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ABSTRACT

The study investigated the depth of machine learning's capacity to
perform prediction tasks. The study used textual data, specifically
the daily actions of cryptocurrency (Bitcoin) dealers, which were
found in news articles. The data was employed merely because it
produced crowd knowledge of trade from News articles that
affected the market price trend. For the goal of making predictions,
4073 pre-processed, scraped news articles from CNBC's market
section website were analysed using the Latent Dirichlet Allocation
(LDA) model and its variation, the Supervised Latent Dirichlet
Allocation Model (sLDA). The document-term matrix and "k" with
different values ranging from 3 to 200 were used to train and test
the models. The study used four metrics for evaluation because of
our multinomial classification method: mean absolute percentage
error (MAPE), mean absolute error (MAE), root mean square error
(RMSE), and R2.The outcome demonstrated that for label
prediction for unlabeled new documents, the sLDA model
performed better than the LDA model plus (classification or
regression model). The response variable, which was tagged
"users' or traders' interest," was the daily closing price of each
corresponding document.

Keywords: Topic, Supervised Topic models, Unsupervised Topic
models, Consumer News and Business Channel ’s market section
website

INTRODUCTION

A prediction task for any purpose aims to set a guild or warning
against future occurrences, especially in financial areas. For the
sake of this research, the study will use new novel of Topic models
which is a machine-learning process to predict the trend of
cryptocurrency price trend.

The two primary methods that stand out in artificial intelligence and
machine learning are supervised learning and unsupervised
learning. Researchers need to be able to differentiate between the
two and choose the optimal approach when dealing with a certain
scenario because each strategy has distinct characteristics and
applications. While unsupervised learning searches for patterns
and structures in data without prior knowledge of the intended
output, supervised learning employs labelled data to train models
for classification or prediction (Tishan et al., 2023).

In this study, the distinction between supervised and unsupervised
topic models will be thoroughly revealed, allowing aspiring machine
learning researchers to take advantage of their benefits, and
overcome the challenges posed by various real-world situations.
Topic models are probabilistic generative models used in machine
learning and natural language processing (Liu et al., 2016).
"Topics" refers to the vague, unclear relationships that exist
between vocabulary words and their usage in writing. A document

is thought of as a collection of topics. Topic models identify the
collection's latent themes and annotate the articles by them. Every
word is thought to originate from one of those subjects. Finally, a
distribution of document coverage of topics is produced, offering a
fresh approach to data analysis of the subjects' points of view.
Unsupervised topic models are used to identify hidden topics in
textual data and to illustrate the connections between various
topics and the papers or articles that revealed them. (Blei and
Jordan. 2003).

Latent Dirichlet allocation (LDA), one of the unsupervised topic
models, was primarily used for finding hidden topics in arrays of
unlabeled documents. Its variant, the correlated topic model
(CTM), was also used for finding hidden topics and topic
correlations by utilizing the posterior covariance matrix of the topic.
In the past, unsupervised LDA produced a tool for creating
classification features. Insofar as they reduce the data dimension,
LDA was supposed to be useful for classification (Blei). Fitting
an unsupervised topic model may not be the best option when
considering a prediction job. This led to our investigation into which
model between the LDA and sLDA performs better on the
prediction task.
Supervised topic models employ their built-in regression and
classification tools to identify hidden topics in labeled documents
and then predict labels for newly unlabeled documents.
Additionally, compared to the LDA, the sLDA learns more cohesive
subjects. On the other hand, new unlabeled documents can be
labeled using the unsupervised topic model. Regression,
classification, and support vector machine models can be used in
conjunction with the unsupervised topic models to accomplish this.
The study compared and chose the best model based on
predictability strength between the supervised topic model and the
unsupervised topic model that was jointly trained using a
multinomial logistic regression. Support vector machine (SVM)
models and other classification models can also be used to jointly
train the unsupervised topic model.

The study "A Systematic Review on Supervised and Unsupervised
Machine Learning Algorithms for Data Science" was conducted by
Alloghani et al. (2020). They looked at scholarly publications
published between 2015 and 2018 that discussed or applied
supervised and unsupervised machine-learning techniques in
several problem-solving paradigms. Using the PRISMA
components, the review process identified 84 scholarly articles that
had been published in different journals. Despite their meta data
indicating that they were published in 2015, six of the 84 articles
were published before that year. It was found that the six articles
were included in the final papers due to indexing errors. However,
it appeared from the reviewed papers that the decision tree,
support vector machine, and Naive Bayes algorithms were the
most often used, discussed, and quoted by supervised learners.
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However, unsupervised learning methods like k-means, principal
component analysis, and hierarchical clustering also gained
popularity. With the current developments in data science and
machine learning, the investigation also found other popular
algorithms, including ensembles and reinforcers, which may be the
focus of more thorough research in the future.

