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ABSTRACT 
In this study, a ratio-product-cum-exponential type estimators for 
estimating the population mean in single phase sampling were 
proposed. The biases and Mean Square Errors (MSEs) of these 
estimators were obtained up to the first order of approximation. 
Theoretical and empirical comparative approach using real 
datasets and simulation study were investigated. The results 
showed that the proposed estimators were more efficient than the 
sample mean, ratio, product, exponential ratio and product 
estimator. Furthermore, the efficiency of the proposed estimators 
were investigated at different correlation levels and it was found 
that as the correlation increases the efficiency also changes 
positively. This suggests that when the auxiliary and study 
variables are more strongly correlated, the estimators become 
more efficient, reducing estimation errors and increasing precision. 
 
Keywords:  Exponential Type Estimator, Auxiliary Variables, 
Single-phase samplings, Efficiency.  
 
INTRODUCTION 
In sample survey, it is well established that auxiliary information is 
often used to improve the precision of estimators of population 
parameters (Singh, 2022). The auxiliary information typically is 
easy to measure; whereas the variable of interest may be 
expensive or difficult to measure. These auxiliary variables can be 
utilized at any of the following stage: pre-selection stage or 
designing stage; selection stage and post-selection or estimation 
stage. The ratio, product, regression, and difference estimators 
take advantage of auxiliary information at the estimation stage. The 
ratio estimator is most effective when the relationship between the 
study variable (y) and the auxiliary variable (𝑥) is linear through 

the origin and the variance of 𝑦  is proportional to 𝑥  . The ratio 
estimator can be applied in areas such as the production of wheat 
and the area cultivated, the number of bullocks on a holding and its 
area in acres, the total production and is the number of workers, 
fuel consumed and distance travelled. But when the auxiliary 
variable is negatively correlated with the study variate, the product 
estimator is more appropriate for the estimation of the population 
mean. Its practical applications may include price and demand of a 
commodity, number of employees and time to complete a task, sale 
of woolen cloth and temperature, travel time and speed of a vehicle 
(Solanki et al., 2013) 
In recent years, several research papers have emerged focusing 
on ratio type, exponential ratio type, and regression-type 
estimators, incorporating different types of transformations. Perry 
(2007), asserted that, when two or more auxiliary variables are 
available, many estimators may be defined by linking together 
different estimators such as ratio, product or regression, each one 

exploiting a single variable in order to enhance the efficiency of the 
estimators. Considering this fact, an attempt is made to improve 
the performance of different estimators. Riaz et al., (2014) 
developed an estimator by combining the concept of Bahl and 
Tuteja (1991) exponential type estimator and classical regression 
estimator for the estimation of the population mean. Among others, 
we highlight, various authors that proposed mixed exponential type 
estimators, Singh and Vishwakarma (2007), Shabbir and Gupta 
(2010) proposed a regression-ratio-type exponential estimator by 
combining Rao (1991) and Bedi (1996) estimators, Yadav and  
Kadılar (2013), Ozgul and Cingi (2014) ,Singh et al.(2019),  Singh 
et al.(2020),Audu et al.(2020), Audu and Singh (2020), Abiodun et 
al.(2021). 
Survey statisticians often prefer ratio and product estimators due 
to their clear conceptual advantages (Perry, 2007). This preference 
likely drives the extensive research focused on improving the 
performance of these estimators. However, most of the ratio-based 
estimators can only be applied when the correlation between the 
study and auxiliary variables is positively strong. and the product-
based estimators, when the estimators are negatively correlated. It 
is based on this background, that an alternative ratio-product-cum-
exponential type estimator that provides more efficient estimates 
than some of the existing conventional estimators is proposed. This 
study focuses on deriving the properties of the newly developed 
ratio-product-cum-exponential type estimator, including its bias 
and Mean Square Error (MSE). Additionally, it establishes the 
theoretical efficiency conditions of the proposed estimator in 
comparison with existing estimators. 
 
MATERIALS AND METHODS 
Research Design 
Consider a finite population 𝑈 = (𝑈1, 𝑈2, … , 𝑈𝑁) of size N units. 

Let 𝑦  and 𝑥  denote the study variable and auxiliary variable 
respectively. The purpose is to estimate the population mean of the 

study variable �̅�, a sample of size 𝑛 (𝑛 < 𝑁)  assuming a simple 

random sampling without replacement (SRSWOR)  𝑠  of size 
𝑛 (𝑛 < 𝑁) is drawn from the population 𝑈 (𝑠 ⊂ 𝑈).  

where: �̅� =
1

𝑛
∑ 𝑦𝑖 ; 𝜌𝑦𝑥 =

𝑠𝑦𝑥

𝑠𝑥𝑠𝑦
,  denote the sample correlation 

between 𝑦 and 𝑥  , while 𝐶𝑦 =
𝑠𝑦

�̅�
 and 𝐶𝑥 =

𝑠𝑥

�̅�
,  denote the 

coefficient of variation of 𝑦 and 𝑥  respectively. 
 
Existing Estimators 
Some of the existing estimators with their Bias and MSE (Mean 
Square Error) up to the first order of approximation are given below. 
 
