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ABSTRACT 
Cancer Disease remains a global health concern, demanding 
exploration into its causal factors for early detection and treatment. 
However, cancer data often presents a high-dimensional challenge for 
analysis. Selecting only relevant cancer genes can significantly enhance 
this analysis process. Traditional gene selection techniques such as 
heuristic methods have been employed over the years but proved 
infeasible. Thus, Swarm Intelligence algorithms known for their global 
search capabilities were developed. Nonetheless, the performance of 
these Swarm Intelligence algorithms is often influenced by their methods 
of initialization, affecting convergence, solution quality, and overall 
robustness. Chaos-based initialization methods have shown promise, 
yet their effectiveness remains underexplored in initializing SI 
algorithms. This research conducted a comprehensive performance 
comparison of three Swarm Intelligence algorithms: Particle Swarm 
Optimization, Salp Swarm Algorithm, and Firefly Algorithm. These 
algorithms were enhanced by incorporating the logistic chaotic map for 
initialization, specifically in the context of microarray cancer gene 
selection tasks. To assess the effectiveness of these enhanced 
algorithms, two cancer datasets were employed, namely Ovarian and 
Colon, and utilized two classifiers: the k-nearest neighbor and multilayer 
perceptron. The results of the study demonstrate that the logistic-chaos 
firefly algorithm paired with the k-nearest neighbor stands out as a 
significant performer, achieving an impressive overall accuracy rate of 
93.95% while selecting 444 genes. In summary, the proposed logistic-
chaos firefly algorithm paired with the k-nearest neighbor approach 
proves itself as a worthy competitor in gene selection tasks. 
 
Keywords: Swarm Intelligence, Cancer Disease, Microarray 
Gene Selection, Chaotic Initialization 
 
INTRODUCTION 
Microarray gene expression analysis is a powerful tool in 
bioinformatics for studying the expression levels of thousands of 
genes simultaneously (Alshareef et al., 2022). The analysis of 
microarray data can provide valuable insights into biological 
processes, identify potential biomarkers for diseases, and improve our 
understanding of complex diseases such as cancer (Alshareef et al., 
2022; Nouri-Moghaddam et al., 2021). However, the high 
dimensionality of microarray data and the large search space of 
potential gene combinations make it a challenging task to identify a 
subset of genes that can accurately predict a biological outcome or 
disease status (Qin et al., 2022). 
Traditional gene selection methods have been employed by several 
researchers over the years, particularly in cancer research (Alomari et 
al., 2021; Dabba, Tari, Meftali, et al., 2021). One of the simplest yet 
most computationally intensive methods is the brute force approach 
(Huda & Banka, 2020). It entails evaluating all possible combinations 
of genes to find the subset that optimizes a predefined criterion, such 
as classification accuracy. However, due to its exponential growth in 
the number of subsets with increasing dimensionality, it is often 

impractical for high-dimensional datasets (Isuwa et al., 2022; 
Jeremiah et al., 2022). 
 
Recursive Feature Elimination (RFE), a wrapper method, offers a 
more practical alternative (Abd-Elnaby et al., 2021). RFE operates 
iteratively, commencing with all available genes and then 
systematically removing the least important genes based on a 
specified criterion, typically their contribution to a predictive model 
(Sharma & Rani, 2019). The process repeats until a predetermined 
number of features is reached (Sharma & Rani, 2019). This method is 
more computationally efficient than brute force while providing a 
reasonably good subset of genes (Adamu et al., 2021; Alrefai & 
Ibrahim, 2022). 
Forward selection is another wrapper method that initiates with an 
empty set of genes (Blot et al., 2018; Huda & Banka, 2019). It 
progressively adds the gene that contributes the most to the model's 
performance in each iteration. Forward selection continues until a 
stopping criterion is met, such as a specific number of features or a 
predefined level of model performance (Chaudhuri & Sahu, 2021). It 
tends to be more computationally efficient than brute force, making it 
a practical choice when incrementally selecting features. Backward 
elimination, similar to forward selection, begins with all available 
genes. However, it removes the gene with the least impact on model 
performance during each iteration. Like forward selection, backward 
elimination is more computationally efficient than brute force and is 
suitable for systematic feature reduction (Jeremiah et al., 2023). 
Swarm Intelligence (SI) such as Particle Swarm Optimization (PSO) 
(Kennedy & Eberhart, 1995), Salp Swarm Algorithms (SSA)(Aljarah et 
al., 2020), and Cuckoo Search (CS) (Alzaqebah, Briki, et al., 2021), 
inspired by the collective behavior of social organisms like ants, bees, 
and birds, has gained significant attention and utility in various fields, 
especially cancer research (Ayham et al., 2019). The growing 
adoption of SI methods can be attributed to several compelling factors. 
Firstly, SI algorithms offer a unique approach to problem-solving. They 
leverage decentralized decision-making, collaboration, and 
adaptation, mirroring the robustness and efficiency found in natural 
systems (Hussain et al., 2018). This paradigm shift has introduced 
innovative ways to tackle complex optimization and search problems. 
Secondly, advancements in computational capabilities have made it 
increasingly feasible to implement and scale SI algorithms (Hussain et 
al., 2018). Modern computing infrastructure and parallel processing 
allow researchers and practitioners to harness the power of large 
ensembles of agents, enhancing the algorithms' effectiveness 
(Chakraborty et al., 2022). Thirdly, the applicability of SI extends 
across a wide range of domains beyond cancer research (Hussain et 
al., 2018). From optimizing complex functions in mathematics and 
engineering to addressing real-world challenges in robotics, logistics, 
and data analysis, these algorithms have demonstrated versatility and 
adaptability (Yang et al., 2022).  
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SI algorithms, while powerful and versatile in solving complex 
optimization problems, do have some limitations (Deng et al., 2022). 
One key challenge is the potential to get trapped in local optima, 
particularly in multimodal and high-dimensional search spaces such 
as cancer datasets (Brezočnik et al., 2018; Jeremiah et al., 2023). This 
limitation can restrict their ability to find the global optimum, leading to 
suboptimal solutions. Additionally, they might require a significant 
number of iterations to converge to a satisfactory solution, which can 
be computationally expensive (Brezočnik et al., 2018). Furthermore, 
the convergence speed and solution quality of swarm algorithms can 
be highly dependent on the algorithm's parameters, making their fine-
tuning a non-trivial task (Isuwa et al., 2021). This is where chaotic map 
initialization plays a crucial role. 
Chaotic maps introduce an element of randomness and 
unpredictability into SI algorithms, making them less likely to become 
stuck in local optima (Assiri, 2021). By injecting controlled chaos into 
the algorithm's behavior, chaotic maps can enhance the exploration of 
the search space, helping the algorithm discover diverse and 
potentially better solutions (Dash et al., 2019; Liu et al., 2022). Chaotic 
maps also contribute to adaptability, enabling SI algorithms to respond 
effectively to changes in the optimization landscape (Alshareef et al., 
2022; Rupa et al., 2023). Overall, the integration of chaotic maps in SI 
algorithms addresses some of their shortcomings, making them more 
robust, efficient, and capable of tackling complex optimization 
problems effectively. 
In light of these considerations, this paper aims to present gene 
selection methods based on SI by leveraging three of its prevalent 
algorithms: Particle Swarm Optimization (PSO), Salp Swarm 
Algorithm (SSA), and Firefly Algorithm (FA). These algorithms will be 
uniformly enhanced with the chaotic initialization techniques. 
Furthermore, the research will comprehensively evaluate the 
performance of the proposed methods, comparing them side by side, 
in terms of classification accuracy, F1 measure, and the counts of 
selected features. This evaluation will be conducted using datasets 
from ovarian and colon cancer with varying feature sizes. Specifically, 
we: 

i. Designed an improved initialization strategy in three SI 
algorithms (PSO, SSA, and FA) for cancer gene selection 
by utilizing chaotic maps. 

ii. Performed a comparative analysis of the performance of 
the improved algorithms from (i) with benchmark ovarian 
and colon cancer datasets to determine the optimal, using 
KNN and MLP as separate learning algorithms in terms of 
classification accuracy, F1 measure, and the number of 
selected features. 

iii. Performed further hyperparameter tuning, which includes 
adjusting the population size and the number of search 
agents among others, to further enhance performance. 
 

