. Monte Carlo simulations suggest that our new tests have 
good size and power properties compared to the popular 
Wooldridge-Drukker test. This study will compare the simulation 
performances using Pooled Regression, Fixed effect and Random 
effect models and to find the best estimator among three models 
using root mean squared errors (RMSE) of parameter estimates.  
Mohammed et al (2013) the work investigates the efficiency of four 
methods of estimating panel data models (Pooling (OLS), First- 
Differenced (FD), Between (BTW) and Feasible Generalized Least 
Squares (FGLS)) when the assumptions of homoscedasticity, no 
autocorrelation and no collinearity are jointly violated. Monte-Carlo 
studies were carried out at different sample sizes, at varying 
degrees of heteroscedasticity, different levels of collinearity and 
autocorrelation all at different time periods. The results from this 
work revealed that in small sample situation, irrespective of number 
of time length, FGLS estimator is efficient when heteroscedasticity 
is severe regardless of levels of autocorrelation and 
multicollinearity. However, when heteroscedasticity is low or mild 
with moderate autocorrelation level, both FD and FGLS are 
efficient, while BTW performs better only when there is no 
autocorrelation and low degree of heteroscedasticity. However, in 
large sample with short time periods, both FD and BTW could be 

used when there is no autocorrelation and low degree of 
heteroscedasticity, while FGLS is preferred elsewise. Meanwhile, 
pooling estimator performs better when the assumptions of 
homoscedasticity, independent of error terms and orthogonality 
among the explanatory variables are justifiably valid. 
 
MATERIALS AND METHODS 
This work considers Pooled Regression, Fixed Effect and Random 
Effect models with three exogenous and one endogenous 
variables. The autocorrelation work done by Lillard and Wallis 
(1978), Bhargava et al (1983) and Garba et al (2015) to mention 
but a few. Most of the earlier works on autocorrelated disturbances 
focused on single exogenous variable and two exogenous 
variables. We, however, considered three exogenous variables 
with the possibility of existence of collinearity between them and 
this effects with respect to stability while efficiency of the estimation 
methods for panel data models were examined 
 
Pooled Regression model 
 The pooled model does not differ from the common regression 
equation. It regards each observation as unrelated to the others 
ignoring panels and time. No panel information is used. A pooled 
model can be expressed as: 
 
𝑦𝑖𝑡 = 𝐵0 + 𝐵1𝑥1,𝑖𝑡 + 𝐵2𝑥2,𝑖𝑡+   .    .    . + 𝐵𝑘𝑥𝑘,𝑖𝑡 + 𝜀𝑖𝑡  

                 1 
A pooled model is used under the assumption that the individuals 
behave in the same way, where there is homoscedasticity and no 
autocorrelation. Only then OLS can be used for obtaining efficient 
estimates from the model in equation (1)  
 
Fixed effects model 
One of the advantages of using panel data as mention in equation 
1 above is that models like the fixed effects model can deal with 
the unobserved heterogeneity. The fixed effects model for 𝑘 factors 
can be expressed in the following way: 
 
𝑦𝑖𝑡 = 𝛼0 + 𝐵1𝑥1,𝑖𝑡 + 𝐵2𝑥2,𝑖𝑡+   .    .    . + 𝐵𝑘𝑥𝑘,𝑖𝑡 + 𝜀𝑖𝑡  

                                                                 2 
There is no constant term in the fixed effects model. Instead of the 
constant term 𝐵0 in pooled model (1), now we have an individual-

specific component 𝛼𝑖 that determines a unique intercept for each 

individual. However, the slopes (the 𝛽 parameters) are the same 
for all individuals 
 
Random effects model 
In the random effects model the individual-specific component 𝛼 is 
not treated as a parameter and it is not being estimated. Instead, it 

is considered as a random variable with mean 𝜇 and variance 𝜎2
𝑢. 

The random effects model can thus be written as: 
 
𝑦𝑖𝑡 = 𝜇 + 𝐵1𝑥1,𝑖𝑡 +  𝐵2𝑥2,𝑖𝑡+   .    .    . + 𝐵𝑘𝑥𝑘,𝑖𝑡 + (𝛼𝑖 −

𝜇) + 𝜀𝑖𝑡                                                                                       4 
 
Where 𝜇 is the average individual effect, Let 𝜇𝑖𝑡  = (𝛼𝑖 − 𝜇) + 𝜀𝑖𝑡 
and (3) can be rewritten as: 
 
𝑦𝑖𝑡 = 𝜇 + 𝐵1𝑥1,𝑖𝑡 +  𝐵2𝑥2,𝑖𝑡+   .    .    . + 𝐵𝑘𝑥𝑘,𝑖𝑡 + 𝜀𝑖𝑡  

                                                                  5 
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Simulation Procedure 
The dataset used for this study were simulated using Monte Carlo 
experiment in the environment of R statistical package which the 
dependent variable (𝑦) had different level of autocorrelation  
Step 1: Generate 𝑋~𝑁(𝑁, 𝑂, 1) 