Estimator without auxiliary variable 
The sample mean of the study variable is given as                                                                     
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�̅� =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 (1) 

which is an unbiased estimator of finite population mean. The mean square error (variance; since the estimator is unbiased) can be immediately 
written as 

MSE(�̅�) = 𝜃�̅�2𝐶𝑦
2 (2) 

 
 

Bias(�̅�) = 0 (3) 
 
Estimators with auxiliary variable  
The usual ratio [Cochran (1940)] and product [Robson (1957) and Murthy (1964)] as cited in Singh et al., (2020) estimators of population mean 
have been defined as: 
 
Ratio estimator: 

�̅�𝑅 = �̅�
�̅�

�̅�
 (4) 

 MSE(�̅�𝑅) = 𝜃�̅�2(𝐶𝑦
2 + 𝐶𝑥

2 − 2𝜌𝑦𝑥𝐶𝑦𝐶𝑥) (5) 

Bias(�̅�𝑅) = 𝜃�̅�(𝐶𝑥
2 − 𝜌𝑦𝑥𝐶𝑦𝐶𝑥) (6) 

Product estimator: 

𝑡𝑃 = �̅�
�̅�

�̅�
     (7) 

                          MSE(�̅�𝑝) = 𝜃�̅�2(𝐶𝑦
2 + 𝐶𝑥

2 + 2𝜌𝑦𝑥𝐶𝑦𝐶𝑥)  (8) 

Bias(�̅�𝑃) = 𝜃�̅�𝜌𝑦𝑥𝐶𝑦𝐶𝑥 (9) 

 
Bahl and Tuteja (1991, as cited in Abiodun et al., 2021), exponential ratio and product type estimator  

Exponential Ratio:           

�̅�𝐸𝑅 = �̅� 𝑒𝑥𝑝 [
�̅� − �̅�

�̅� + �̅�
] 

     (10) 

MSE(�̅�𝐸𝑅) = �̅�2𝜃 [𝐶𝑦
2 +

1

4
𝐶𝑥

2 − 𝜌𝑦𝑥𝐶𝑦𝐶𝑥]      (11) 

Bias (�̅�𝐸𝑅) = 𝜃�̅� [
3𝐶𝑥

2

8
−

𝜌𝑦𝑥𝐶𝑦𝐶𝑥

2
]   (12) 

Exponential Product:        

�̅�𝐸𝑃 = �̅� 𝑒𝑥𝑝 [
�̅� − �̅�

�̅� + �̅�
] 

 (13) 

MSE (�̅�𝐸𝑃) = 𝜃�̅�2 [𝐶𝑦
2 +

1

4
𝐶𝑥

2 + 𝜌𝑦𝑥𝐶𝑦𝐶𝑥]  (14) 

Bias (�̅�𝐸𝑃) = 𝜃�̅� [
𝜌𝑦𝑥𝐶𝑦𝐶𝑥

2
−

𝐶𝑦
2

8
]  (15) 

 
     Proposed Estimators 

Using Cochran (1940), Murthy (1964), and Bahl and Tuteja (1991) 
estimators, the following are the proposed estimators: ratio-

product-cum-exponential type of estimators for optimum and non-
optimum scenario respectively for the estimation of population 
mean with one auxiliary variable in simple random sampling with 
partial information case.  

𝑇𝑝1 = 2−1�̅� {(
�̅�

�̅�
)

𝜀

+ (
�̅�

�̅�
)

1−𝜀

} {𝑒𝑥𝑝 (
�̅� − �̅�

�̅� + �̅�
)} (16) 

 

𝑇𝑝2 = 2−1�̅� {(
�̅�

�̅�
) +  (

�̅�

�̅�
)} {𝑒𝑥𝑝 (

�̅� − �̅�

�̅� + �̅�
)} (17) 

                 
To derive the biases and mean squares errors (MSEs) of the proposed estimators we define the following:  

𝐸(�̅�0
2)=𝜃𝐶2

𝑦, 𝐸(�̅�1
2)=𝜃𝐶2

𝑥, 𝐸(�̅�0�̅�1) = 𝜃𝐶𝑦𝐶𝑥,𝜌𝑦𝑥  (18) 

 

�̅� = �̅�(1 + �̅�0),   �̅� = �̅�(1 + �̅�1)  , s  𝜃 =
1

𝑛
−

1

𝑁
 (19) 

To obtain the 𝑀𝑆𝐸 (𝑇𝑝1) to the first degree of approximation, express equation (16), in terms of 𝑒 ,𝑠, we have: 
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𝑇𝑝1 = 2−1�̅�(1 + �̅�0) [(
�̅�

�̅�(1+𝑒1̅)
)

𝜀

+ (
�̅�(1+𝑒1̅)

�̅� 
)

1−𝜀

] [𝑒𝑥𝑝 {
𝑋 ̅−�̅�(1+𝑒1̅)

𝑋 ̅+�̅�(1+𝑒1̅)
}]  (20) 

  𝑇𝑝1 = 2−1  �̅�(1 + 𝑒0) [(1 + 𝑒1)−𝜀 + (1 + 𝑒1)1−𝜀] [𝑒𝑥𝑝 (
−�̅�𝑒1)

2𝑋 ̅+�̅�𝑒1)
)]    (21) 

𝑇𝑝1 = 2−1�̅�(1 + 𝑒0) [(1 + 𝑒1)−𝜀 +  (1 + 𝑒1)1−𝜀] [𝑒𝑥𝑝 {−
𝑒1̅

2
(1 +

𝑒1̅

2
)

−1
}] (22) 

                                                                 

𝑇𝑝1 = 2−1�̅�(1 + 𝑒0)[(2 + �̅�1 − 2𝜀�̅�1 + 𝜀2 �̅�1
2) ] [𝑒𝑥𝑝 (−

�̅�1

2
+

�̅�1
2

4
)] (23) 

                                     

𝑇𝑝1 = 2−1�̅�(1 + 𝑒0)[(2 + �̅�1 − 2𝜀�̅�1 + 𝜀2 �̅�1
2) ] [1 −

�̅�1

2
+

 3�̅�1
2

8
 ] (24) 

 

𝑇𝑝1 = [�̅� + �̅��̅�0 − 𝜀�̅��̅�1 − 𝜀�̅�  �̅�0 �̅�1 +
1

2
(

1

4
+ 𝜀 + 𝜀2) �̅��̅�1

2 ] (25) 

 

Subtracting �̅� from both sides of (25) and taking expectations, we get the bias of the estimator   𝑇𝑝1 

𝐵𝑖𝑎𝑠(𝑇𝑝1) =𝐸( 𝑇𝑝1 − �̅�) = �̅�𝐸 [�̅�0 − 𝜀�̅�1 − 𝜀�̅�0 �̅�1 +
1

2
(

1

4
+ 𝜀 + 𝜀2) �̅�1

2 ]  (26) 

 

𝐵𝑖𝑎𝑠(𝑇𝑝1) =  �̅�𝜃 ⌈
1

2
(

1

4
+ 𝜀 + 𝜀2) 𝐶𝑥

2 − 𝜀𝐶𝑦𝐶𝑥𝜌𝑦𝑥⌉ (27) 

To obtain the Mean Squared Error (MSE) of the proposed estimator up to the first order of approximation, we subtract �̅� from both sides of (25), 
squaring both sides and then taking expectations of both sides. 