"Supervised and Unsupervised Machine Learning Approaches; A
Survey," Varma and Parasad (2023) concentrated on the two
primary types of machine learning tasks: supervised and
unsupervised approaches. In supervised learning, a lot of data
(labeled datasets) was used to train the model, and the outcome
was predefined. Their main goal was to predict the outcome. There
were issues with categorization and regression. Additionally, they
employed autonomous, unsupervised learning, which does not
correlate input to output. The main objective of their study was to
give readers a comprehensive understanding of pseudocodes for
both supervised and unsupervised machine learning methods.
Sun et al. (2022), studied A comprehensive comparison of
supervised and unsupervised methods for cell type identification in
single-cell RNA-seq. Eight supervised and ten unstructured cell-
type identification methods were evaluated in this study using 14
publicly accessible scRNA-seq datasets from different tissues,
sequencing techniques, and species. Numerous factors, such as
the total number of cells, the number of distinct cell types, batch
effects, reference bias, imbalance in the cell population,
unknown/novel cell type, sequencing depth, and computer
efficiency and scalability, were analysed. Instead of only comparing
techniques, they focused on how variables affected the wide
category of supervised and unsupervised procedures. They found
that the supervised approaches outperformed the uncontrolled
ones in most circumstances, except for the identification of
unknown cell types.

A study on "Supervised topic models for multi-label classification”
was conducted by Li et al. (2015). Numerous recent studies have
demonstrated that generative modeling techniques, or topic
models, performed admirably on multi-label classification,
especially when applied to skewed data sets. This work built two
supervised topic models for multi-label classification tasks. Two
models, Frequency-LDA (FLDA) and Dependency-Frequency-LDA
(DFLDA), expand Latent Dirichlet Allocation (LDA) based on two
observations: label frequencies and label dependencies. They
trained the models with the Gibbs sampler technique. Their two
models outperformed the most sophisticated techniques,
according to the results of the trials conducted on well-known
collections.

Comparison of Supervised and Unsupervised Learning Algorithms
for Pattern Classification was conducted by Sathya et al. (2013). In
relation to higher education, they conducted a comparative study
of supervised and unsupervised learning models along with
evaluation of how effectively they categorized patterns. They found
that the unsupervised learning model' Korhonen Self Organizing
Map, offers an efficient solution and classification, whereas the
supervised learning model's error back-propagation learning
method is very effective for many non-linear real-time applications.
"Supervised Machine-Learning Techniques: A Comparison”" was
conducted by Mohamed ef al. (2022). They compared a few of the
tools available for each supervised machine-learning approach and
listed some of them in this paper. They outlined the possible
application domains and gave a general overview of machine
learning for comparative purposes.
Lehr et al. (2021) conducted research on "A comparison of

supervised and unsupervised learning for optical inspection
applications in quality control." For instance, they believed that
quality monitoring of newly made products or the return of old and
used components is a crucial component of a successful quality
management system in enterprises. Their study assessed the effort
required to get training data and compared it with the detection
accuracy of the different approaches to ascertain the relative
benefits of using unsupervised learning techniques. Printer
cartridges, both new and old, were used for this. The image data
came from 18 different models of printer cartridges. After that, they
were fully labeled (annotated). A clever separation of training,
validation, and test data allowed for the training of supervised and
unsupervised methods and a comprehensive evaluation of the
effort for data collection, annotation, and accuracy of fault
detection.