Step 2: Given 𝑦 = 50 + 25𝑥 + 𝜀𝑡  such that  𝜀𝑡 = 𝜌𝜐𝑡−1 + 𝜐𝑡 

Such that 𝜌 = 0.5, 0.7, 0.9 and 0.99 
Step 3: Data was generated for different panel data structure  

(i) N = 25, T = 5, n = 5 
(ii) N = 50, T = 10, n = 5 
(iii)  N = 100, T = 10, n = 10 
(iv) N = 450, T = 30, n = 15 
Step 4: The experiment was repeated for 10,000 times 
and Root Mean Square Error (RMSE) was used judge 

the performance of the models 

RMSE = √
∑(𝛽𝑖− �̂�𝑖)

2

10000
      Where I = 1, 2, . .

 . 10000 
The model with the smallest RMSE is preferred among the 
competing models 
 
Analysis on simulation for autocorrelation  
In this chapter we shall be concerned with the analysis and 
interpretation of simulation data analysis  
 
RESULTS AND DISCUSSION 

 

 
Table 1 RMSE of Fixed Effect model in the presence of autocorrelation  
  
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
Table 1 above shows that as autocorrelation level (𝜌) is increases 
for N =25, T = 5, and n =5 the Root Mean Square Error increases, 
as  (𝜌) is increases for N =50, T = 10, and n =5 the Root Mean 

Square Error increases, as (𝜌) is increases for N = 100, T = 10, 

and n = 10 the Root Mean Square Error increases, as (𝜌) is 
increases for N =450, T = 30, and n = 15 the Root Mean Square 
Error increases while as sample size increases for  (𝜌) = 0.5 the 

Root Mean Square Error decreases, as sample size increases for  
𝜌 = 0.7 the Root Mean Square Error decreases, as sample size 

increases for (𝜌)  = 0.9 the Root Mean Square Error decreases, as 

sample size increases for  (𝜌) = 0.99 the Root Mean Square Error 
decreases, therefore for fixed effect model the  autocorrelation 
level for  (𝜌) = 0.5 is preferred. 

  

 
Table 2: Random Effect model in the presence of autocorrelation  

 Autocorrelation Levels 

Panel 
Structure/Model 
parameter 

0.5 0.7 0.9 0.99 

B0 B1 B0 B1 B0 B1 B0 B1 

N=25 
T=5 
n=5 

7.866705 4.498928 12.59654 4.65496 31.81468 4.782513 137.6591 4.959946 

N=50 
T=10 
n=5 

5.635049 3.233015  
9.113077 

3.741035 25.00935 5.383944 130.0881 7.797073 

N=100 
T=10 
n=10 

3.975798 2.271486 6.538878 2.657743 19.29517 3.871417 120.6523 7.049415 

N=450 
T=30 
n=15 

1.892743 1.09352 3.142597 1.296383 9.278448 2.06625 83.05061 5.344232 

 Autocorrelation levels 

0.5 0.7 0.9 0.99 

Panel 
Structure/Model 
parameter 

B0 B1 B0 B1 B0 B1 B0 B1 

N=25 
T=5 
n=5 

 4.494095  4.577057  4.63345  4.703941 

N=50 
T=10 
n=5 

 3.292825  3.794922  5.427457  7.766143 

N=100 
T=10 
n=10 

 2.316926  2.649991  3.903451  6.966257 

N=450 
T=30 
n=15 

 1.092535  1.285989  2.073846  5.34133 
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Table 2 above shows that as autocorrelation level (𝜌) is increases 

for model parameter (𝛽0), the N =25, T = 5, and n =5 the Root 

Mean Square Error increases. As autocorrelation level (𝜌) is 

increases for model parameter (𝛽1), N =25, T = 5, and n =5 then 

the Root Mean Square Error increases. As autocorrelation level (𝜌) 

is increases for model parameter (𝛽0), the N =50, T =10, and n =10 

the Root Mean Square Error increases, as autocorrelation level (𝜌) 

is increases for model parameter (𝛽1), the N =50, T = 10, and n 
=10 the Root Mean Square Error increases, as autocorrelation 
level (𝜌) is increases for model parameter (𝛽0) the N =100, T =10, 
and n =10 the root mean square error increases, as autocorrelation 
level (𝜌) is increases for model parameter (𝛽1) the N =100, T = 10, 
and n =10 then Root Mean Square Error increases, as 
autocorrelation level (𝜌) is increases for model parameter (𝛽0), the 
N = 450, T =30, and n =15 the Root Mean Square Error increases, 
as autocorrelation level (𝜌) is increases for model parameter (𝛽1) 
the N =450, T = 30, and n =15 the Root Mean Square Error 
increases, while as panel  structures increases for autocorrelation 