The rest of the paper is structured as follows: In Section 2, a concise 
review of the field's foundational knowledge and discussions of current 
literature are presented. Section 3 provides a detailed description of 
the proposed gene selection methods. Section 4 presents the 
experimental results along with a thorough analysis. Lastly, Section 5 
concludes the paper. 
 
BACKGROUND 
This section provides an overview of the field’s background knowledge 
as well as discussions of current literal works. 
 
Microarray Data 
The human body comprises numerous cells, each containing a copy 
of the genome encoded in Deoxyribonucleic acid (DNA) (Abel et al., 
2020; Jain et al., 2018). Advanced DNA microarray technologies are 
employed to extract information from these cellular samples, 
generating valuable data. DNA microarray experiments, also referred 

to as microarray data, are a high-throughput genetic analysis method 
(Ravindran & Gunavathi, 2023). They aim to simultaneously assess 
the expression levels of millions of genomic genes, providing insights 
into the cellular state. As per Kumar & Rath, (2016), the process of 
acquiring microarray data encompasses four key stages: cell lysis, 
genetic content separation, identification of relevant genes, and 
compilation of the identified genes into a list. Figure 1 offers a visual 
representation of the intricate processes involved in microarray 
analysis. 
Microarray data offer valuable insights into various biological 

processes, including the development of diseases like cancer (Hasri 
et al., 2017). Nevertheless, the analysis and interpretation of these 
data pose significant challenges due to the vast number of genes 
involved. In many cases, the number of genes greatly exceeds the 
number of available samples, leading to computational complexities 
and other difficulties (Chaudhuri & Sahu, 2021). The gene expression 
data is typically represented as a two-dimensional array denoted as 
𝐺, with thousands of genes (dimension 𝐷) and a limited number of 

samples (𝑁). 𝐺 can be mathematically expressed as in Equation 1: 
 
𝐺 = {𝑋𝑛𝑑| 𝑛 = 1, 2, 3, . . . , 𝑁, 𝑑 = 1, 2, 3, . . . , 𝐷}      (1)                                          
 
Microarray Gene Selection 
Microarray gene selection is the process of identifying a subset of 
genes that are particularly relevant to a specific research question 
from a larger set of genes represented on a microarray (Ravindran & 
Gunavathi, 2023). The aim is to reduce analysis complexity by 
focusing on a smaller group of genes that offer the most valuable 
insights. This selection process primarily involves two approaches: 
filter-based methods and SI (Chaudhuri & Sahu, 2021). 
 
Filter methods 
Filter-based methods employ statistical or computational filters to 
assess genes based on specific criteria and choose the highest-
ranked genes for further examination (Chaudhuri & Sahu, 2021). 
These gene selection techniques can be categorized into two groups: 
univariate and multivariate (Isuwa et al., 2023). In univariate 
approaches, individual features are evaluated to gauge their 
association with the target disease. Common univariate filter methods 
include Chi-Square, Mutual Information (MI), and Information Gain 
(IG). Conversely, multivariate methods can concurrently consider 
multiple features and assess them as groups, rather than individually, 
as observed in univariate analysis. Two notable multivariate 
techniques are the Minimum Redundancy Maximum Relevance 
(mRmR) (Song et al., 2021), and the Fast Correlation-Based Filter 
(FCBF) (Deng et al., 2022). 
 
Swarm Intelligence (SI) Algorithms 
The essence of SI algorithms lies in their primary focus on populations. 
These algorithms rely on the collective intelligence and behaviors of 
groups of individuals, as opposed to the isolated actions of individual 

 
Figure 1: Illustration of the Microarray Analysis Procedure (Hasri 

et al., 2017)   
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agents (Alrefai & Ibrahim, 2022). In essence, they function by evolving 
a population of candidate solutions, adhering to the mathematical 
structure specific to the SI algorithm, in pursuit of the optimal solution 
(Alrefai & Ibrahim, 2022). Each candidate solution within this 
population represents a potential answer to the optimization problem, 
which, in this context, pertains to finding an optimal feature subset 
(Baliarsingh et al., 2019). Population-based algorithms excel in 
mitigating the risk of getting stuck in local minima due to the interaction 
and learning among multiple individuals. However, it's worth noting 
that involving multiple individuals increases the computational load 
due to the need for multiple evaluations using a machine learning 
algorithm to assess solution quality (Dabba, Tari, & Meftali, 2021). 
Khurma et al., (2022) provide a succinct mathematical representation 
illustrating how the total number of evaluations typically depends on 
the number of individuals and the number of iterations: 
 
 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑)  =  𝑁 ∗  𝑇          (2)                        
 
where 𝑁 is the population size and 𝑇 the number of iterations. The 
general framework of SI algorithms is represented in Figure 2. 
 

 
Figure 2: General Framework of SI Algorithms  
 
In Figure 2, the algorithm starts by initializing a population of search 
agents, represented as 𝑁 and 𝐷, where 𝑁 corresponds to the number 
of search agents and 𝐷 signifies the dimension or number of features. 
This initialization phase also encompasses the configuration of 
algorithm parameters, including acceleration coefficients and inertia 
weight for PSO, if applicable. Subsequently, the initialized solutions 
undergo assessment through a learning algorithm, such as KNN, to 
identify the most optimal solution.  
 
The termination condition is continually monitored to determine 
whether the process should persist or conclude (Dabba, Tari, & 
Meftali, 2021). If the termination condition remains unmet, solutions 
are updated based on mathematical structures inherent to the specific 
SI algorithm, to refine them towards the optimum solution. Conversely, 
if the termination condition is satisfied, the current best solution is 
returned as the ultimate output. 
 
Particle swarm optimization (PSO) 
PSO draws its inspiration from the realm of artificial life research 
(Chen et al., 2023). The fundamental operation of PSO commences 
with the random initialization of a swarm comprising ′𝑁′ particles 
within a population. Each particle's position within this swarm 
corresponds to a prospective solution within a D-dimensional search 
space (Adamu et al., 2021). The process of initializing particle 
positions is governed by Equation 3. 
 

    𝑋𝑖,𝑑 = 𝐿𝑑
𝑚𝑖𝑛 + 𝑟𝑖

𝑑(𝑈𝑑
𝑚𝑎𝑥 − 𝐿𝑑

𝑚𝑖𝑛)              (3)                                         

 

where 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑑 = 1,2, . . . , 𝐷, 𝐿𝑑
𝑚𝑖𝑛 represents the 

lower bound of the search space for 𝑑𝑡ℎ  dimension, 𝑈𝑑
𝑚𝑎𝑥 represents 

the upper bound of the search space for 𝑑𝑡ℎ  dimension, and 𝑟𝑖
𝑑 

represents a random number in the range [0,1]. The velocity, which 
plays a crucial role in determining both the speed and direction of a 
particle's movement within the search space, is initialized following 
Equation 4. 
 