𝑀𝑆𝐸(𝑡𝑝1) = 𝐸(𝑇𝑝1 − �̅�)
2

= �̅�2𝐸[�̅�0
2 + 𝜀2�̅�1

2 − 2𝜀�̅�0 �̅�1] (28) 

 
Substituting equation (18) and (19) in equation (28)  will gives:  

𝑀𝑆𝐸(𝑇𝑝1) = �̅�2𝜃[𝐶𝑦
2 + 𝜀2𝐶𝑥

2 − 2𝜀𝐶𝑦𝐶𝑥𝜌𝑦𝑥]   (29) 

 
Special cases of proposed generalized estimators: 
 
From (29)  to investigate three common scenarios for the value of 𝜀  

Case (I): 𝜀 = −1 

𝑀𝑆𝐸(𝑇𝑝1) = �̅�2𝜃[𝐶𝑦
2 + 𝐶𝑥

2 + 2𝐶𝑦𝐶𝑥𝜌𝑦𝑥] (30) 

This is equal to the MSE of the ratio estimator of Cochran (1940):  
 

𝑀𝑆𝐸(𝑇𝑝1) =MSE(�̅�𝑃) (31) 

 
 
Case (II): 𝜀 = 0 

𝑀𝑆𝐸(𝑇𝑝1) = �̅�2𝜃𝐶𝑦
2 (32) 

It led to the sample variance of the sample mean: 
 
 

𝑀𝑆𝐸(𝑇𝑝1) = Var.(�̅�) 
(33) 

   
Case (III): 𝜀 = 1 

𝑀𝑆𝐸(𝑇𝑝1) = �̅�2𝜃[𝐶𝑦
2 + 𝐶𝑥

2 − 2𝐶𝑦𝐶𝑥𝜌𝑦𝑥] (34) 

 
This yielded the MSE of the ratio estimator of Murthy (1964, as cited in Singh et al., 2020): 
 

𝑀𝑆𝐸(𝑇𝑝1) =MSE(�̅�𝑅) (35) 

 
Differentiating  (29) partially with respect to 𝜀 and equate to zero to obtain the optimum value of 𝜀 as                                           

𝜀𝑜𝑝𝑡 =
𝐶𝑦𝜌𝑦𝑥

𝐶𝑥
 (36) 

Substituting (36) in (29)and simplifying, the Mean Square Error of (17) is given as: 

MSE (𝑇𝑝1)𝑚𝑖𝑛 = �̅�2𝜃 𝐶𝑦
2(1 − 𝜌𝑦𝑥

2 ) (37) 
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The expression in (37) is equal to the MSE of linear regression estimator. Thus, the proposed estimator in (16) can be used as an alternative to 
the usual regression estimator in practice.  
 
Now, to obtain the optimum bias, we substitute (36) in (27)  and simplify 

Bias (𝑇𝑝1)𝑚𝑖𝑛 =
1

2
�̅�𝜃 [

1

4
𝐶𝑥

2 + 𝐶𝑦𝐶𝑥𝜌𝑦𝑥−𝐶𝑦
2𝜌𝑦𝑥

2 ] (38) 

 
Similarly, to obtain the 𝑀𝑆𝐸 of 𝑇2 

𝑇𝑝2 = 2−1�̅�(1 + �̅�0)[(1 − �̅�1 + �̅�1
2) + (1 + �̅�1) ] [1 −

�̅�1

2
+

 3�̅�1
2

8
 ] (39) 

    

𝑇𝑝2 = 2−1�̅�(1 + �̅�0) [(2 − �̅�1 +
 3�̅�1

2

4
 + �̅�1

2) ] (40) 

 

𝑇𝑝2 = [�̅� + �̅��̅�0 −
1

2
�̅��̅�1 −   

1

2
�̅��̅�0 �̅�1 +

7

8
�̅� �̅�1

2] (41) 

    

Bias(𝑇𝑝2)= 𝐸( 𝑡𝑝2 − �̅�) = �̅�𝜃
1

2
[

7

4
𝐶𝑥

2 − 𝐶𝑦𝐶𝑥𝜌𝑦𝑥] 

 
(42) 

     

𝑀𝑆𝐸(𝑇𝑝2) = 𝐸( 𝑇𝑝2 − �̅�)
2
                                             (43) 

 

𝑀𝑆𝐸(𝑇𝑝2) = �̅�2𝐸 [�̅�0 −
1

2
�̅�1]

2

 (44) 

 

𝑀𝑆𝐸(𝑇𝑝2) = �̅�2𝜃 [𝐶𝑦
2 +

1

4
𝐶𝑥

2 − 𝐶𝑦𝐶𝑥𝜌𝑦𝑥] (45) 

 
It can be observed from (45) that MSE of the non-optimum estimator (𝑇𝑝2) is equal to that of the exponential ratio estimator of (12). 

 
 
RESULTS AND DISCUSSION 

            Comparison of estimators 
In this sub-section, theoretical comparison of the proposed 
estimators over other conventional estimators in single phase 
sampling is carried out.  
The Mean Square Error (MSE) of an estimator is a key measure 
that combines both the variance and the bias of the estimator. It is 

defined as: MSE(𝜃) =Var. (𝜃) +Bias[(𝜃)]
2

, where𝜃  is the 

estimator.  
Therefore, in comparing two estimators, say �̅�∗  and 𝑇𝑝1  their 

MSEs provide a basis for determining which estimator is 
preferable. In practice, the estimator with the smaller MSE is 
typically preferred, as it minimizes the overall estimation error. 