level (𝜌) = 0.5 the  model parameter 𝛽0 for Root Mean Square Error 
decreases and as panel  structures increases for autocorrelation 
level (𝜌) = 0.5 the  model parameter 𝛽1 for Root Mean Square Error 
also decreases. As panel structures increases for autocorrelation 
level (𝜌) = 0.7 the model parameter 𝛽0 for Root Mean Square Error 
decreases and as panel structures increases for autocorrelation 
level (𝜌) = 0.7 the model parameter 𝛽1 for Root Mean Square error 
also decreases. As panel structures increases for autocorrelation 
level (𝜌) = 0.9 the model parameter 𝛽0 for Root Mean Square Error 
decreases and as sample size increases for autocorrelation level 
(𝜌) = 0.9 the model parameter 𝛽1 for Root Mean Square Error also 
decreases. As panel structures increases for autocorrelation level 
(𝜌) = 0.99 the model parameter 𝛽0 for Root Mean Square Error 
decreases and as panel structures increases for autocorrelation 
level (𝜌) = 0.99 the model parameter 𝛽1 for Root Mean Square 
Error also decreases. Therefore random effect model revealed that 
for autocorrelation level (𝜌) = 0.5 for 𝛽0   and  𝛽1 are preferred 

 

 
Table 3: Pooled Regression coefficient in the presence of autocorrelation  

 Autocorrelation Levels 

Panel 
Structure/Mode
l parameter 

0.5 0.7 0.9 0.99 

B0 B1 B0 B1 B0 B1 B0 B1 

N=25 
T=5 
n=5 

7.88472
8 

4.69775
7 

12.584
96 

5.43541
4 

32.143
36 

7.05838
8 

136.21 8.666858 

N=50 
T=10 
n=5 

5.66888
7 

3.29774
6 

9.1887
77 

3.92067
5 

25.760
89 

5.51425
5 

131.218
4 

8.176125 

N=100 
T=10 
n=10 

3.98014
4 

2.31005
6 

6.6084
78 

2.78463
5 

18.872
23 

4.30766
5 

122.424
5 

7.532492 

N=450 
T=30 
n=15 

1.87782
1 

1.08653
6 

3.1033
26 

1.32332
7 

9.4324
64 

2.14457
8 

82.9051
9 

5.395957 

 
From table 3 above shows that as autocorrelation level (𝜌) is 

increases for model parameter (𝛽0), the N =25, T = 5, and n =5 the 

Root Mean Square Error increases, as autocorrelation level (𝜌) is 

increases for model parameter (𝛽1), N =25, T = 5, and n =5 then 

the Root Mean Square Error increases. As autocorrelation level (𝜌) 

is increases for model parameter (𝛽0), the N = 50, T = 10, and n = 
5 the Root Mean Square Error increases, as autocorrelation level 
(𝜌) is increases for model parameter (𝛽1), N = 50, T = 10, and n 
=5 then the Root Mean Square Error increases. As autocorrelation 
level (𝜌) is increases for model parameter (𝛽0), the N = 100, T = 
10, and n =10 the Root Mean Square Error increases, as 
autocorrelation level (𝜌) is increases for model parameter (𝛽1), N 
= 100, T = 10, and n =10 then the Root Mean Square Error 
increases. As autocorrelation parameter (𝜌) is increases for model 

parameter (𝛽0), the N = 450, T = 30, and n = 15 the Root Mean 

Square Error increases, as autocorrelation parameter (𝜌) is 

increases for model parameter (𝛽1), N = 450, T = 30, and n = 15 
then the Root Mean Square Error increases. While as panel 
structures increases for autocorrelation level (𝜌) = 0.5 the model 
parameter 𝛽0 for Root Mean Square Error decreases and as panel 

structures increases for autocorrelation parameter (𝜌) = 0.5 the 

model parameter 𝛽1 for Root Mean Square Error also decreases. 

As panel structures increases for autocorrelation level (𝜌) = 0.7 the 

model parameter 𝛽0 for Root Mean Square Error decreases and 

as panel structures increases for autocorrelation level (𝜌) = 0.7 the 

model parameter 𝛽1 for Root Mean Square Error also decreases. 

As panel structures increases for autocorrelation level (𝜌) = 0.9 the 

model parameter 𝛽0 for Root Mean Square Error decreases and 

as panel structures increases for autocorrelation level (𝜌) = 0.9 the 

model parameter 𝛽1 for Root Mean Square Error also decreases. 