   𝑉𝑖,𝑑 = [𝐿𝑑
𝑚𝑖𝑛 + 𝑟𝑖

𝑑(𝑈𝑑
𝑚𝑎𝑥 − 𝐿𝑑

𝑚𝑖𝑛) − 𝑋𝑖,𝑑]/2          (4)                                            

 
where 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑑 = 1,2, . . . , 𝐷. A particle's position is 
subject to modification based on a combination of factors, including its 
inertia, personal best position, and the swarm's best position 
(Houssein et al., 2021). In this context, D denotes the dimensionality 

of the search space, 𝑥𝑖𝑑
𝑘  represents the position of the 𝑖𝑡ℎparticle 

along the  𝑑𝑡ℎdimension for the 𝑘𝑡ℎ generation, and 𝑉𝑖𝑑
𝑘  signifies the 

velocity of the 𝑖𝑡ℎparticle along the 𝑑𝑡ℎdimension for the 𝑘𝑡ℎ 
generation. The updates to both velocity and position for each particle 
within the population adhere to the equations outlined in (5) and (6) 
respectively. 
 

   𝑉𝑖𝑑
𝑘+1 =  Ω𝑉𝑖𝑑

𝐾 +  𝐶1𝑟1
𝑘(𝑝𝑏𝑒𝑠𝑡𝑖𝑑

𝑘 − 𝑥𝑖𝑑
𝑘 ) + 𝐶2𝑟2

𝑘(𝑔𝑏𝑒𝑠𝑡𝑑
𝑘 −

 𝑥𝑖𝑑
𝑘 )                            (5)    

    𝑋𝑖𝑑
𝑘+1 =  𝑥𝑖𝑑

𝑘  + 𝑣𝑖𝑑
𝑘+1                                         (6)                                                                   

   𝑝𝑏𝑒𝑠𝑡𝑖
𝑡+1 = {

𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑋𝑖
𝑘+1  𝑖𝑓 𝑓(𝑋𝑖

𝑘+1 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘)

           (7)                                  

 

Here, within the equations, 𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑘  and '𝑔𝑏𝑒𝑠𝑡𝑑

𝑘 denote the particle's 

personal best position and the swarm's best position within the D-

dimensional space for the 𝑘𝑡ℎ generation, respectively. The symbol 

"Ω" represents the inertia weight, while "𝐶1" and "𝐶2" represent the 
acceleration constants. These constants play a role in attracting the 
particles towards 'pbest' and 'gbest' respectively (Alzaqebah, 
Jawarneh, et al., 2021). When these constants are multiplied by 
random numbers "𝑟1" and "𝑟2" (within the range [0,1]), they introduce 
controllable stochastic influences on the swarm's velocity (Alzaqebah, 
Jawarneh, et al., 2021). 
 
Salp swarm optimization (SSA) 
Salps, marine organisms characterized by their cylindrical body shape, 
are known to aggregate in the ocean, intentionally forming groups or 
chains as they float (Mirjalili et al., 2017). Scientific studies confirm that 
this collective behavior among Salp swarms enhances their overall 
mobility and significantly improves their ability to efficiently locate food 
sources. The SSA, introduced by Mafarja & Mirjalili, (2017) leverages 
this natural behavior to address various optimization problems. In SSA, 
the swarm of salps collaborates to create a chain-like structure, 
facilitating their exploration of the search space in search of target 
locations or food sources (Mirjalili et al., 2017). This chain formation is 
mathematically represented by dividing the swarm into two key 
components: the leader and the followers. The leading Salp consistently 
occupies the front position, guiding the other followers within the chain 
(Tubishat et al., 2020). 
Let's consider a collection of 𝑛 Salps denoted as 𝑌 =
 {𝑌1, 𝑌2, . . . , 𝑌𝑖 , . . . . 𝑌𝑛 }, where each Salp is represented by a d-

dimensional vector (𝑌𝑖 =  𝑦1, 𝑦2, . . . , 𝑦𝑑). The target vector or food 

source is denoted as 𝐹𝑠. The position of the leader Salp is updated 
according to (8). 
 

𝑌1 {
𝐹𝑠 +  𝛼1((𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)𝛼2 + 𝑌min) 𝛼3 ≥ 0

𝐹𝑠 −  𝛼1 ((𝑌𝑚𝑎𝑥 −  𝑌𝑚𝑖𝑛)𝛼2 + 𝑌𝑚𝑖𝑛) 𝛼3 < 0
      (8)                                          

 
In this context, we work with random values denoted as 𝛼1, 𝛼2, and 𝛼3, 
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and 𝑌1 signifies the location of the leading Salp. 𝑌𝑚𝑎𝑥, and 𝑌𝑚𝑖𝑛 are 
used to represent the upper and lower boundaries for each Salp, 
respectively. Within the SSA framework, the equilibrium between 
exploration and exploitation is controlled by 𝛼1, and its value undergoes 
updates in each cycle according to the equation (9). 

𝛼1 =  2𝑒
−(

4∗𝑐𝑖𝑡𝑒𝑟
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

)2

                  (9)                                                                 
 
In this context, we work with the variables 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 , representing the 
total number of iterations, and 𝑐𝑖𝑡𝑒𝑟 , which denotes the current iteration 

in progress. The positions of the follower Salps, except for 𝑌1, are 
improved following Newton's law of motion, as detailed in equation (10). 

𝑌𝑗(𝑖) =  
1

2
𝑎𝑡2 + 𝑣𝑜𝑡             (10)                                                                     

 
In this scenario, our variable 𝑗 spans from 2 𝑡𝑜 𝑛 where 𝑛 signifies a 

certain value. Within this context, 𝑌𝑗(𝑖) designates the 𝑖𝑡ℎ dimension of 

the𝑗𝑡ℎ  Salp. Furthermore, the initial velocity, time, and acceleration, 

denoted as 𝑣𝑜, 𝑡, and 𝑎 respectively, are determined through 
computations based on equation (11). 
 

𝑎 =  
𝑣𝑒𝑛𝑑

𝑣𝑜
 𝑤ℎ𝑒𝑟𝑒 𝑣 = 

𝑦− 𝑦𝑜

𝑡
                (11)                                                

 
In the context of optimization problems, the concept of 'time' 
corresponds to the count of iterations, with the initial velocity initialized 
to zero. Consequently, the positions of the follower Salps are adjusted 
using a modified equation as outlined in (12). 

               𝑌𝑗(𝑖) =  
1

2
 (𝑌𝑗(𝑖)  + 𝑌𝐽−1(𝑖)                    (12)                                               

 
The SSA follows a systematic process. Initially, a random population is 
generated, and among the Salps, one is identified as the most suitable 
solution for the problem, akin to a food source (Tubishat, Ja, et al., 
2021). Subsequently, the remaining Salps adjust their positions to 
approach this identified food source. The location of this food source is 
updated with each iteration (Tubishat, Ja, et al., 2021). 
 
Firefly Algorithm (FA) 
The Firefly Algorithm (FA) draws its inspiration from the flashing 
behavior of fireflies. Developed by Yang, (2009), this algorithm has 
gained widespread recognition as an effective optimization technique 
applied across various domains, including science and engineering. The 
flashing behavior in fireflies serves purposes such as attracting mates or 
prey, and in the context of the FA, it is harnessed to evaluate potential 
solutions to optimization problems (Zouache & Ben Abdelaziz, 2018). 
The algorithm commences by establishing a population of fireflies 
randomly distributed within the search space. Each firefly is assigned a 
brightness value based on its fitness, with brighter fireflies signifying 
superior solutions (Dash et al., 2019). Fireflies are naturally inclined to 
gravitate towards those that are brighter in the population, and this 
attraction is governed by the firefly's attractiveness, which is directly 
linked to its brightness and inversely related to the distance separating 
two fireflies, mirroring the behavior of light intensity diminishing with 
distance (Dash et al., 2019). The algorithm concludes when specific 
stopping criteria, such as reaching a maximum number of iterations or 
achieving a predefined fitness threshold, are met (Dash et al., 2019). 
 
