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ABSTRACT 
Kernel density estimation is a widely used nonparametric method 
for estimating the probability density functions of observed data. 
The efficiency of the kernel method is significantly influenced by the 
choice of the kernel function and other statistical properties such 
as its roughness and variance. This study investigated the new 
beta polynomial family's efficiency and compared the efficiency 
values with the classic beta kernel family. The roughness and 
variance of the new core functions were determined to calculate 
the efficiency values. The numerical values of the efficiency of the 
classic beta family and the new family were determined and 
compared for univariate and bivariate kernel functions. The results 
of the study showed that the new beta family has higher efficiency 
values compared to the classic beta family. The higher efficiency 
of the proposed beta family is due to their coefficients being larger 
than the classic kernel functions. 
 
Keywords: Bandwidth, Beta Kernel, Density Estimation, 
Efficiency. 
 
INTRODUCTION. 
Estimating the underlying probability density function of a data set 
is a fundamental task in statistics. Accurate density estimation 
provides important insight into the structure and distribution of data, 
enabling informed decision making in diverse fields such as 
economics, biology, and engineering. Among the numerous 
techniques developed for density estimation, the kernel density 
estimation method has emerged as a versatile and powerful 
nonparametric method for approximating probability density 
function based on observed data (Yuan et al., 2020; Choi et al., 
2022; Siloko and Uddin, 2023; Tseng and Yang, 2023). 
Kernel density estimation offers several advantages over traditional 
parametric approaches. Unlike the parametric methods, which 
assume a specific functional form for the underlying distribution, the 
kernel density approach makes no assumptions about the data 
structure. This flexibility allows the kernel density method to 
effectively model complex and multimodal distributions by adapting 
to the intrinsic properties of the data without being limited by 
predefined distribution shapes. Consequently, the kernel method 
has been widely used in various applications including data 
visualization, signal processing, anomaly detection and pattern 
recognition (Siloko and Siloko, 2023; Neto et al., 2024; Siloko et 
al., 2024). 
Despite its widespread use and effectiveness, the kernel method is 
not without challenges. One of the main difficulties lies in the 
selection of the appropriate bandwidth and kernel functions, which 
significantly influence the bias and variance of the estimator. 
Inadequate choice of these parameters can lead to either 
excessive smoothing, obscuring important features of the data, or 

insufficient smoothing, resulting in noisy and unreliable estimates 
(Dhaker et al., 2018; Tsuruta and Sagae, 2020). Furthermore, 
kernel density estimation performance may degrade in high-
dimensional environments due to the curse of dimensionality 
associated with nonparametric estimation, necessitating the 
development of advanced techniques and adaptations to mitigate 
these problems. 
In recent years, significant efforts have been made to improve the 
performance and applicability of kernel estimation, such as 
adaptive bandwidth selection methods, the introduction of novel 
kernel features, and the integration of kernel methods into other 
statistical and machine learning frameworks (Fuentes-Santos et 
al., 2023; Govorov et al., 2023). In addition, computational 
improvements have been proposed to address the scalability 
issues associated with large datasets by using techniques such as 
fast Fourier transforms and efficient data structures to accelerate 
density estimation processes (Zámečník et al., 2023). The aim of 
this study is to investigate the efficiency of newly developed beta 
polynomial kernels in kernel density estimation. The study seeks to 
evaluate how the new beta polynomial kernels improve upon the 
traditional kernels in terms of efficiency numerically. 
 
MATERIALS AND METHODS 
The Kernel Density Estimator 
The kernel density estimator is a nonparametric statistical method 
for modelling many real-world situations. Since its introduction by 
Rosenblatt (1956) and Parzen (1962), the estimator has gained 
popularity in many areas of study, especially for data exploratory 
analysis and visualization purposes (Sheather, 2004; Siloko et al., 
2021; Somé and Kokonendji, 2022). The univariate form of the 
kernel estimator is 

𝑓(x)

=
1

𝑛ℎx
∑𝐾(

x − X𝑖
ℎx

)

𝑛

𝑖=1

,                                                      (1) 

where 𝐾(∙) is a kernel function and ℎx is bandwidth which 

regulates the smoothness of the estimate, 𝑛 is sample size, x is 

the data range and 𝑋𝑖 are the observations (Silverman, 2018). The 
kernel estimator satisfies the condition 