Working on "A Comparison Study of Credit Card Fraud Detection:
Supervised versus Unsupervised," Yang et al. (2019) contrasted
various supervised and unsupervised methods for detecting credit
card fraud. Their study looked at six supervised classification
models: Logistic Regression (LR), K-Nearest Neighbours (KNN),
Support Vector Machines (SVM), Decision Tree (DT), Random
Forest (RF), and Extreme Gradient Boosting (XGB). They also
studied four unsupervised anomaly detection models: One-Class
SVM (OCSVM), Auto-Encoder (AE), Restricted Boltzmann
Machine (RBM), and Generative Adversarial Networks (GAN).
using a dataset of public credit card transactions from the Kaggle
website, which comprised 284,807 total transactions, 492 of which
were fraudulent. Each of these models was trained by them. The
transaction labels were only utilized by supervised learning models.
To evaluate each model's performance in terms of the Area under
the Receiver Operating Curves (AUROC), five-fold cross-validation
was employed. Among supervised approaches, XGB and RF
produced the best results, with corresponding AUROC values of
0.989 and 0.988. However, with an AUROC of 0.961, RBM fared
better than unsupervised methods, and GAN came in second with
an AUROC of 0.954. The experimental results showed that
supervised models in their study performed marginally better than
unsupervised ones. However, unsupervised algorithms continue to
be effective for identifying credit card fraud transactions because
of the lack of proper annotation and the issue of data imbalance in
real-world applications.

Maetschke et al. (2013) examined "Unsupervised, semi-
supervised, and supervised inference of gene regulatory
networks." presentations on bioinformatics. Although many
methods have been developed to achieve this goal. They
acknowledged that identifying the gene regulatory network from
expression data was a challenging task. However, there was no
comprehensive evaluation that covers supervised, semi-
supervised, and unsupervised methods and provides suggestions
for their practical application. They reviewed inference methods in
detail and used both simulated and real expression data. The
results demonstrated that the Z-SCORE method on knockout data
demonstrated significantly higher prediction accuracy than
unsupervised alternatives, which had poor prediction accuracy.
Even in a semi-supervised setting with small amounts of only
positive data, the supervised approach achieved the highest
accuracy and outperformed the unsupervised strategies in every
other situation.

The study train the LDA model + multinomial regression model of
different "k" values and the sLDA model of different "k" values using
the same labelled pre-processed textual training data set. It also
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test the models using the same new test data, which is unlabeled,
to perform our predictability strength comparison between the
supervised topic model and the unsupervised topic models. After
evaluating the metrics of the tested and trained models, we would
select the best prediction model based on its greatest performance
values.

MATERIALS AND METHODS

News articles about cryptocurrency-related activities that appeared
in foreign media between 2016 and 2022 made up most of the
research population. The Consumer News and Business Channel
(CNBC) carries these articles. This study only included a sample of
Bitcoin because it is so well-known compared to other
cryptocurrencies.

The study's secondary data source is the corpus of news articles.
All 6,000+ news pieces and articles that were pulled from the
internet between 2016 and 2022 were authored in English. Using
relevant meta-data from the previously described media source, it
was feasible to rapidly scrape the text data using a custom Python
script called "beautiful Soap" that was visualized using Jupyter
Notebook. The following meta-data, which was saved in comma-
separated (CSV) format, was present in the pages:

(i). Article Summary (ii). Article section (jii). Article link (iv). Article
date (v). Article summary (vi). Article Body (vii)Opening
Price(viii)Closing Price.

The query "Bitcoin daily reports" was used to highlight the articles
that were needed and helpful. According to Blei et al. (2017), top
topic models assume a bag-of-words document representation.
Each text is displayed here as a bag of its terms, with no
consideration for word order or grammar. Numerous methods in
the domains of natural language processing and information
retrieval make use of this reduced paradigm. The NLP step was
often broken down into four stages: (1) loading the news article as
input data; (2) pre-processing the data; (3) turning texts into bag-
of-words vectors; and (4) training the sLDA and LDA models. The
news items (now called documents) were transformed into a format
suitable for the modeling framework rather than being fed into the
model as free text or raw data. Normalization, tokenization,
stemming/lemmatization, and stop-word removal are common pre-
processing techniques for text data. Following the collection and
compilation of the articles, the text was pre-processed in Python
using the SpaCy, Gensim, and Pandas modules. Before using NLP
on the text, it must be preprocessed. The texts of the articles were
then standardized by switching to lowercase. Then, punctuation
and other non-ASCI| characters were eliminated, along with foreign
characters and word elongations. Then, frequently used non-
informative stop-words like "the," "is," "I," and "did" were eliminated
using stop-words from the Python genism module. Token words
were then lemmatized using Python's genism module.
Lemmatization is a type of text normalization that involves
classifying inflected words into their base or dictionary root terms,
or lemma. The terms "trouble," "troubling,” and "troubled," for
example, can be lemmatized to produce the lemma "trouble." The
traditional stemming of tokens was used in response to Schofield
et al. (2017)'s assertion that topic coherence is rarely enhanced
between the pre-stemming and post-steaming Topic models. In the
end, whitespace was removed to decrease the content's overall
size. Each document has fewer than fifty (50) words deleted.
Furthermore, words that appeared in less than 70% of the corpus
were removed.