The development of FA is based on three foundational principles, it is 
essential to understand these key rules (Jati & Manurung, 2013). Firstly, 
all fireflies are inherently attracted to each other, irrespective of their 
gender (Jati & Manurung, 2013). Secondly, their level of attractiveness 
is contingent upon their brightness, and this attractiveness diminishes 
as the distance between them increases (Jati & Manurung, 2013). 
Consequently, it is the less luminous fireflies that tend to gravitate 
towards their brighter counterparts. Thirdly, a firefly's brightness is 
influenced by the specific form of the objective functions used (Jati & 
Manurung, 2013). The Firefly Algorithm operates as a population-based 

SI algorithm, with each firefly representing a potential solution within the 
search space. When delving into the FA, two critical aspects warrant 
consideration: the variance in brightness intensity and the formulation of 
attractiveness. In the conventional FA, attractiveness primarily relies on 
brightness, which is intricately linked to the objective function (Jati & 
Manurung, 2013). 
 
Hence, the brightness of a given firefly denoted as 𝐼(𝑥) can be 

expressed as proportional to 𝑓(𝑥) at a specific location 𝑥. Similarly, the 

attractiveness, represented by 𝛽, is relative and contingent on the 

distance, denoted as 𝑟𝑖𝑗, between firefly 𝑖 and 𝑗. Consequently, 

attractiveness varies from one firefly to another solely based on their 
respective distances. This relationship between light intensity and 
distance can be mathematically defined using Equation (13). 

         𝐼 =  𝐼𝑂𝑒−𝛾𝑟2𝑖𝑗                                  (13)                       

 
In this context, 𝐼𝑂 represents the initial light intensity. The attractiveness, 

denoted as 𝛽, of a firefly is intricately linked to its brightness. This 
relationship can be quantified as demonstrated in Equation 14: 

        𝛽 =  𝛽𝑂𝑒−𝛾𝑟2𝑖𝑗                                     (14)                          
 
Here, 𝛽𝑂  signifies the attractiveness of the firefly when 𝑟 =  0. The light 

absorption coefficient, represented as 𝛾, is a constant and remains fixed 
at 1.0 in the context of FA. To calculate the distance between two 
fireflies, 𝑖, and 𝑗, situated at 𝑥𝑖 and 𝑥𝑗 , respectively, the Cartesian 

distance is determined using Equation 15: 
 

𝑟𝑖𝑗 = ||𝑥𝑖 −  𝑥𝑗|| =  √(𝑥𝑖 − 𝑥𝑗)2 +  (𝑦𝑖−𝑦𝑗)2          (15) 

                                          
The motion of firefly 𝑖 towards a more attractive firefly 𝑗 is computed 
using Equation 16, as follows: 

𝑥𝑖 =  𝑥𝑖 +  𝛽𝑂𝑒−𝛾𝑟2𝑖𝑗(𝑥𝑗− 𝑥𝑖)2 +

𝛼(𝑟𝑎𝑛𝑑 0.5)                                       (16)  
 
In Equation 15, the second term corresponds to the attraction force, 
while the third term represents a randomizing factor controlled by α, 
which falls within the range of [0,1]. The constant 𝛽𝑂  is consistently set 
to 1, and rand signifies a random number within the interval [0,1]. In the 
FA, the parameter α is configured to introduce variability in the solutions. 
The parameter γ, which characterizes the degree of attractiveness 
variation, typically spans values between 0.01 and 100 across various 
applications. 
 
Related Literary Works 
The advent of DNA Microarray technology has empowered scientists to 
concurrently examine the expression levels of numerous genes. 
Microarray gene selection, conversely, involves identifying the most 
pertinent genes while eliminating redundant and inconsequential ones. 
A critical application of Microarray data analysis lies in cancer 
classification. Nevertheless, the challenge of dealing with high-
dimensional data poses a formidable obstacle when it comes to 
classifying gene expression. A brief review of the literature about 
improvements in different single and hybrid SI algorithms for microarray 
gene selection is presented in this section. 
 
In the realm of cancer classification research, Tang et al., (2005) 
introduced the Hybrid Particle Swarm Optimization-Support Vector 
Machine (PSO-SVM) and Artificial Bee Colony-Support Vector Machine 
(ABC–SVM) methods, aimed at selecting the most informative genes for 
accurate classification. Among these two innovative approaches, it was 
observed that the ABC-SVM method outshone the others, achieving an 
impressive 88% accuracy rate in classifying cancer types. These 
findings hold significant promise for improving the precision of cancer 
diagnoses and treatment strategies. 

https://dx.doi.org/10.4314/swj.v19i3.32
http://www.scienceworldjournal.org/
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Another noteworthy development in gene expression data analysis 
comes from Zhang et al., (2018), who identified the Support Vector 
Machine based on Recursive Feature Elimination and Parameter 
Optimization (SVM-RFE-PO) as a highly effective feature extraction 
technique for classifying gene expression data. Furthermore, their 
research unveiled the potential of the Support Vector Machine based on 
Recursive Feature Elimination and Particle Swarm Optimization (SVM-
RFE-PSO) algorithm in extracting essential genetic information from 
expression data. This breakthrough holds considerable importance as it 
aids in unraveling the intricate relationships between genes and cancer, 
facilitating a deeper understanding of disease mechanisms and 
enhancing clinical diagnostic accuracy.  
 
Jain et al., (2018) embarked on a comprehensive evaluation of their 
proposed model using 11 benchmark microarray datasets 
encompassing various cancer types. Their model outperformed seven 
other well-established methods, demonstrating superior classification 
accuracy and gene selection capabilities in most scenarios. 
Remarkably, it achieved remarkable classification accuracy rates of up 
to 100% for seven out of the eleven datasets, while utilizing only a small-
sized prognostic gene subset (up to 1.5%). These findings underscore 
the potential of their model in advancing cancer classification research 
and applications. 
 
Utami & Rustam, (2019) delved into the realm of breast cancer detection 
using innovative techniques. They employed Particle Swarm 
Optimization-Support Vector Machine (PSO–SVM) and Artificial Bee 
Colony- Colony-support vector machine (ABC–SVM) methods to detect 
breast cancer symptoms. Interestingly, their research indicated that the 
ABC–SVM method surpassed the PSO–SVM method, boasting an 
accuracy rate of 88%. Such findings suggest that the ABC–SVM method 
holds promise for clinical experts seeking to enhance breast cancer 
stage classification, ultimately leading to more effective treatments and 
improved patient outcomes. 
Additionally, Khurma et al., (2020) introduced multiple binary versions 
based on the Moth Flame Optimization (MFO) algorithm to address the 
feature selection (FS) problem in medical datasets. They ingeniously 
incorporated chaotic maps into their approach to enhance the MFO's 
performance in the feature space. The results of their study, which 
featured 23 medical datasets from esteemed repositories, showcased 
that the chaotic operators had a remarkable impact on improving the 
standard BMFO's performance when optimizing feature search spaces. 
This research sets the stage for further exploration of metaheuristic-
based wrapper methods, suggesting the possibility of proposing new 
modification strategies and exploring different metaheuristic algorithms 
for feature space examination. 
On a different note, Wu & Guan, (2007) introduced a novel watermarking 
algorithm founded on chaotic maps. This unique approach utilized one 
map to encrypt the embedding position and another to determine the 
pixel bit for embedding within a host image. An intriguing aspect of this 
scheme was its dependence solely on a private key for watermark 
extraction, rendering it a blind watermarking scheme. Extensive 
simulations confirmed the scheme's robustness against various signal 
processing operations and geometric attacks, underscoring its potential 
as a secure and reliable watermarking technique. 
 
The Proposed Method 
In this section, the paper provides a comprehensive explanation of the 
operational principles underlying the logistic map, the gene selection 
methods earlier proposed, and an overview of the methods' overall 
architecture. 
 