∫𝐾(x)𝑑x

= 1.                                                                                        (2) 
Generally, the kernel function 𝐾(x) ≥ 0 is a symmetric probability 
density function. Every kernel function is a probability density 
function whose integral is one and having a mean of zero with 
variance greater than zero. The two essential factors in kernel 
density estimation are choice of bandwidth and kernel function. On 
the choice of bandwidth, several authors have introduced novel 
selectors with little researches on kernel function (Siloko et al., 
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2018; Wang et al., 2020; Xie et al., 2023). The bandwidths 
determine the performance of kernel estimator and a popular 
assessment criterion of the kernel estimator is the mean integrated 
squared error whose univariate form is 

𝑀𝐼𝑆𝐸 (𝑓(x))  =
𝑅(𝐾)

𝑛ℎx 
+
1

4
𝜇2(𝐾)

2ℎx
4𝑅(𝑓″)

+ 𝑂 (
1

𝑛ℎx
+ ℎx

4),    (3) 

where 𝑅(𝐾) is roughness of kernel, 𝜇2(𝐾)
2 is variance of kernel 

while 𝑅(𝑓″) = ∫𝑓″(x)2𝑑x is roughness of the unknown 

function (Wand and Jones, 1995; Scott, 2015; Silverman, 2018). 
The approximate form known as the asymptotic mean integrated 
squared error is  

𝐴𝑀𝐼𝑆𝐸 (𝑓(x))  =
𝑅(𝐾)

𝑛ℎx 
+
1

4
𝜇2(𝐾)

2ℎx
4𝑅(𝑓″).               (4) 

The bandwidth that minimizes the AMISE in Equation (4) called the 
optimal bandwidth is 

ℎx−AMISE = [
𝑅(𝐾)

𝜇2(𝐾)
2𝑅(𝑓″) 

]

1 5⁄

× 𝑛−1 5⁄ .                  (5) 

Furthermore, the two-dimensional kernel estimator is given as 

𝑓(x , y) =
1

𝑛ℎxℎy
∑𝐾

𝑛

𝑖=1

(
x − X𝑖
ℎx

,
y − Y𝑖
ℎy

)

=
1

𝑛ℎxℎy
∑𝐾

𝑛

𝑖=1

(
x − X𝑖
ℎx

)𝐾 (
y − Y𝑖
ℎy

),                      (6) 

where, ℎx > 0 and ℎy > 0 are the bandwidths of X and Y with x 

and y representing the ranges of the observations in the various 
axes (Siloko et al., 2023; Gündüz and Karakoç, 2023). With the 
bivariate product kernel estimator, different smoothing parameters 
can be used for the different axes, which is particularly 
advantageous if the scales of the variables in the respective axes 
vary. When presented as surface or contour plots, the bivariate 
kernel density estimates are easy to use and understand. An 
effective tool for exploratory data analysis and visualization is the 
bivariate kernel estimator (Silverman, 2018). The AMISE of the 
two-dimensional kernel estimator employing the product kernel is  

𝐴𝑀𝐼𝑆𝐸 (𝑓(x, y)) =
𝑅(𝐾)

𝑛ℎyℎz
+
ℎy
4

4
𝜇2(𝐾)

2∫∫(
𝜕2𝑓

𝜕y2
)

2

𝑑y𝑑z

+
ℎz
4

4
𝜇2(𝐾)

2∫∫(
𝜕2𝑓

𝜕z2
)

2

𝑑y𝑑z    (7) 

Similarly, the bandwidths of the two-dimensional product kernel 
estimator are given by  

ℎx−𝐴𝑀𝐼𝑆𝐸

=

{
 
 

 
 

𝑑𝑅(𝐾)𝑑

𝜇2(𝐾)
2
 
(
𝑑(𝑑+2)

4(2√𝜋)
𝑑)𝜎x

−(𝑑+4)

}
 
 

 
 
1 6⁄

× 𝑛−1 6⁄                                                             (8) 
ℎ𝑦−𝐴𝑀𝐼𝑆𝐸

=
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1 6⁄

× 𝑛−1 6⁄ ,                                                           (9) 
where 𝜎x and 𝜎y are the standard deviations of variables X and Y 

respectively while 𝑑 is the dimension of the kernel function (Scott 
2015; Siloko et al., 2022).  
 