      [𝑉𝑎𝑟(�̅�) − 𝑀𝑆𝐸(𝑇𝑝1)]=𝜃�̅�2𝐶𝑦
2𝜌𝑦𝑥

2 > 0                      (46) 

[MSE(�̅�𝑅) −  𝑀𝑆𝐸(𝑇𝑝1)]= 𝜃�̅�2(𝐶𝑥−𝜌𝑦𝑥
2 𝐶𝑦)

2
> 0       (47) 

[MSE(�̅�𝑃) −  𝑀𝑆𝐸𝑇𝑝1)]= 𝜃�̅�2(𝐶𝑥+𝜌𝑦𝑥
2 𝐶𝑦)

2
> 0          (48) 

[MSE(�̅�𝑒𝑥𝑝.𝑅) −  𝑀𝑆𝐸(𝑇𝑝1)] = 𝜃�̅�2 (
𝐶𝑥

2
−𝜌𝑦𝑥

2 𝐶𝑦)
2

> 0  

(49) 

[MSE(�̅�exp. 𝑝) −  𝑀𝑆𝐸(𝑇𝑝1)] = �̅�2 (
𝐶𝑥

2
+𝜌𝑦𝑥

2 𝐶𝑦)
2

> 0      

(50) 
 
It is obvious from the above comparison that in terms of the MSE 
the proposed estimator (𝑇𝑝1) outperforms the sample variance 

estimator, ratio estimator, product estimator, exponential ratio and 
exponential product estimators, while the second estimator (𝑇𝑝2), 

yielded an equal in efficiency with the exponential ratio estimator. 
 

 
Empirical Study 
Real data sets for the empirical study for the  

Parameters Population I Population II Population III Population IV 

𝑵 80 104 923 81 

𝒏 20 20 180 20 

�̅� 11.264 625.37 436.4345 33.8346 

�̅� 51.826 13.93 11440.5 112.4568 

𝑪𝒚 0.750 1.866 1.7183 0.297194 

𝑪𝒙 0.354 1.653 1.8645 0.125559 

𝝆𝒚𝒙 0.941 0.865 0.9543 -0.69079 

Population I: Source, Murthy (1967 as cited in Abiodun et al., 2021):  

https://dx.doi.org/10.4314/swj.v19i3.17
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(i) Auxiliary Variable (𝑿): Output of 80 factories. 

(ii) Study Variable (𝒀): Fixed capital. 

(iii) Context: This dataset was used to investigate the 
relationship between the output of factories and their 
fixed capital, which is a common scenario in industrial 
economics. The focus is on determining how well the 
proposed estimator can estimate the population mean of 
fixed capital using the auxiliary information about factory 
output. 

(iv) Findings: With a high correlation coefficient (𝝆𝒚𝒙  = 

0.941), the study found a strong positive relationship 
between factory output and fixed capital, indicating that 
higher fixed capital is associated with greater output. This 
suggests the effectiveness of capital investment in 
increasing production.  

    Population II: Source, Kadilar and Cingi (2006):  

(i) Auxiliary Variable (𝑿): Number of apple trees. 

(ii) Study Variable (𝒀): Level of apple production. 

(iii) Context: This population was used to analysed 
agricultural productivity, specifically how the number of 
apple trees influences the total apple production. This is 
a typical scenario in agricultural studies where the goal is 
to maximize yield. The goal is to assess the effectiveness 
of the proposed estimator in predicting the population 
mean (total) of apple production using the auxiliary 
information on the number of apple trees. 

(iv) Findings: The correlation ( 𝝆𝒚𝒙 = 0.865) indicates a 

strong positive relationship between the number of apple 
trees and apple production. The proposed estimator 
performed well. The efficiency improvements are in 
reduction of the MSE and an increase in the PRE when 
compared to other estimators., affirming the importance 
of scaling up planting to boost output. 

   Population III: Source, Koyuncu (2009):  

(i) Auxiliary Variable (X): Number of students in both 
primary and secondary schools. 

(ii) Study Variable (Y): Number of teachers. 

(iii) Context: This dataset was used in educational studies to 
explore the relationship between the number of students 
and the number of teachers. The objective is to use the 
auxiliary information about the number of students to 
estimate the population mean or total of the number of 
teachers. This is essential for policy planning in 
education systems, particularly in ensuring adequate 
staffing for student populations. 

(iv) Findings: The very high correlation ( 𝝆𝒚𝒙 = 0.9543) 

implies a strong positive relationship, suggesting that as 
the number of students increases, the number of 
teachers must also increase proportionally. This 
underscores the importance of aligning teacher 
recruitment with student enrollment to maintain effective 
education quality. Their estimator exhibited lower MSE 
and higher PRE compared to others, indicating its 
efficiency in this context. 

         Population IV: Source, Gujarati (2004):  
(i) Auxiliary Variable (X): Top speed (miles per hour) 
(ii) Study Variable: Average miles per gallon (fuel 

efficiency) 

(iii)  Context: This population examines the relationship 
between the top speed of vehicles and their average 
fuel efficiency. The primary aim is to estimate the 
population mean of the average miles per gallon using 
the auxiliary information about the top speed of the 
vehicles. 
Findings: In contrast to Populations I, II, and III, 
Population IV presents a negative correlation (𝝆𝒚𝒙= -

0.69079) between the auxiliary variable (top speed) and 
the study variable (fuel efficiency). This indicates that as 
the top speed increases, the average fuel efficiency 
tends to decrease        
 
Summary: 
These populations were used in various studies to 
analyze the relationships between key variables in 
different fields such as: industrial productivity, 
agricultural output, and education. The findings 
generally show strong positive (negative) correlations 
between the auxiliary and study variables, indicating 
that increases in one variable tend to be associated with 
increases (decreases) in the other. These results 
highlight the importance of considering such 
relationships in planning and decision-making within 
these domains. 