https://dx.doi.org/10.4314/swj.v19i4.8

The LDA Model
The Latent Dirichlet Allocation (LDA), a comprehensive generative
probabilistic model of a corpus, is based on the notion that a
document comprises several themes. Conversely, a topic is just the
arrangement of ideas within a specific vocabulary (words). The
LDA states that ‘K’ themes are associated with a collection of
documents and that these topics are displayed in varying
proportions within each document (Blei 2003). Furthermore, the
LDA assumes theterm exchangeability, or a "bag of
words," implying that the order of a term is unimportant (Aldous,
2009). Furthermore, because LDA is predicated on the idea that
documents are interchangeable, it ignores the order in which they
appear within a corpus.

The LDA generative process is as below:
1. for each topic k € (1,..,k), draw a multinomial distribution over
words SBx~Dir(n)
2. foreach document, d € (1,..., D), draw a multinomial distribution

vector of topic proportions (8a)~Dir(a’)
3. For each word position;

i draw a topic assignment Za,~ (64),

ii. Draw a word Wa,~ (824 ),

O+Oto-@—HO+O

o ()d le,n ”:Ln N 13}‘ ,]
| 2 K
Figure 1 Graphical model representation of LDA

the observed words for document d are wa, where wan is the nt
word in document d, which is an element from the fixed vocabulary.

Bk : Topics distribution over words
61 : Per-document topic proportions
ZipAN Per-word topic assignments

The Dirichlet formula for the hidden and observable variables is a
key component of the LDA:
p(/jl A’~'91 s S Win ):nptﬁ- )H}J(QJ )(np(‘:ﬂ'n Igrt p(w,, |ﬁ| k2 Zdn))
)
The Dirichlet distribution has density;
p(ela) — F(}(Z:;lai) I;_ ef)(i_l
[Ti=; T'(ai) =17
(2)
Where the parameter « is a k-vector with components ;>0 and 6>
0; 2:'{:1 91' =1
The expected value of 6 is given as; E(6;) =

@i
Tha
The following is the posterior distribution of the hidden variable and

the observed word:

P(01.p: 21 Brx IWr.ps @, 77)
_ p(B1.0, 710, BreIWr.p, @, 71)
fﬁw IBl:D P(61.0, 215, PrxIWip, @, 1)

dodp

2(01:0) [ p(Zn| ) (Wil Zn, B1.x)
fgfgp(glzD)ZZHﬁ p(Zn|0)p(Wh|Zy, b1k )dOdB

@)
Due to the intractability of the denominator in equation 2.3, a
metropolis-hasting process which uses the variational process was
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used to control the model.

The sLDA Model
The supervised latent Dirichlet allocation model (sLDA) performs
better when implementing such a plan for response-document
pairs.
In topic models, which are distributions over collections of
documents, each document is represented by a set of discrete
random variables, W1, which are its words. In topic models, which
are a collection of unknown distributions over the vocabulary, the
words in a document are viewed as emerging from a set of latent
themes. All documents in a corpus share the same ‘K’ topics, but
each document employs a different mix of subjects with topic
proportions that are unique to it. In contrast to standard document
mixing models that associate each document with a single,
undefined subject. They are referred to as mixed-membership
models by Erosheva et al. (2014). When deciding on labels for
newly unlabeled documents, each document has a matching
response as a covariate that is jointly modelled for prediction.
Supervised Latent Dirichlet Allocation (SLDA) extends the LDA
model to a supervised learning environment by allowing a response
to be linked with each document and simultaneously modelling the
response variable and the corpus of documents. Blei et al. (2017)
claim that this allows it to predict future unlabeled articles and even
determine which latent topics are most predictive of the response
variables in the training set. let y represent a response variable
from a generalized linear model with parameters n and &. Should
we take into account the subsequent fixed;;.x: the k topics with
each By a vector of term probability, n and § and the Dirichlet
hyperparameter for the per-document topic proportion 6.
For every document and response variable, the generative
process assumed by the sLDA is as follows:
1. Draw topic proportion, 8| a~Di(a )
2. for each word,