Principles of the logistic chaotic map 
The Logistic chaotic map works by iteratively generating a sequence of 
numbers based on a nonlinear mathematical function known as the 

Logistic map (Liu et al., 2022). Here's a simplified explanation of how it 
works: 

i. Initialization: Start with an initial value (seed) between 0 and 
1. This initial value serves as the starting point for the chaotic 
sequence. 

ii. Iteration: Apply the Logistic map formula iteratively to 
generate the sequence of numbers. The formula for the 
Logistic map is typically expressed as: 

𝑞𝑖
𝑡+1 =  𝑎𝑞𝑖

𝑡(1 − 𝑞𝑖
𝑡) 

• 𝑞𝑖
𝑡+1 represents the next value in the sequence 

• 𝑞𝑖
𝑡  is the current value 

• 𝑎 is a parameter known as the control parameter? 

It determines the behavior of the chaotic map. 
iii. Repeat: Continue iterating the formula, where each new 

value 𝑞𝑖
𝑡+1 becomes the current value 𝑞𝑖

𝑡  for the next 

iteration. 
iv. Chaotic Behaviour: Depending on the value of the control 

parameter "𝑎", the Logistic map exhibits chaotic behavior. 

This means that even small changes in the initial seed or "𝑎",  
can lead to vastly different sequences of numbers. Chaotic 
sequences are characterized by their sensitivity to initial 
conditions, unpredictability, and apparent randomness. 

 
The Proposed Gene Selection Method 
Figure 3 illustrates the overarching framework of the proposed methods. 
In this depiction, an initial cancer gene dataset undergoes preprocessing 
to prepare it for subsequent analysis. The preprocessed data is 
subsequently employed as input for a designated SI algorithm, namely 
PSO, SSA, or FA, and is initialized using the logistic chaotic map. The 
subsequent steps align with the conventional SI algorithm process, with 
the notable distinction that we incorporate KNN and MLP separately for 
performance evaluation in addressing the specific task at hand. 

 
Figure 3: General Architecture of the Proposed Methods 
 
Dataset description 
This research evaluate the performance of our developed gene selection 
techniques using two distinct microarray datasets. Our selected datasets 
are the Colon and Ovarian cancer datasets, both widely employed in 
previous research as standard benchmarks for evaluating competing 
algorithms. These datasets are publicly accessible on the website 
https://figshare.com/. A summary of the dataset characteristics is 
presented in Table 1, which also includes additional notations (𝑥, 𝑦) to 

indicate the distribution of instances in each class. In this notation, ′𝑥′ 
signifies the number of instances in the positive class (tumor or 
malignant), while ′𝑦′ represents the number of instances in the negative 
class (normal or benign). 
 
 
 
 

https://dx.doi.org/10.4314/swj.v19i3.32
http://www.scienceworldjournal.org/
https://figshare.com/
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Table 1: Overview of the Microarray Cancer Datasets used 

Datasets Instances Features Class 

Colon Cancer 62 2000 2 (40,22) 

Ovarian Cancer 253 15154 2 (162,91) 

 
Learning Algorithms 
Classifiers are essential in microarray gene selection for evaluating and 
optimizing the selection of genes to distinguish between different sample 
categories, such as benign and malignant groups. They enable the 
assessment of gene subsets' performance, ranking of genes based on 
their relevance, and systematic exploration of different feature 
combinations. Classifiers also help ensure model generalization to 
unseen data and are employed in optimization processes to identify the 
most informative gene subset while minimizing dimensionality.  
Thus, in this study, two distinct learning algorithms were utilized: KNN 
(K-Nearest Neighbors) machine learning algorithms and MLP (Multilayer 
Perceptron) to assess and compare their performance in the context of 
microarray gene selection. This evaluation aims to test the effectiveness 
of the developed gene selection methods. 
KNN and MLP have been selected individually based on their respective 
strengths and suitability for the task. KNN is chosen for its simplicity and 
ability to handle nonlinear data patterns effectively (Adamu et al., 2021; 
Isuwa et al., 2022). It's a non-parametric algorithm that doesn't make 
strong assumptions about the underlying data distribution, making it 
suitable for gene expression data with complex relationships (Tubishat, 
Ja’afar, et al., 2021). 
On the other hand, MLP, or Artificial Neural Network, is selected due to 
its capacity to model intricate and nonlinear relationships within data 
(Pantic et al., 2023). ANNs can learn from large datasets and capture 
hidden patterns, making them well-suited for gene expression analysis 
where the interactions between genes can be highly intricate (Woldseth 
et al., 2022). 
 
Result Presentation and Analysis 
Experimental setup 
All experiments in this study are carried out using the Python 
programming language within a Jupyter Notebook integrated 
development environment. The experiments are executed on a 
computer equipped with an Intel(R) Core TM i5-5300U CPU running at 
2.30GHz and 8.00 GB of RAM. 
 
Logistic Chaotic Map 
The Logistic chaotic map finds frequent application in a range of 
optimization and search algorithms, spanning domains like image 
encryption (Liu et al., 2022), multimedia security (Rupa et al., 2023), 
microarray cancer analysis (Nouri-Moghaddam et al., 2021), and more. 
It stands out as a favorable choice for several reasons. Firstly, it exhibits 
strong chaotic properties, ensuring unpredictability and a broad 
exploration of the search space, which is crucial in optimization tasks 
(Adamu et al., 2021; Yang et al., 2022). Secondly, its simple 
mathematical formulation makes it computationally efficient, reducing 
the algorithm's computational burden (Da Silva & Gertrudes, 2022).  
 
Moreover, the Logistic map offers a balance between ergodicity and 
sensitivity, striking a harmonious trade-off between thorough exploration 
of the solution space and quick convergence to optimal or near-optimal 
solutions (Rupa et al., 2023). These qualities collectively render the 
Logistic chaotic map a reliable and efficient choice in various 
optimization and search algorithms, contributing to its widespread 
adoption. Other chaotic maps include the Circle, Chebyshev, Gauss, 
Sine, and Piecewise among others (Arora & Singh, 2017). 
 
Therefore, this work utilized the logistic chaotic map to enhance the 
initialization approach in PSO, SSA, and FA. This involves substituting 
the conventional random variables with the logistic chaotic map, 

contributing to improved initialization strategies in these algorithms. 
 
Fitness Function  
In pursuit of the overarching objective of gene selection, which aims to 
optimize classification accuracy while minimizing the number of chosen 
features, it is imperative to establish a method for quantifying the merit 
of potential solutions. This quantification is achieved through a fitness 
function, a mathematical construct employed to evaluate the excellence 
of solutions in the context of SI optimization problems (Naseri & 
Hasheminejad, 2019). The fitness function serves as a gauge of how 
effectively a particular solution aligns with the optimization objectives of 
the task at hand problems (Naseri & Hasheminejad, 2019). It assigns a 
fitness score to each candidate solution, thereby guiding the 
optimization algorithm toward the discovery of superior solutions. In light 
of these considerations, Equation 17 defines the fitness function 
employed in this study for all the SI algorithms under examination. 
 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝛼∆𝑅(𝐷) + 𝛽
|𝑌|

|𝑇|
                (17) 

                                        
In this context, ∆𝑅(𝐷)  denotes the error rate of the classifier, with |𝑌| 
representing the dimensionality of the chosen gene subset and |𝑇| 
signifying the total number of genes in the dataset. The parameter '𝛼′ 
takes on values within the range [0,1] and determines the impact of the 
classifier's error rate. Conversely, ′𝛽′ is equivalent to (1 − 𝛼) and 
signifies the level of importance assigned to gene reduction. 
 
Transfer Function 
In this study, the three SI algorithms have been transformed into a 
unified single-objective framework and discretized to optimize the 
balance between classification accuracy and the count of selected 
genes. To accomplish this, a Transfer Function (TF) is employed to 
convert continuous values into binary representations, distinguishing 
between selected and unselected genes. Among the options within the 
S-shape family, the sigmoid function is selected as the threshold function 
(Kalra et al., 2022). 
 