        
Simulation   
         The rnorm function were employed for the simulations using 
R, a widely used statistical  
         software environment for data analysis and simulations. The 
following are the steps  
         employed for the data simulation:  
      Step (I): Set the parameters 
       Step (II): Function to perform the simulation for a given 
correlation sign 
       Step (III): Initialize empty vectors to store results 
       Step (IV): Loop for replications 
       Step (VI): Generate the study variable Y.POP 
       Step (VII): Generate the auxiliary variable X.POP.RATIO 
based on the correlation sign 
       Step (VIII): Calculate statistics for this replication 
       Step (IX): Create a summary table 
       Step (X): Run simulations for positive and negative 
correlations 
       Step (XI): Print the summary tables 
      The parameters used for the simulation are: 
    (a) Study variable  𝑁 = 1000  𝑛 = 250    mean= 75 and 

standard deviation = 10. 
The auxiliary variable is strongly positively correlated 
with the study variable ( 𝜌𝑦𝑥 =0.7923) and the line 

passes through the origin. 𝑁 = 1000  𝑛 = 250  
mean=75, standard deviation = 10   and number of 
replications=5000 
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(ii) The auxiliary variable is strongly negatively correlated with the 
study variable (𝜌𝑦𝑥 =-0.7923) and the line passes through the 

origin. 𝑁 = 1000 𝑛 = 250  mean=75, standard deviation = 10   
and number of replications=5000 

 
The objective of the simulation and models used in this analysis 
was to: 

1. Simulate Different Populations: Two scenarios 
were simulated: one with a positive correlation and 
another with a negative correlation between the 
auxiliary and study variables. This helps in 
examining how the correlation sign affects the 
efficiency of the estimators. 

2. Compare Estimators: The simulation aims to 
compare different estimators by calculating their 
Mean Square Error (MSE) and Percentage 
Relative Efficiency (PRE). The estimators being 
compared include the basic estimator (MSEY), 
ratio estimator (MSEYR), product estimator 
(MSEYP), exponential ratio estimator (MSEYER), 

exponential product estimator (MSEYEP), and 
ratio-product-cum exponential estimator 
(MSETP1). 

3. Evaluate Performance: The MSE and PRE 
metrics are used to evaluate the performance of 
the proposed estimators against other existing 
estimators. The goal is to identify which estimator 
provides the most accurate and efficient estimate 
of the population mean of the study variable under 
different correlation conditions. 

(b) Simulation at different correlation levels.  
 The different correlation levels are 0.25, 0.50, 0.75, zero, 
moderate and high, N= 1000 𝑛 = 250,  mean=75, standard 
deviation = 10 and number of replications=5000. 
The simulation aims to analyze how changes in correlation levels 
affect key statistical measures such as sample means, sample 
correlation, and coefficients of variation. The ultimate goal is to 
assess the efficiency and reliability of the estimators in estimating 
the population mean of the study variable across different 
correlation scenarios.  

Therefore, in this research the Percent Relative Efficiency (PRE) is 
a statistical tool that will be used to measure the efficiency of the 
proposed and others estimators with respect to mean per unit 
estimator. 

PRE =
𝑉𝑎𝑟 ( �̅�)

𝑉𝑎𝑟 ( �̅�∗) or 𝑀𝑆𝐸(�̅�∗)
 𝑋 100 

      for  ∗=1,2,3,4,5,6 and�̅�1 = �̅�, �̅�2 = �̅�𝑅 ,  �̅�3 = �̅�𝑃,    �̅�4 =
�̅�𝐸𝑅    �̅�5 = �̅�𝐸𝑃    �̅�6 = 𝑇𝑝1    

 

 
Table 1: MSEs and PREs of Proposed and Convectional Estimators for Natural Population 

 POPULATION I POPULATION II POPULATION III POPULATION IV 

ESTIMATOR MSE PRE MSE PRE MSE PRE MSE PRE 

�̅� 2.67633 100 54993.75 100 2515.07 100 3.80730 100 
�̅�𝑅 0.895177 298.972 13869.9 396.495 267.644 939.708 6.70916 56.7478 
�̅�𝑃 5.64996 47.3689 182429 30.1454 10685.0 23.5383 2.26458 168.124 

�̅�𝐸𝑅 = 𝑇𝑝2 1.63669 163.521 23643.0 232.601 651.042 386.315 5.08834 74.8241 
�̅�𝐸𝑃 4.01408 66.6734 107922 50.9568 5859.73 42.9213 2.86605 132.842 
𝑻𝒑𝟏 0.306490 873.218 13846.1 397.180 224.625 1119.67 1.99049 191.274 

 Note:  MSE=Mean Square Error; PRE=Percent Relative Efficiency 
 
 
Table 2: MSEs and PREs of Proposed and Convectional Estimators for Simulated  Population 

 POPULATION I POPULATION I 

ESTIMATOR MSE PRE MSE PRE 

�̅�  0.2998547 100 0.2999443 100 

�̅�𝑅 0.1774565 168.97360   1.3025565 23.02736 

�̅�𝑃 1.3768787 21.77786 0.1614552 185.77564 

�̅�𝐸𝑅 = 𝑻𝒑𝟐 0.1193274 251.28741   0.6932350 43.26734 

�̅�𝐸𝑃 0.7190385 41.70218 0.1226844 244.48453 

𝑻𝒑𝟏 0.1114807 268.9745 0.1115869 268.7990 
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Table 3: Simulated result for the MSE and PRE of the proposed estimators compared 
               to Convectional at various positive correlation levels.      