The Beta Polynomial Kernel Function 
The beta polynomial kernel family is one of the prominent families 
of kernel estimators and its general form is 

𝐾𝑝(𝑡)

=
(2𝑝 + 1)!

22𝑝+1(𝑝!)2
(1

− 𝑡2)𝑝,                                                             (10) 
where 𝑝 = 0, 1, 2,… determines the resulting kernel such that 𝑡 
is within the interval −1 ≤ 𝑡 ≤ 1. The fascinating mathematical 
attributes of the beta kernel contributed to their popularity in density 
estimation (Duong, 2015). The resulting kernel members of this 
family are determined by the value of  𝑝 such that when 𝑝 = 0, we 

have the simplest kernel called the Uniform kernel and when 𝑝 =
1, the resulting kernel is the Epanechnikov function known as the 

optimal kernel with reference to the AMISE. Again, when 𝑝 =
2, 3 and 4, the corresponding kernel functions are Biweight, 
Triweight and Quadriweight kernels. The popular Gaussian kernel 
which is of wide applicability in statistical estimation did not belong 
to this family, however; it is obtained when 𝑝 tends to infinity 
(Marron and Nolan, 1988). The mathematical expression of the 
Epanechnikov, Biweight, Triweight and Quadriweight kernels are  

{
 
 
 

 
 
 𝐾1(𝑡) =

3

4
 (1 − 𝑡2).

𝐾2(𝑡) =
15

16
 (1 − 𝑡2)2.

𝐾3(𝑡) =
35

32
 (1 − 𝑡2)3.

𝐾4(𝑡) =
315

256
 (1 − 𝑡2)4.

                                           (11) 

The Epanechnikov kernel, also known as quadratic kernel, 
Biweight kernel, also called quartic kernel, Triweight and 
Quadriweight kernels, except for the Uniform kernel function, are 
widely used in statistical estimation. The Epanechnikov kernel is 
usually used in calculating the efficiency of the beta polynomial 
kernels due to its optimality property with respect to AMISE. A new 
family of beta polynomial kernel functions was developed by Siloko 
et al. (2020) using exponential progression in their derivation. The 
new beta kernel family, whose results compete well with the classic 
families, is given by 

𝐾𝑝(𝑡) = (
3

4
 (1 − 𝑡2)) (

3 + 2𝑝

2 + 2𝑝
(1 − 𝑡2))

𝑝−1

,        (12) 

where 𝑝 = 0, 1, 2, 3, …  and 𝑡 is the value where the kernel is 

evaluated, typically in the interval [−1, 1]. Again, as in the classical 

beta kernels, when 𝑝 = 0, the resulting kernel from Equation (12) 
is the Uniform kernel while 𝑝 = 1, resulted in the optimum kernel 

which is the Epanechnikov kernel. Nevertheless, when  𝑝 =
2, 3, 4,… , the new kernels of Biweight, Triweight, and 
Quadriweight kernel functions are as follows  

𝐾2(𝑡) =
7

8
 (1 − 𝑡2)2.                                                (13) 

𝐾3(𝑡) =
243

256
 (1 − 𝑡2)3.                                           (14) 

𝐾4(𝑡) =
3993

4000
 (1 − 𝑡2)4.                                          (15) 

Although the powers of the two families are the same, the new 
kernel family and the classic beta kernel functions differ in the value 
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of the normalization constants. The value of the AMISE 
performance measure changed in parallel with the changes in the 
normalization constant. The choice of a kernel function is based on 
its performance, and a method or kernel function is considered 
superior if it produces a lower AMISE value (Jarnicka, 2009). 
Furthermore, Equation (12) has been generalized to the 
multivariate case using the product kernel approach. See (Siloko 
et al., 2020; Siloko et al., 2023) for a detailed derivation of the new 
kernel family from the existing beta polynomial family. 
 