(2) Draw a topic assignment Zn| 6 Mult(0)

(b) Draw word wn | Zn,B1.x ~Mult(B)
3. Draw a response variable y| z;.y,1, §~GLM (2,1, § ), where
Z

negative binomial, Multinomial, Poisson, and gamma distribution
which are mostly used in GLM. Notably, h(y, &) is the base
measure, y is the sufficient statistics, and A((n7z) is the
normalization log. Due to the GLM framework's versatility, SLDA
may be used to represent a variety of response variable types,
whose distribution can be expressed in equation (2.4)'s exponential
dispersion form. For example, for a normally distributed random

variable y, h(y,8) = eXp\/zlﬂ—S = y;} and A(”Tf)z(n?)z

here, mean p is n7z and variance is 8.

Blei & McAuliffe (2017) serve as the foundation for our calculations.

We use variation inference to approximate the posterior density by

computing the posterior distribution of the document-level latent

variable 6, the topic proportions, and the topic assignment Z1n

given the words W1 and the corpus-wide model parameters.

p(8,zp.n | Wi, ¥ @ Brom, 6)

- p(0)a) (TTn=1 p(24] O)p(Wy|2n, Br.x) ) (V] 2151, 8)
@) X, (TIN=1 P (2] O)p(Wn 2, Bric NP W 218, 8) A

©)
For a Gaussian random variable with an identity link function, the

expected mapping from the natural parameter to the mean
parameter is;

E[Y|wy, @, Brx, 1, 8) = T?T]E[Z] 6)

Fitting the LDA and sLDA models

The models were fitted using the variational expectation-
maximization (VEM) technique. The "Document-Term matrix, "K"
(the number of topics), and "control" (the Latent Dirichlet Allocation
(LDA)-VEM) were among the parameters used to fit the LDA. The
parameters were used to determine the maximum number of
iterations for the conjugate gradient method, which alternates
between the E-step and M-step to maximize the corpus's
probability, as well as the convergence tolerance for the variance
and E-M algorithms, respectively. In the M-step, the procedure

_1 N 4 establishes the upper limit concerning the model parameters (the
N&n=1n topics and the multivariate normal parameters), and in the E-step,

it establishes the upper limit concerning the latent variables (the

=5l 3 topic proportions and the topic assignments Z). The multinomial

‘ 6 Br 1 logistic regression model for label or response prediction was
> trained using the LDA posterior covariance matrix. One instance of

m & this procedure was performed for every value of "k." 70% of training

Figure 2: Graphical Model representation of Supervised Latent
Dirichlet Allocation (SLDA)

The response variable distribution is a generalized linear model
(McCallum et al., 2005),

- r p(Y|leN;77; 6) =
h(y, 6)exp (240D, @

Given a natural parameter response variable, the random
component of equation (2.4) assumes an exponential dispersion
family distribution n7z and a dispersion parameter 8. Canonical
link functions are the sole ones used in the sLDA paradigm. The
function known as the canonical link is the one that changes the
mean p= E (y;) concerning the exponential family of distribution's
natural exponential (location) parameter, such as normal, binomial,

data and 30% of test data were used in a data split on the 4,073
pre-processed publications and articles. The training data set was
used to train LDA and sLDA models, and the test data set was used
to evaluate the prediction of our response variable. The response
variable, which is essentially of relevance to traders or consumers,
is the time-series closing price of Bitcoin that corresponds to the
documents. Additionally, numerically categorize response variable
as "low = 1," "fairly-low = 2," *high = 3" and “fairly-high = 4” with
thresholds of "less than or equal to 10000," "less than or equal to
20000," "less than or equal to 40000," and "less than or equal to
60000," respectively. Variational expectation maximization (VEM)
is the technique wused to fit the sLDA model.
Several parameters were used to adjust the algorithm's rate of
convergence. These parameters included the "Document-Term
matrix," "K" (the number of topics), "vocab" (vocabulary words
associated with word indices used in documents), "e.iteration,"

"m.iteration," "alpha," "eta," "var" (variance of the response
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variable), ‘"annotations" (response variable), and others.
Regression and a classifier are included in the sLDA model to
predict labels or responses.