This choice is motivated by its continuous and differentiable properties, 
clear probabilistic interpretation, and robustness in handling noise and 
outliers, as observed by (Norfadzlia et al., 2022). Utilizing the sigmoid 
function serves to guide the behavior of the search agents within the 
swarm, and its mathematical representation is as Equation (18) and (19): 

𝑆(𝑥𝑖
𝑑) =

1

1+𝑒−𝑥𝑖
𝑑                                 (18)                                                 𝑥𝑖

𝑑 =

{
1, 𝑖𝑓 𝑆(𝑥𝑖

𝑑)  >  ⍺,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                    (19)                                                                      

 
Here, ⍺ is a random variable drawn from a uniform distribution between 

0 and 1, 𝑥 belongs to the set of real numbers and represents a potential 

solution, and 𝑑 𝑠ignifies the continuous value of the gene at a specific 
moment. 
 
Evaluation Metrics 
The assessment of the proposed gene selection methods encompasses 
the following performance metrics: 

i. Mean classification accuracy: This metric determines the 
average classification accuracy by executing the algorithm 
′𝑃′ times and averaging the results. 

ii. F1 score: The F1 Score assesses a model's performance by 
considering both precision and recall, providing a balanced 
evaluation of its predictive abilities. 

iii. Mean number of selected genes: This metric calculates the 
average count of selected genes after running the algorithm  
′𝑃′ number of times. 

 
In addition to these evaluation measures, the research also presents the 
standard deviation of the competing methods and conducts the T-test 

https://dx.doi.org/10.4314/swj.v19i3.32
http://www.scienceworldjournal.org/
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(William, 1908). These supplementary analyses aim to demonstrate the 
stability of the competing methods and evaluate potential statistical 
differences among them. 
 
Parameters and Settings 
The performance of SI algorithms relies on hyperparameters. These 
hyperparameters or configurations are set to customize the algorithm for 
a specific problem. The choice of appropriate hyperparameter values 
can significantly impact the quality of the algorithm's solutions. For 
instance, in addition to factors like swarm size and the number of 
generations, the PSO algorithm involves settings like acceleration 
coefficients, which influence how particles move toward their personal 
or global best positions. These settings are crucial for ensuring effective 
exploration of the search space and convergence to optimal solutions.  
 
Table 2 provides a comprehensive list of both general and algorithm-
specific hyperparameters used in this study, along with their respective 
values. Algorithm-specific hyperparameters were determined following 
the work of Too, (2021), while general hyperparameters like swarm size, 
maximum iterations, fitness function, K value in KNN, number of hidden 
layers and neurons in MLP, and the number of runs (P) were intuitively 
selected. 
 
Table 2: Parameters and Settings Utilized 

 Hyperparameters Parameter values 

General 

Swarm Size 20 

Number of 
generation/iterations 

20 

Train-Test Split 70-30 

′𝛼′ 0.99 

′𝛽′ 0.01 

Dimension (𝐷) Gene count in 
datasets 

𝐾 value in KNN 5 

 Number of runs (𝑃) 10 

 Number of hidden layers 
(MLP) 

32 

 Number of neurons (MLP) 8 

 Momentum (MLP) 0.90 

 Solver (MLP) Adam 

 𝑎 (Logistic map) 3.7 

 𝑞𝑖 (Logistic map) 0.9 

PSO 

𝐶1 2 

𝐶2 2 

𝑊 0.9 

SSA None  

FA 

Alpha 2 

Beta 3.5 

Gamma 4 

Theta 0.97 

 
RESULTS AND DISCUSSIONS 
As mentioned in earlier sections of this study, several metrics, including 
classification accuracy, F1-measure, standard deviation (SD), and the 
count of selected genes were employed to assess and compare the 
performance of the competing (proposed) algorithms. It is worth noting 
that, in all experiments, the study initially performed gene selection by 
choosing the top-performing 1000 genes using the Mutual Information 
(MI) statistical tool. This approach aligns with the research of various 
authors, such as Almugren & Alshamlan, (2019a, 2019b), who have 

demonstrated that employing a filter method like MI for initial gene 
selection yields improved performance and reduces computational time 
compared to using all available genes. 
 
Additionally, the outcomes of the experiments presented in this section 
are reported in the following format: 𝑥 ± 𝑦, where ′𝑥′  denotes the 
average classification accuracy or F1-measure (expressed as a 
percentage), and ′ ± 𝑦′ indicates the SD value. Furthermore, 
noteworthy results, representing the best performance within each 
group, are denoted using boldface and underline formatting. 
 
While the gene selection process is often considered a multiobjective 
optimization challenge, taking into account both classification 
accuracy/F1 measure and the number of selected genes 
simultaneously, this study places a higher emphasis on classification 
accuracy. This emphasis stems from the crucial role of accurate 
predictive models in applications critical to human life, such as 
healthcare. 
 
Experimental I: Results and Discussions from the Colon Cancer 
Dataset 
Table 3 provides the results obtained by employing the Colon cancer 
dataset, featuring statistics such as the count of selected genes, 
classification accuracy, F1-score, and SD. These findings stem from 
experiments conducted with both the KNN and MLP learning algorithms. 
The table is structured to facilitate a vertical reading, with accuracy and 
its corresponding SD for both KNN and MLP recorded in the table's first 
section. Meanwhile, the latter portion of the table contains the F1 
measure and its associated SD for both KNN and MLP. Notably, only a 
single count of selected genes is documented for both experiments since 
genes selected by a specific logistic-chaotic SI algorithm are employed 
for final classification using both the KNN and MLP learning algorithms. 
 
Analysis of the first section of Table 3, which pertains to accuracy, 
reveals that the KNN machine learning algorithm consistently 
outperforms the MLP algorithm in terms of classification accuracy across 
all three competing algorithms. This superiority of KNN could be 
attributed to its capacity to capture intricate data relationships, especially 
when decision boundaries exhibit non-linearity. Additionally, KNN's 
robustness in handling noisy data may contribute to its superior 
performance. 
Turning attention to the latter section of the table concerning F1-
Measure, it is evident once more that KNN excels significantly when 
compared to the MLP machine learning algorithm across all competing 
algorithms. 
 
Based on the findings presented in Table 3, it is evident that the KNN 
algorithm outperforms the MLP algorithm. As a result, KNN has been 
chosen for further comprehensive comparison and analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Results Obtained from using the Colon Cancer Dataset 

https://dx.doi.org/10.4314/swj.v19i3.32
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Table 4 provides a comprehensive overview of the results achieved 
exclusively through the use of the KNN learning algorithm. The table is 
designed for vertical interpretation as in Table 3, with the first section 
showcasing the performance of competing algorithms in terms of 
accuracy, while the subsequent section shows their performance 
concerning the F1 measure. 
 
Observing the results, it becomes apparent that, among the three 
competing algorithms, the Logistic Chaotic-Firefly Algorithm-KNN (LC-
FA-KNN) excels across all metrics. This includes accuracy, registering 

an impressive 73.68%, the F1 measure, with a remarkable 82.76%, and 
the selection of the least number of genes, totaling 476.20. The superior 
performance of LC-FA-KNN can be attributed to the unique qualities of 
the Logistic Chaotic-Firefly Algorithm (LC-FA), which tends to explore 
the solution space by guiding fireflies towards superior solutions while 
also accommodating local search around the current best solutions. 
Additionally, the FA demonstrates robustness against noise and local 
optima, thanks to its adept balance between exploration and 
exploitation, enabling it to escape local optima by maintaining population 
diversity. 
 