As panel structures increases for autocorrelation level (𝜌) = 0.99 

the model parameter 𝛽0 for Root Mean Square Error decreases 

and as panel structures increases for autocorrelation level (𝜌) = 
0.99 the model parameter 𝛽1 for Root Mean Square Error also 
decreases. Therefore pooled regression model revealed that for 
autocorrelation level (𝜌) = 0.5 for  𝛽0  and  𝛽1 are preferred. 
Therefore the implication is that as panel structures increases the 
estimated parameter close to actual parameter 
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Table 4: 𝛽𝑖  summary for fixed effect, random effect and pooled regression

  
Table 4 above revealed that, for autocorrelation level 𝜌 = 0.5, the 
sample size for N = 25, T = 5, n = 5 fixed effect model is preferred, 
for autocorrelation level 𝜌 = 0.5, the sample size for N = 50, T = 10, 

n = 5 random effect model is preferred, for autocorrelation level  𝜌 
= 0.5, the sample size for N = 100, T = 10, n = 10 random effect 
model is preferred, for autocorrelation level  𝜌 = 0.5, the sample 
size for N = 450, T = 30, n = 15 pooled regression model is 
preferred, therefore for small sample size fixed effect model 
performed better, for average sample size random effect model 
performed better while for large sample size pooled regression 
model performed better. For autocorrelation level  𝜌 = 0.7, the 
sample size for N = 25, T = 5, n = 5 fixed effect model is preferred, 
for autocorrelation level  𝜌 = 0.7, the sample size for N = 50, T = 
10, n = 5 random effect model is preferred, for autocorrelation level  
𝜌 = 0.7, the sample size for N = 100, T = 10, n = 10 fixed effect 
model is preferred, for autocorrelation level  𝜌 = 0.7, the sample 
size for N = 450, T = 30, n = 15 fixed effect model is preferred, 
therefore for small sample size fixed effect model performed better, 
for average sample size random effect model performed better 
while for large sample size fixed effect model performed better. For 
autocorrelation level  𝜌 = 0.9, the sample size for N = 25, T = 5, n 

= 5 fixed effect model is preferred, for autocorrelation level  𝜌 = 0.9, 
the sample size for N = 50, T = 10, n = 5 random effect model is 
preferred, for autocorrelation level  𝜌 = 0.9, the sample size for N 
= 100, T = 10, n = 10 random effect model is preferred, for 
autocorrelation level  𝜌 = 0.9, the sample size for N = 450, T = 30, 
n = 15 random effect model is preferred, therefore for small sample 
size fixed effect model performed better, for average sample size 
random effect model performed better and for large sample size 
random effect model performed better.  For autocorrelation level  𝜌 
= 0.99, the sample size for N = 25, T = 5, n = 5 fixed effect model 
is preferred, for 𝛽1 = 0.99, the sample size for N = 50, T = 10, n = 

5 random effect model is preferred, for  autocorrelation level  𝜌 = 
0.99, the sample size for N = 100, T = 10, n = 10 random effect 
model is preferred, for autocorrelation level  𝜌 = 0.99, the sample 
size for N = 450, T = 30, n = 15 random effect model is preferred, 
Therefore, for small sample size N = 25, T = 5 and n = 5 fixed effect 
model performed better at all level of autocorrelation level, also for 

N = 50, T = 10, n = 5 random effect model performed better at all 
level of autocorrelation level and for large sample size N = 450, T 
= 30 and n = 15 random effect model performed better at all level 
of autocorrelation level  as  agreed with Garba et al 2015 
 
Conclusion 
The various results obtained in this work showed that the 
behaviours of the three estimators investigated for modeling 
various panel data vary as the violations are varied.  
The efficiency of three methods of estimating panel data models 
with violations of no autocorrelation assumptions is addressed in 
this work. Our findings from experiments for several combinations 
of violations revealed that for fixed effect model the autocorrelation 
parameter (𝜌) = 0.5 is preferred. Also, random effect model 

revealed that for autocorrelation parameter (𝜌) = 0.5 for 𝛽0   and  

𝛽1 are preferred. While pooled regression model revealed that for 

autocorrelation parameter (𝜌) = 0.5 for  𝛽0  and  𝛽1 are preferred. 
Furthermore, for small sample size N = 25, T = 5 and n = 5 fixed 
effect model performed better at all level of autocorrelation 
parameter, also for N = 50, T = 10, n = 5 random effect model 
performed better at all level of autocorrelation parameter and for 
large sample size N = 450, T = 30 and n = 15 random effect model 
performed better at all level of autocorrelation parameter 
 Finally, As a general remark, given the various results obtained in 
this study, it is always necessary to assess the degree level of 
autocorrelation while developing panel data models in order to 
ensure efficient results.  
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