                      𝝆 = 𝟎. 𝟐𝟓 𝝆 = 𝟎. 𝟓𝟎 𝝆 = 𝟎. 𝟕𝟓 

ESTIMATOR MSE PRE MSE PRE MSE PRE 

�̅� 0.2523319 100 0.3373012 100 0.2886265 100 

�̅�𝑅 1.3222589 19.08339 0.3169014 106.43727 0.1550367 186.16656 

�̅�𝑃 2.432578 10.37302 1.662866 20.28433 1.356284 21.28068 

�̅�𝐸𝑅 = 𝑻𝒑𝟐 0.3810238 66.2247 0.1639557 205.7270 0.1050731 274.6911 

�̅�𝐸𝑃 0.9361832 26.95326 0.8369379 40.30182 0.7056968 40.89951 

𝑻𝒑𝟏 0.20491869 123.1376 0.16379629 205.9273 0.09552017 302.1629 

                 
In Table 1, which deals with natural populations, the 
proposed ratio-product-cum-exponential estimator 𝑇𝑝1 

consistently outperforms other estimators, including the 
simple mean �̅�, ratio estimator �̅�𝑅 , product estimator 

�̅�𝑃 , exponential ratio estimator �̅�𝐸𝑅 , and exponential 

product estimator �̅�𝐸𝑃 . This suggests 𝑇𝑝1 is highly 

efficient in natural populations, likely due to its ability to 
integrate multiple estimation techniques that address 
both the central tendency and variability of the data. 
However, the second proposed estimator 𝑇𝑝2, matches 

the efficiency of �̅�𝐸𝑅 but is less efficient than �̅�𝑅  and 

�̅�𝑃 ,  indicating that  𝑇𝑝2 may have limitations in 

capturing specific aspects of the population's structure 
that 𝑇𝑝1 effectively handles. The presence of the scalar 

in 𝑇𝑝1 is a key factor in its superior performance and 

efficiency, as it directly contributes to minimizing the 
MSE and enhancing the accuracy of the estimator, 
while the lack of such scalar in 𝑇𝑝2 limits its efficiency, 

making it a less reliable choice for estimation in 
scenarios where minimizing MSE is crucial. When an 
estimator includes a scalar that is specifically designed 
to minimize its MSE, it means that the estimator can be 
fine-tuned to reduce the error associated with the 
estimates, leading to more precise and reliable results. 
In the case of 𝑇𝑝1, this scalar allows the estimator to 

adjust its weighting or combination of the auxiliary and 
study variables in such a way that the variance and bias 
of the estimator are minimized, resulting in the lowest 
possible MSE. This characteristic makes 𝑇𝑝1 an 

optimum estimator, as it can consistently deliver high 
efficiency across different populations and correlation 
structures. 
In Table 2, which presents results from simulated data, 
the findings are consistent across both positive and 
negative correlations between auxiliary (𝑥) and study 
(𝑦)  variables. Estimator 𝑇𝑝1 again demonstrates 

superiority over all other estimators, maintaining its 
dominance even under varying correlation scenarios. 
This robustness suggests that 𝑇𝑝1 effectively adjusts to 

different correlation structures, making it a versatile tool 
for estimation. On the other hand, 𝑇𝑝2 remains on par 

with �̅�𝐸𝑅, indicating that while it is effective, it may not 

be as adaptable as 𝑇𝑝1. 

Additionally, the performance of estimators in the 
second population with negative correlation highlights 
the nuanced nature of estimator efficiency. Specifically, 
�̅�𝑝  and  �̅�𝐸𝑃  outperform �̅�𝑅  and �̅�𝐸𝑅   respectively, 

indicating that the choice of estimator should consider 
the sign and magnitude of the correlation between x and 
y. 
Moreover, the importance of the correlation level 
between 𝑥 and 𝑦 on estimator performance cannot be 
overstated. As observed in Table 3, increasing the 
correlation level from low to high leads to a reduction in 
mean square error (MSE) across the estimators. This 
improvement in precision corresponds to an increase in 
percent relative efficiency (PRE), highlighting the critical 
role that strong correlations play in enhancing the 
accuracy of estimators. This finding underscores the 
importance of considering correlation strength when 
selecting an estimator for practical applications. 
 

                  Conclusion  
In this article optimum and non-optimum estimators 
were proposed for estimating the population mean of 
the study variable when the population mean of an 
auxiliary variable is known in simple random sampling 
without replacement (SRSWOR). The bias and mean 
square error expressions of the proposed class of 
estimators have been obtained up to first degree of 
approximation. It has been found theoretically as well as 
empirically that the optimum estimator is superior than 
the ratio, product, exponential ratio and exponential 
product estimators whereas the non-optimum estimator 
is less efficient than the ratio and product estimators, 
this confirmed the assertion by Kanwai et al. (2016) that 
optimum estimators performed better than the non-
optimum estimators. It is apparent that the first 
proposed estimator demonstrated better performance 
across varying data conditions, whether the correlation 
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is positive or negative.  It is also, worth to note that when 
the correlation between the study variable and auxiliary 
variable is high the percent relative efficiency of the 
estimators increases.  
 

                  Recommendation 
Therefore, when the level of correlation between the 
auxiliary variable and the study variable is low the 
efficiency is good; when it is intermediate the efficiency 
is better and when it is high the efficiency is the best. 
Therefore, the proposed estimators can be used for 
estimating the population mean in practice for different 
situations by adjusting constant ( 𝜀 ) based on the 
characteristics of the auxiliary and study variables. 
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APPENDICES 
 