 
Table 4: Comparison of Competing Algorithms Based on Accuracy, F1 Measure, SD, and Number of Selected Genes, using the Colon Cancer 
Dataset. 
 

Dataset Algorithms Accuracy & Standard 
Deviation (SD) 

F1_Measure & Standard 
Deviation (SD) 

No. Features 

Colon Cancer 
KNN KNN 

LC-PSO 72.10±2.5408 81.93±1.3332 533.60 

 LC-
SSA 

68.95±1.6634 80.28±0.8728 586.10 LC-
FA 

73.68±0.0000 82.76±0.0000 476.20 

Subsequently, a T-test was conducted on the accuracy and F1 measure 
results of the competing algorithms to assess for statistical distinctions. 
In this analysis, a p-value below 0.05 indicates the presence of a 
statistically significant difference among the competing algorithms. 
Conversely, if the p-value exceeds 0.05 (highlighted in bold), it suggests 
the absence of a significant difference.  
 
Tables 5 and 6 present the results of the T-test for accuracy and the F1 
measure, respectively. From both tables, the p-values calculated for the 
comparisons between LC-PSO Vs. LC-SSA, as well as LC-PSO Vs. LC-
FA, are notably less than 0.05. This signifies the existence of a 
statistically significant difference between the compared algorithms. 

However, it's noteworthy that the p-value derived from the comparison 
between LC-SSA Vs. LC-FA exceeds 0.05. This suggests a lesser 
degree of statistical significance between the compared algorithms, 
implying a higher likelihood that the observed results could be attributed 
to random variation. 
 
Note that the empty cells within the tables indicate redundancy in the 
comparisons or the unnecessary evaluation of an algorithm against 
itself. 
 
 

 
Table 5: Statistical Analysis Result of Accuracy using The T-Test on the Competing Algorithms Using the Colon Cancer Dataset (p_values > 0.05 
are bolded) 

  Competing Algorithms 

Competing Algorithms 

  LC-PSO LC-SSA LC-FA 

LC-PSO - 0.00481102818 0.08112618885 

LC-SSA - - 8.53805E-06 

LC-FA - - - 

Table 6: Statistical Analysis Result of F1 Measure Using the T-Test on the Competing Algorithms using the Colon Cancer Dataset (p_values > 0.05 
are bolded) 

  Competing Algorithms 

Competing Algorithms 

  LC-PSO LC-SSA LC-FA 

LC-PSO - 0.004811028 0.081126189 

LC-SSA - - 8.53805E-06 

LC-FA - - - 

Dataset Algorithms Accuracy & Standard Deviation (SD) F1_Measure & Standard Deviation (SD) No. 
Genes 

Colon 
Cancer 

 KNN MLP KNN MLP  

LC-PSO 72.10±2.5408 57.89±4.2989 81.93±1.3332 71.09±3.8603 533.60 

LC-SSA 68.95±1.6634 62.31±9.9603 80.28±0.8728 71.96±3.6583 586.10 

LC-FA 73.68±0.0000 59.47±7.8650 82.76±0.0000 72.09±5.7557 476.20 

https://dx.doi.org/10.4314/swj.v19i3.32
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Experimental II: Results and Discussion from the Ovarian 
Cancer Dataset 
 
Table 7 displays the outcomes of experiments conducted with the 
Ovarian cancer dataset. Similar to Table 3, various aspects are 
assessed, including classification accuracy, the F1 measure, the 
count of selected genes, and the standard deviation (SD). The final 
classification task is performed using the KNN and MLP algorithms, 
applied to the gene subset chosen by the specific logistic-chaotic 

SI algorithm. 
 
Furthermore, the table is organized for vertical reading, with the 
initial section presenting results related to classification accuracy 
and its corresponding SD, while the latter section provides the F1 
measure and its corresponding SD. As indicated in the prior 
section, only a single count of the selected genes is presented. This 
is due to the utilization of the KNN and MLP algorithms to evaluate 
the quality of genes chosen by the specific algorithm. 

 
Table 7: Results Obtained from using the Ovarian Cancer Dataset 
 
 

 
Analyzing the results presented in the first portion of Table 7, it is 
apparent that the KNN machine learning algorithm  
once again demonstrates significant superiority over the MLP in 
all of the considered algorithms. As previously stated in the earlier 
sections, this enhanced performance of the KNN algorithm can be 
attributed to various factors, including its proficiency in handling 
noisy data and its simplicity, among other attributes. Furthermore, 
a comparison focusing on the F1 measure reaffirms the 
dominance of the KNN machine learning algorithm, consistently 
outperforming the MLP across all competing algorithms. Based on 
the findings presented in Table 7, it is evident that the KNN 
algorithm outperforms the MLP algorithm. As a result, KNN has 
been chosen for further comprehensive comparison and analysis. 

 
Table 8 provides a more comprehensive and in-depth 
examination of the classification accuracy results, the F1 
Measure, the SD, and the count of selected genes when utilizing 
the Ovarian cancer dataset. As previously mentioned, results are 
exclusively presented for the KNN machine learning algorithm 
due to its consistent and pronounced superiority over the MLP 
algorithm. The table maintains a vertical format for ease of 
interpretation, with the first section illustrating the performance of 
the three algorithms concerning classification accuracy, while the 
latter section presents their performance concerning the F1 
measure. 

 
Table 8: Comparison of Competing Algorithms Based on Accuracy, F1 Measure, SD, and Number of Selected Genes, using the Ovarian Cancer 
Dataset. 
 

Dataset Algorithms Accuracy & Standard 

Deviation (SD) 

F1_Measure & Standard 

Deviation (SD) 

No. Features 

Ovarian Cancer 

KNN KNN 

LC-PSO 91.98±0.9707 87.83±1.3998 603.60 

LC-SSA 90.66±0.4174 85.92±0.9269 798.70 

LC-FA 92.24±0.9699 88.28±1.7298 502.90 

 

Observing the results, it is again clear that among the three 
competing algorithms, the Logistic Chaotic-Firefly Algorithm-KNN 
(LC-FA-KNN) consistently outperforms across all metrics. This 
includes an impressive accuracy rate of 92.24%, an F1 measure 
score of 88.28%, and the selection of the fewest genes, totaling 
502.90. 
 
Following this, a T-test was carried out to evaluate potential 
statistical differences in the accuracy and F1 measure results 
among the competing algorithms. Tables 9 and 10 display the 
outcomes of the T-test for accuracy and the F1 measure, 
respectively. Both tables reveal that the p-values computed for the 

comparisons between LC-PSO Vs. LC-SSA and LC-SSA Vs. LC-
FA are notably less than 0.05. This indicates the presence of a 
statistically significant difference between these compared 
algorithms. However, it's worth noting that the p-value resulting 
from the comparison between LC-PSO Vs. LC-FA exceeds 0.05. 
This implies a lesser degree of statistical significance in the 
comparison between these algorithms, suggesting a higher 
possibility that the observed results may be attributable to random 
variation. 
 
 

Dataset Algorithms Accuracy & Standard Deviation (SD) F1_Measure & Standard Deviation 

(SD) 

No. 