The Efficiency of Kernel Function. 
The efficiency of the symmetric kernel is evaluated by comparing 
with the Epanechnikov kernel function. The efficiency of any kernel 
function is derived from the relation given as 

𝐸𝑓𝑓(𝐾) = (
𝐶(𝐾𝑒)

𝐶(𝐾)
)
1 4⁄

= (
𝑅(𝐾𝑒)

4𝜇2(𝐾𝑒)
2

𝑅(𝐾)4𝜇2(𝐾)
2 )

1 4⁄

,        (16) 

where  𝐶(𝐾) = 𝑅(𝐾)4𝜇2(𝐾)
2 is a constant of any given kernel 

and 𝐶(𝐾𝑒) = 𝑅(𝐾𝑒)
4𝜇2(𝐾𝑒)

2 is the constant of Epanechnikov 
kernel (Qahtan, 2017; Siloko et al., 2019). The efficiency of the 
multi-dimensional kernel with the product strategy is 

𝐸𝑓𝑓(𝐾𝑝) = {(
𝐶(𝐾𝑒

𝑝
)

𝐶(𝐾𝑝)
)

1 (𝑑+4)⁄

}

(𝑑+4) 4⁄

= (
𝑅(𝐾𝑒

𝑝
)
4
𝜇2(𝐾𝑒)

2

𝑅(𝐾𝑝)4𝜇2(𝐾)
2
)

1 4⁄

,                                        (17) 

where d is the kernel dimension, while   𝐶(𝐾𝑒
𝑝
) is the higher 

dimensional product form of the Epanechnikov kernel constant and 
𝐶(𝐾𝑝) is the higher dimensional form of every other kernel 
function in the family (Silverman, 2018). Calculating the efficiency 
of any kernel function requires two important statistics, namely the 
roughness of the kernel function and its variance, which can be 
seen in Equation (16). The roughness of the kernel function is given 
by 
𝑅(𝐾)

= ∫𝐾(𝑡)2𝑑𝑡 .                                                                                                                            (18) 

Similarly, the second moment of any kernel function also known as 
the variance is of the form 
𝜇2(𝐾)

= ∫ 𝑡2𝐾(𝑡)𝑑𝑡.                                                                                                                         (19) 

The Epanechnikov kernel is considered to be the optimal kernel in 

terms of the asymptotic mean integrated squared error because it 
gives the smallest AMISE value when applied to the classical 
second-order kernel. 
 
RESULTS AND DISCUSSION 
Mathematica version 12 software is used for graphical analysis and 
calculation of the efficiency of kernel functions. The statistical 
properties of p are examined, for which 𝑝 = 1, 2, 3, 4 and which 
represent the Epanechnikov, Biweight, Triweight and Quadriweight 
kernels. These kernel functions are of great use and form the basis 
for discussing the beta kernel family, especially the Epanechnikov 
kernel, in calculating the efficiency of other kernel functions in this 
family. The performance of the kernel function is determined by its 
efficiency. In contrast to univariate kernel functions, the efficiency 
values of bivariate beta polynomial kernel functions were 
determined using the product approach. 
The efficiency values of the proposed and classical beta polynomial 
kernel functions were numerically calculated. Each kernel function 
in the beta polynomial family was evaluated for efficiency by 
comparing it with the Epanechnikov kernel. The results in Table 1 
and Table 2 are the efficiency values of the classical and the 
introduced kernel functions of the beta polynomial kernels for the 
univariate and bivariate cases. As can be seen in Table 1 and Table 
2, the efficiency values of the proposed kernels are larger than 
those of the classic kernels, which shows that the proposed kernel 
outperforms the traditional kernels of this family. The better 
performance in terms of efficiency is due to the size of the 
normalization constant. The normalization constant is the 
coefficient of the beta kernel functions. Regarding AMISE as a 
performance measure, the proposed kernels have demonstrated 
superiority over their classical counterparts (see Siloko et al., 2020; 
Siloko et al., 2023). 
The calculated statistical properties of the two-dimensional product 
kernels for the proposed and classical beta polynomial kernels are 
shown in Table 2. Some kernel functions in the beta family have 
efficiencies less than one, while the Epanechnikov kernel has an 
efficiency of one. From Tables 1 and 2, it is clear that as kernel 
power increases, the efficiency of the proposed kernels increases, 
while there is loss of efficiency in the traditional kernel functions. 
The larger normalization constant of the proposed kernels explains 
their superior efficiency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Univariate Efficiencies of Classical Kernel Functions and Proposed Kernel Functions 

Kernel Functions Classical Kernel Functions Proposed Kernel Functions 
𝑲(𝒕) 𝑹(𝑲) 𝝁𝟐(𝑲) 𝑬𝒇𝒇(𝑲) 𝑹(𝑲) 𝝁𝟐(𝑲) 𝑬𝒇𝒇(𝑲) 
𝑲𝟏(𝒕) 3