RESULTS AND DISCUSSION

Using 70% and 30% thresholds, respectively, a corpus (data) of
4073 documents was divided into training and testing data. As
previously stated in Section (2.0), the split corpus was pre-
processed before the split. Because the words cannot be utilized
directly as input for the models, they were then transformed into a
machine-learning language and then transformed into a document-
term matrix (DTM). The prediction job was then completed by

Table 1. Metric evaluation of the sSLDA model with varying values of "k"

training and testing the sLDA and the LDA + regression model.

LDA and sLDA Model Metric Evaluation.

Using model assessment measures, the best model for our
prediction task out of the LDA and sLDA models was found. The
classification method we employed multinomial classification
techniques which led to the selection of our model evaluation.
Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Root Mean Squared Error (RSME), and R? are the
evaluation measures.

K_VALUES_slda = MAPE_slda MAE_slda RMSE_slda R_SQRED_slda ADJ_R_SQRED_slda
3 66.99009 1.061556  1.996749 0.009554 0.009311
10 49.8341 0.802849  0.98224 0.336044 0.335881
20 46.44281 0.761462  0.940588 0.391162 0.391012
30 49.07126 0.789546  0.977847 0.34197 0.341809
50 42.03424 0.710612  0.905843 0.435311 0.435172
100 42.60092 0.738343  0.942975 0.388067 0.387917
200 4267802 0.737328  0.933316 0.400539 0.400392

The numerical values of the sLDA assessment across the metric
lines are shown in Table 3.1 above. A close examination of the
table reveals that the sLDA with k = 50 performs better than other
"k" values. Its MAPE, MAE, RSME, and R2 values are the lowest,

Table 2. Metric evaluation of the LDA model with varying values of "k"

lowest, and highest, respectively. Among other models, this makes
the sLDA with k = 50 the best one.

K_VALUES_Ilda MAPE_Ida MAE Ida RMSE_Ida R_SQRED Ida ADJ_R_SQRED_lda
3 84.34563 | 1.889674 2.289739  -0.21992 -0.22025
10 88.30725 | 1.902674 @ 2.7906 -0.22096 -0.22128
20 85.34525 | 1.899967 @ 2.31898 -0.22031 -0.22032
30 82.30725 | 1.676737 2.189678 | -0.21985 -0.21322
50 87.45665 @ 1.822674 2418988  -0.20097 -0.20042
100 85.34525 | 1.899967 @ 2.31898 -0.22031 -0.22032
200 86.67848 = 1.856774 2.191617  -0.32187 -0.33298

Table 3: Evaluation of metrics to select the best model between

the sLDA and LDA models
Metric 1da30 slda50
MAPE 82.30725 42.03424
MAE 1.676737 0.710612
RMSE 2.189678 0.905843
RSQRD -0.21985 0.435311
ADJRSQRED -0.21322 0.435172

The numerical values of the LDA assessment across the metric
lines are shown in Table 3.2 above. A close examination of the
table reveals that the LDA with k = 30 performs better than other 'k’
values. Its MAPE, MAE, RSME, and R? values are the lowest,
lowest, and highest, respectively. As a result, among various
models, the LDA with k = 30 is adjudged the best model.

The numerical values of the optimal models from Tables 3.1 and
3.2 are shown across the metric lines in Table 3.3 above. A further
examination of the table reveals that the sLDA with k = 50 performs
better than the LDA with k = 30. Its MAPE, MAE, RSME, and R?
values are the lowest, lowest, and highest, respectively. As a result,
for fresh unlabelled texts, the sSLDA with k = 50 is the best model fit
for predicting the response variable (user interest). The implication
of the results appears below in section 2 showing better prediction
pattern of the sLDA than the LDA.
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Table 4: Table showing the first Seven (7) Topics with Seven (7) words/terms from the LDA30 model output

Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7

marking
glut
separate
worm
inherit
dismantle
peer

fcau signal poshmark
drone mirror macron
dominance hsiao moonpay
pbocs crunching diatribe
tumblr riskreward softening
conagra unbelievably spanning
impersonator cattle hayek

Tale 4 lists the likely 30 Topics from LDA30 model along with their
corresponding terminology. The appendix lists the additional 27

themes

prosecute facilitating
privatelyheld backer
tame amassed
proactively saudi
swanky chipmakers
shot introduces

dislike brody

that the LDA30 model has

Table 5: Table showing the first Seven (7) Topics with Seven (7) words/terms from the sSLDA50 model output

Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7

around
china
sure
goldman
facebook
cramer
trump

Table 5 shows the probable 50 topics from the sSLDA50 model with
their terms. The appendix shows 47 other topics uncovered by the
sLDA50 model.