APPENDIX A 
Use of R Command for Proposed Estimator 𝑻𝟏, 𝑻𝟐 and others 
Estimators 
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> N<-c(80,104,923,81) 
> n<-c(20,20,180,20) 
> Y<-c(11.264,625.37,436.4345,33.8346) 
> X<-c(51.826,13.93,11440.5,112.4568) 
> Cy<-c(0.750,1.866,1.7183,0.297194) 
> Cx<-c(0.354,1.653,1.8645,0.125559) 
> Pyx<-c(0.941,0.865,0.9543,-0.69079) 
> O<-{(1/n)-(1/N)} 
> MSEY<-O*Y^2*(Cy)^2 
> MSEYR<-O*Y^2*{(Cy)^2+(Cx)^2-2*Cy*Cx*Pyx} 
> MSEYP<-O*Y^2*{(Cy)^2+Cx^2+2*Cy*Cx*Pyx} 
> MSEYER<-O*Y^2*{(Cy)^2+((Cx)^2/4)-Cy*Cx*Pyx} 
> MSEYEP<-O*Y^2*{(Cy)^2+((Cx)^2/4)+Cy*Cx*Pyx} 
> MSETP1<-O*Y^2*Cy^2*{1-(Pyx)^2} 
> PREY<-(MSEY/MSEY)*100 
> PREYR<-(MSEY/MSEYR)*100 
> PREYP<-(MSEY/MSEYP)*100 
> PREYER<-(MSEY/MSEYER)*100 
> PREYEP<-(MSEY/MSEYEP)*100
  
> PRETP1<-(MSEY/MSETP1)*100 
> MSEY 
[1]     2.676326 54993.747732  2515.073817     3.807299 
> MSEYR 
[1] 8.951777e-01 1.386996e+04 2.676441e+02 6.709157e+00 
> MSEYP 
[1] 5.649961e+00 1.824285e+05 1.068504e+04 2.264576e+00 
> MSEYER 
[1]     1.636691 23642.990307   651.042254     5.088336 
> MSEYEP 
[1] 4.014083e+00 1.079222e+05 5.859739e+03 2.866046e+00 
> MSETP1 
[1] 3.064902e-01 1.384605e+04 2.246250e+02 1.990491e+00 
> PREY 
[1] 100 100 100 100 
> PREYR 
[1] 298.9715 396.4953 939.7084  56.7478 
> PREYP 
[1]  47.36894  30.14538  23.53828 168.12414 
> PREYER 
[1] 163.52053 232.60064 386.31499  74.82405 
> PREYEP 
[1]  66.67342  50.95683  42.92126 132.84154 
> PRETP1 
[1]  873.2175  397.1800 1119.6765  191.2744 
 
APPENDIX B 
 
Simulated Populations for the positive and negative 
correlation  

> # Set the parameters 
> population_size <- 1000 
> replications <- 5000 
> sample_size <- 250 
>  
> # Function to perform the simulation for a given c 
orrelation sign 
> simulate_population <- function(correlation_sign) { 
+   # Initialize empty vectors to store results 

+   mean_y <- numeric(replications) 
+   mean_x <- numeric(replications) 
+   corr_xy <- numeric(replications) 
+   cv_y <- numeric(replications) 
+   cv_x <- numeric(replications) 
+    
+   # Loop for replications 
+   for (rep in 1:replications) { 
+     # Generate the study variable Y.POP  
+     Y.POP <- abs(rnorm(population_size, 75, 10)) 
+      
+     # Generate the auxiliary variable X.POP.RATIO based on  
the correlation sign 
+     multiplier <- ifelse(correlation_sign ==  
"positive", 0.65, -0.65) 
+     offset <- ifelse(correlation_sign == "negative", 100, 0) 
+     X.POP.RATIO <- abs(rnorm(population_size, 
 multiplier * Y.POP + offset, 5)) 
+      
+     # Calculate statistics for this replication 
+     mean_y[rep] <- mean(Y.POP) 
+     mean_x[rep] <- mean(X.POP.RATIO) 
+     corr_xy[rep] <- cor(X.POP.RATIO, Y.POP) 
+     cv_y[rep] <- sd(Y.POP) / mean(Y.POP) 
+     cv_x[rep] <- sd(X.POP.RATIO) / mean(X.POP.RATIO) 
+   } 
+    
+   # Create a summary table 
+   summary_table <- data.frame( 
+     Mean_Y = mean(mean_y), 
+     Mean_X = mean(mean_x), 
+     Correlation = mean(corr_xy), 
+     CoV_Y = mean(cv_y), 
+     CoV_X = mean(cv_x) 
+   ) 
+    
+   return(summary_table) 
+ } 
>  
> # Run simulations for positive and negative correlations 
> summary_positive <- simulate_population("positive") 
> summary_negative <- simulate_population("negative") 
>  
> # Print the summary tables 
> cat("Results for Positive Correlation:\n") 
Results for Positive Correlation: 
> print(summary_positive) 
    Mean_Y   Mean_X Correlation     CoV_Y     CoV_X 
1 74.99577 48.74642   0.7922133 0.1332642 0.1681382 
> cat("\nResults for Negative Correlation:\n") 
 
Results for Negative Correlation: 
> print(summary_negative) 
    Mean_Y   Mean_X Correlation     CoV_Y     CoV_X 
1 75.00181 51.25115  -0.7926169 0.1333417 0.1600401 
> population_size=N<-c(1000,1000) 
> sample_size=n<-c(250,250) 
> Mean_Y=Y<-c(74.99749,75.00285) 
> Mean_X =X<-c(48.74707,51.24791) 
> CoV_Y=Cy<-c(0.1333055,0.1333159) 
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> CoV_X=Cx<-c(0.1681877,0.1600053) 
> Correlation =Pyx<-c(0.7926018,-0.7924486) 
> O<-{(1/n)-(1/N)} 
> MSEY<-O*Y^2*(Cy)^2 
> MSEYR<-O*Y^2*{(Cy)^2+(Cx)^2-2*Cy*Cx*Pyx} 
> MSEYP<-O*Y^2*{(Cy)^2+Cx^2+2*Cy*Cx*Pyx} 
> MSEYER<-O*Y^2*{(Cy)^2+((Cx)^2/4)-Cy*Cx*Pyx} 
> MSEYEP<-O*Y^2*{(Cy)^2+((Cx)^2/4)+Cy*Cx*Pyx} 
> MSETP1<-O*Y^2*Cy^2*{1-(Pyx)^2} 
> PREY<-(MSEY/MSEY)*100 
> PREYR<-(MSEY/MSEYR)*100 
> PREYP<-(MSEY/MSEYP)*100 
> PREYEXR<-(MSEY/MSEYER)*100 
> PREYEXP<-(MSEY/MSEYEP)*100 
> PRETP1<-(MSEY/MSETP1)*100 
> MSEY 
[1] 0.2998547 0.2999443 
> MSEYR 
[1] 0.1774565 1.3025565 
> MSEYP 
[1] 1.3768787 0.1614552 
> MSEYER 
[1] 0.1193274 0.6932350 
> MSEYEP 
[1] 0.7190385 0.1226844 
> MSETP1 
[1] 0.1114807 0.1115869 
> PREY 
[1] 100 100 
> PREYR 
[1] 168.97360  23.02736 
> PREYP 
[1]  21.77786 185.77564 
> PREYER 
[1] 251.28741  43.26734 
> PREYEP 
[1]  41.70218 244.48453 
> PRETP1 
[1] 268.9745 268.7990 
 