5
   

1

5
   

1.000 3

5
   

1

5
   

1.000 

𝑲𝟐(𝒕) 5

7
   

1

7
   

0.994 28

45
   

2

15
   

1.181 

𝑲𝟑(𝒕) 350

429
   

1

9
   

0.987 19683

32032
   

27

280
   

1.406 

𝑲𝟒(𝒕) 2205

2431
   

1

11
   

0.981 596982

1000000
   

968

13125
   

1.655 
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The univariate plots of the classic and proposed beta kernels are 
shown in Figure 1 and Figure 2, respectively. The plots are 
evaluated within the interval −1 ≤ 𝑡 ≤ 1, that is, 𝑡 ∈ [−1, 1]. All 

beta polynomial kernels are normally evaluated within this interval 

and the statistical properties such as the roughness and variance 
of the kernel for calculating bandwidths and efficiency of the 
kernels are numerically integrated within the interval. As the power 

of the kernel functions increases, the narrower the peak of the 
graphs as seen in Figure 1 and Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table 2: Bivariate Efficiencies of Classical Kernel Functions and Proposed Kernel Functions 

Kernel Functions Classical Kernel Functions Proposed Kernel Functions 
𝑲(𝒕) 𝑹(𝑲) 𝝁𝟐(𝑲) 𝑬𝒇𝒇(𝑲) 𝑹(𝑲) 𝝁𝟐(𝑲) 𝑬𝒇𝒇(𝑲) 
𝑲𝟏(𝒕) 9

25
   

1

25
   

1.000 9

25
   

1

25
   

1.000 

𝑲𝟐(𝒕) 127551

250000
   

2551

125000
   

0.988 38716

100000
   

4

225
   

1.394 

𝑲𝟑(𝒕) 665613

1000000
   

6173

500000
   

0.974 377585

1000000
   

93

1000
   

1.977 

𝑲𝟒(𝒕) 205677

250000
   

1033

125000
   

0.963 356386

1000000
   

5439

1000000
   

2.739 
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Figure 2: Graphs of Proposed Beta Polynomial Kernel Functions 
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The bivariate plots in Figures (3–6) show the conventional and 
novel product core features. As can be seen from the estimates of 
the traditional and recently introduced families, the loops of the 
graphs for the Triweight and Quadriweight kernels moved closer to 
the centre than the loops for the Epanechnikov and Biweight 
kernels. The degree of differentiability causes the loop to move to 
the centre of the graph in situations where p is larger. Higher p-
kernel functions, due to their higher derivative and large 
normalization constants, tend to produce graphs with loops closer 
to the centre and consequently better kernel estimates in terms of 
smoothness. 
Despite the similarity presented in the univariate and bivariate plots 

of the traditional and proposed kernels, the empirical results 
showed that the proposed kernels outperformed the classical 
version using AMISE, and this is due to the variation of their 
normalization constants (see Siloko et al., 2020; Siloko et al., 
2023). The newly developed beta polynomial kernels are valuable 
addition to the family of kernel methods, offering better 
performance in relation to the AMISE and maintaining 
computational feasibility in terms of efficiency values (Jarnicka, 
2009). The introduced beta polynomial kernels have strong 
potential for adoption in practical applications with bounded data 
distributions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Bivariate Estimate of the Classical Epanechnikov Function (a) and Biweight Function (b) 

 

a 
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 Figure 4: Bivariate Estimate of the Classical Triweight Function (a) and Quadriweight Function (b) 
 

a b 

 
Figure 5: Bivariate Estimate of the Proposed Epanechnikov Function (a) and Biweight Function (b) 
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Conclusion 
This paper has examined the efficiency of a newly introduced 
kernel family which has the potential to be widely used in a variety 
of statistical and data analysis tasks. The newly developed beta 
polynomial kernels have shown to be highly effective, particularly 
in their efficiency values. Due to the polynomial nature of the beta 
kernels, the newly introduced kernels also provided a high-level 
smoothness, making them more versatile across different datasets. 
The choice of a kernel function should be based on the degree of 
differentiability, since kernels with higher powers tend to be 
smoother and have more derivatives, as opposed to those with 
fewer derivatives, which tend to be noisy. The results of the study 
suggest that the new beta family outperforms the traditional beta 
family in terms of efficiency. The higher efficiency values of the 
proposed beta family are explained by the fact that the coefficient 
of the proposed kernels is larger than the traditional kernels.  
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