Features 

Ovarian 

Cancer 

KNN MLP KNN MLP 

LC-PSO 91.98±0.9707 72.90±3.5761 87.83±1.3998 57.65±4.7354 603.60 

LC-SSA 90.66±0.4174 72.76±2.7783 85.92±0.9269 56.88±4.6657 798.70 

LC-FA 92.24±0.9699 70.00±12.5863 88.28±1.7298 58.77±6.1446 502.90 
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Table 9: Statistical Analysis Result of Accuracy using the T-Test 
on the Competing Algorithm using the Ovarian Cancer Dataset  
(p_values > 0.05 are bolded) 

 Competing Algorithms 

Competing 

Algorithms 

 LC-

PSO 
LC-SSA LC-FA 

LC-

PSO 
- 0.001882407 0.55202282 

LC-

SSA 
- - 0.00046087 

LC-

FA 
- - - 

 

 

Table 10: Statistical Analysis Result of F1 Measure using the T-
Test on the Competing Algorithm using the Ovarian Cancer 
Dataset  (p_values > 0.05 are bolded) 

 Competing Algorithms 

Competing 

Algorithms 

 LC-

PSO 
LC-SSA LC-FA 

LC-

PSO 
- 0.002483421 0.529106824 

LC-

SSA 
- - 0.001974217 

LC-

FA 
- - - 

 

In conclusion, combining the logistic map for chaotic initialization 
with the K-nearest neighbors (KNN) learning algorithm yields 
improved performance in a firefly optimization process for several 
reasons. Firstly, the logistic map introduces diversity into the initial 
solutions, fostering exploration of a broader solution space and 
aiding in escaping local optima due to its chaotic behavior. This 
diversity is especially valuable in optimization tasks where the 
search landscape is complex and multifaceted. Secondly, the KNN 
algorithm, known for its robustness in handling noisy and complex 
datasets, guides the optimization process by making informed 
decisions based on the proximity of solutions. By considering the 
similarity of solutions in the dataset, KNN can effectively steer the 
algorithm toward promising regions in the solution space, 
enhancing the overall convergence of the optimization process. 
The combination of chaotic initialization and KNN's intelligent 
guidance leverage their complementary strengths, ultimately 
leading to improved optimization outcomes. However, the 
effectiveness of this approach may vary depending on problem-
specific characteristics and the careful tuning of algorithm 
parameters.  
Finally, based on the No-Free Lunch theorem, which states that no 
one optimization algorithm performs best on all datasets, the LC-
FA-KNN can be seen as a worthy competitor for high dimensional 
gene selection problems. 
 
Experimental III: Hyperparameter Tuning of the LC-FA-KNN 
Hyperparameter tuning in SI algorithms is crucial to optimize 

their performance on specific problem domains. These 
hyperparameters significantly influence the algorithms' 
convergence speed, exploration-exploitation balance, and overall 
effectiveness. Tuning hyperparameters involves finding the best 
combination of settings that adapt the algorithm to the problem at 
hand.  
Different problems may require different hyperparameter 
configurations to achieve optimal results. Hyperparameter tuning is 
essential because using inappropriate or default values can lead to 
suboptimal performance, slow convergence, or even failure to find 
a solution. Through systematic tuning, SI algorithms can be tailored 
to the specific characteristics of the optimization problem, 
improving their efficiency and the quality of solutions they produce. 
 
In light of the preceding experiments, the top-performing algorithm, 
LC-FA-KNN, is chosen for further investigation. In this experiment, 
our focus will be specifically on assessing the impact of parameter 
tuning on its overall performance. Concentration is solely on 
classification accuracy, the number of selected genes, and the 
Ovarian dataset, conducting a rigorous analysis to determine how 
adjustments to key parameters of the algorithm may influence its 
effectiveness. The parameters above are fine-tuned using their 
respective values as shown in Table 11. Also, note that the 
selection of these values is solely based on our prevailing 
knowledge of the domain. Afterward, a statistical test is conducted 
on the results to check for statistical significance. 

 
Table 11: Parameters and Values used in Tuning of LC-FA-KNN 

 Hyperparameters Parameter values 

Test 

#1 

Swarm Size 30 

Number of 

generation/iterations 

50 

   

Test 

#1 

Swarm Size 50 

Number of 

generation/iterations 

100 

 

Table 12 presents the outcomes derived from experiments 
conducted with two parameter configurations, specifically (30,50) 
and (50,100). These experiments highlight the impact of adjusting 
the swarm size and the number of generations on the performance 
of LC-FA-KNN. This impact is substantiated by a notable 1.71% 
improvement in accuracy and an 11.5% reduction in the count of 

selected genes. 
Importantly, it is worth noting that augmenting both the swarm size 
and the number of generations, transitioning from 30 to 50 and 50 
to 100, respectively, directly contributes to enhanced performance. 
However, this improvement is accompanied by increased 
computational costs, as the number of search agents and 

https://dx.doi.org/10.4314/swj.v19i3.32
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generations escalates, consequently amplifying the number of 
fitness evaluations required. In future work, a comprehensive 
computational cost assessment alongside an in-depth examination 

of classification performance to furnish a more robust report can be 
conducted

. 
 
Table 12: Accuracy and Number of Genes Result from Fine-Tuning of LC-FA-KNN Parameters 

Dataset 
Algorith

m 

Accuracy 

& 

Standard 

Deviation 

(SD) 

For 

(30,50) 

# Features 

Accuracy 

& 

Standard 

Deviation 

(SD) 

For 

(50,100) 

# 

Feat

ures 

Ovarian 

Cancer 

LC-FA-

KNN 

93.16±0.5

500 

 

490.40 

 

 

93.95±0.68

00 

 

 

444.

57 

 

 

Moreover, it is worth mentioning that while the 0.84% increment 
from (50,100) to (30,50), i.e., from 93.16 to 93.95, might initially 
appear to be possibly due to chance, a statistical test on the results 
was conducted and obtained a p-value of 0.0110. This p-value is 

below the critical threshold of 0.05, signifying a statistically 
significant difference between the results, as demonstrated in 
Table 13. 

 
Table 13: Statistical Analysis Result of F1 Measure using the T-Test on LC-FA-KNN (30,50) Versus LC-FA-KNN (50,100) 

Dataset 
LC-FA-KNN (30,50) Vs LC-FA-

KNN (50,100) 

Ovarian 

Cancer 

 

0.0110132 

 

 

This experiment underscores the significance of hyperparameter 
tuning and its capacity to exert a substantial influence on the overall 
performance of optimization algorithms. In forthcoming research, 
an effort can be made to undertake further hyperparameter tuning 
to attain even more favorable results. 
 
Conclusion and Future Research Directions 
This research conducted a comprehensive performance 
comparison of three SI algorithms: Particle Swarm Optimization 
(PSO), Salp Swarm Algorithm (SSA), and Firefly Algorithm (FA). 
These algorithms were enhanced by incorporating the logistic 
chaotic map for initialization within the context of microarray cancer 
gene selection tasks. The study utilized two cancer datasets, 
specifically the Ovarian and Colon datasets. The study evaluated 
their performance using two machine learning algorithms: K-
nearest neighbor (KNN) and Multilayer Perceptron (MLP). 
Significantly, KNN consistently outperformed MLP across all 
metrics. The findings highlight the remarkable effectiveness of the 
logistic-chaos Firefly Algorithm when paired with KNN, denoted as 
LS-FA-KNN. Impressively, LS-FA-KNN consistently demonstrated 
superior performance among its peers, further improved through 
parameter tuning, achieving an exceptional overall accuracy rate 
of 93.95% while selecting 444 genes. This approach firmly 
establishes itself as a significant performer in gene selection tasks. 
One significant limitation of this study is its computational cost. In 
future investigations, there is the need to assess the computational 
expenses associated with these algorithms, particularly in light of 
their scalability challenges. As both population size and iteration 
count increase, the number of fitness evaluations grows 
substantially, leading to higher computational costs. While the 
study employed the mutual information filter method for preliminary 

gene selection, there is a clear need to explore strategies to 
mitigate these computational burdens. Additionally, it is imperative 
to explore the potential of other chaotic maps in conjunction with 
the SI algorithms considered in this research. This approach aligns 
with the 'No-one-size-fits-all' concept, acknowledging the influence 
of dataset characteristics and application domains on optimization 
algorithm performance. Lastly, further exploration of alternative 
machine learning algorithms, such as logistic regression and 
random forest, is warranted to uncover potential enhancements in 
performance. 
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