APPENDIX C 
Simulated population at different levels of correlation between the  
auxiliary variable and the study variables 
  > # Set the parameters 
  > pop_size <- 1000 
  > num_replications <- 5000 
  > sample_size <- 250 
  > correlation_levels <- c(0.25, 0.50, 0.75) 
  >  
    > # Initialize variables to store results 
    > results <- matrix(NA, nrow = length(correlation_levels), 
 ncol = 6) 
> colnames(results) <- c("Mean(Y.POP)", "Mean 
(X.POP.RATIO.1)",  
"Sample Correlation", "CoV(Y.POP)", "CoV(X.POP.RATIO.1)", 
 "Correlation Level") 
    >  
      > # Data Simulation for population One 
      > for (corr_level in correlation_levels) { 
        +   # Generate the study variable (Y.POP) 

          +   Y.POP <- abs(rnorm(pop_size, 75, 10)) 
          +    
            +   # Generating the first Auxiliary Variable positively  
correlated with Y.POP 
            +   X.POP.RATIO.1 <- rnorm(pop_size, mean = 
 corr_level * Y.POP, sd = 5) 
            +    
              +   # Correlations between study and auxiliary  
variables 
              +   CORR1 <- cor(X.POP.RATIO.1, Y.POP) 
              +    
                +   # Sample indices 
                +   POP.Indices <- sample(1:pop_size, sample_size,  
replace = TRUE) 
                +    
                  +   # Samples for study variable (Y.POP) and  
auxiliary variable (X.POP) 
                  +   y.1 <- Y.POP[POP.Indices] 
                  +   x.1 <- X.POP.RATIO.1[POP.Indices] 
                  +    
                    +   # Calculate statistics 
                    +   mean_y <- mean(y.1) 
                    +   mean_x <- mean(x.1) 
                    +   sample_corr <- cor(x.1, y.1) 
                    +   cov_y <- sd(y.1) / mean_y 
                    +   cov_x <- sd(x.1) / mean_x 
                    +    
                      +   # Store results in the matrix 
                      +   result_row <- c(mean_y, mean_x, sample_ 
corr, cov_y, cov_x, corr_level) 
                      +   results[corr_level * 4, ] <- result_row 
                      + } 
    >  
      > # Print the summary results in an m x n table 
      > print(results) 
            Mean(Y.POP)   Mean(X.POP.RATIO.1) Sample  
Correlation  CoV(Y.POP)        CoV(X.POP.RATIO.1)     
 
CORRELATION               LEVEL 
    [1,]    74.91910       18.46877            0.4334744        0.1224145        
   0.3106598              0.25 
    [2,]    76.34668         8.33745            0.7172110        0.1388859          
 0.1931821              0.50  [3,]    75.83838       57.22973            0.8179564        0.1293357          0.1645222              0.75 
    > 

> N<-1000 
> n<-250 
> Y<-c(74.91910,76.34668,75.83838) 
> X<-c(18.46877,8.33745,57.22973) 
> Pyx<-c(0.4334744,0.7172110,0.8179564) 
> Cy<-c(0.1224145,0.1388859,0.1293357) 
> Cx<-c(0.3106598,0.1931821,0.1645222) 
> O<-{(1/n)-(1/N)} 
> MSET11<-O*Y^2*Cy^2 
> MSET12<-O*Y^2*{Cy^2+Cx^2-2*Cy*Cx*Pyx} 
> MSET13<-O*Y^2*{Cy^2+Cx^2+2*Cy*Cx*Pyx} 
> MSET14<-O*Y^2*{Cy^2+(Cx^2/4)-Cy*Cx*Pyx} 
> MSET15<-O*Y^2*{Cy^2+(Cx^2/4)+Cy*Cx*Pyx} 
> MSET16<-O*Y^2*Cy^2*{1-(Pyx)^2} 
> PRET11<-(MSET11/MSET11)*100 
> PRET12<-(MSET11/MSET12)*100 
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> PRET13<-(MSET11/MSET13)*100 
> PRET14<-(MSET11/MSET14)*100 
> PRET15<-(MSET11/MSET15)*100 
> PRET16<-(MSET11/MSET16)*100 
 
 
 
 
 
 
 
 
> MSET11 
[1] 0.2523319 0.3373012 0.2886265 
> MSET12 
[1] 1.3222589 0.3169014 0.1550367 
> MSET13 
[1] 2.432578 1.662866 1.356284 
> MSET14 
[1] 0.3810238 0.1639557 0.1050731 
> MSET15 
[1] 0.9361832 0.8369379 0.7056968 
> MSET16 
[1] 0.20491869 0.16379629 0.09552017 
> PRET11 
[1] 100 100 100 
> PRET12 
[1]  19.08339 106.43727 186.16656 
> PRET13 
[1] 10.37302 20.28433 21.28068 
> PRET14 
[1]  66.2247 205.7270 274.6911 
> PRET15 
[1] 26.95326 40.30182 40.89951 
> PRET16 
[1] 123.1376 205.9273 302.1629 
 
> 
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