Table 6 displays the predicted labels for the first 50 documents in
the testing corpus out of the first 200 documents by both LDA30

and

1 |label/Price
2
3
a
s
5
7
8
a

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
28
27
28
29
30
31

Reliability of Supervised Topic Models over Unsupervised Topic Models for

FRAOBWWHENNNAENNWRNNRNRNSLENSRNNN RN

documents

2
a
13
1a
20
24
25
28
30
a3
a6
as
50
51
50
64
69
71
76
78
79
a1
a2
23
85
a7
89
97
104
112

2.71578609

2.21314923

found.

* predictioniga3o

managed goldbacked collapse magic harvey
chinese yuan beijing country pboc
entering mission anticipated raise boost
street wall bank morgan sachs
libra facebooks social project association
stock host money twitter question
president bill house senate congress
21 a 78 2.051931643 3.256558619
2z 2 79 1.747156775 1.442965254
23 2 81 1.434950029 1.347948236
24 2 a2 1.244809315 1.93211296
25 1 83 0.78992493 0.78992493
26 1 as 1.037789395 1.037789395
27 2 87 1.253041388 2.732591753
28 3 89 1.399839 2.977118025
29 a a7 2.71578609 3.31314923
3o 1 104 2.954822559 1.159389263
31 1 112 2.326610371 0.822885111
32 2 119 1.827586296 1.827586296
33 2 123 1.332439291 1.332439291
SLDASO' 24 1 124 1.198891815 1.198891815
3s 2 127 1.54963007 1.54963007
ES 3 128 2.381261952 2.906004136
predictionlda3a predictionsidaso a7 2 133 2.636498481 1.792093301
1,719972874 1.816772874 38 3 134 1.245308277 0.91699397
1.109713345 1.156771335 39 3 137 1.82994596 3.258988933
1.198891815 0.839795532 40 1 138 1.766091925 2.573662765
154363007 151910483 a1 2 147 2.968571613 1.255542481
2.381261952 1.917880422 az2 2 151 1.115207773 1.615650124
1.940833783 1.582023351 a3 2 153 3.474868786 1.253041388
2.586547898 1.06982221 a4 2 166 0.891766724 1.399839
2.871271564 1631407118 45 3 167 1.624408573 2.71578609
2.31314523 0.859112571 46 3 168 1.283915216 2.954822559
1.159389263 1.736931326 a7 3 170 1.558374697 2.326610371
©.822885111 1.656455462 a8 2 172, 2.873138033 1.384074022
1.917880422 1.176013205 49 2 177 1.478222113 2.042967445
1.582023391 1.424496127 50 2 178 1.920570633 2.513551254
106982221 2.031319639 51 3 184 2.723744794 1.538763414
1.51910483 1.258942692 Model extrapolation performance of LDA30 VS Real Price
1.881108469 2.398612232
1.767672375 1.514849818 ? /T ‘ \ ¥
2.856183344 2.042250995 z 1 e 4 naryee
1.964051884 0.241652222 g’ Yo 7 \ I price — predictioniaa3o
2.051931643 3.256558619 A v R -, % \ etk — - price
1.747156775 1.442965254 S Jila T F: y 2 B\ > .'/ \ :£ 5§
1.434950029 1.347948236 = e P: L .’ '] \; ] | \ ./‘ colour
1.244809315 1.93211296 & ;{: Vow DR P | 2 i/ | 8 | i —=— predictioniga3o
0.78992493 0.78992493 ©=> * q’ P A -'”";. /s ‘?- v \ : v ~8= price
1.037789395 1.037789395 R EAARS S A -":'? 2 0\ o -
1.253041388 2.732591753 & } f 3 L% wiid - a0 ?1'\‘ 7
1.399839 2.977118025 ),\-sl l Y u - ’1 shape
i .
[
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2.954822559
2.326610371

1.159389263
0.822885111

Table 6

the Prediction Task
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Documents

Figure 3: graphical representation of LDA30 label prediction in

* price
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linetype

—— predictionsidaso

predictionsidaso

Figure 4: graphical representation of sSLDA50 label prediction in
Table 6

Figure 3 and 4 clearly show that the trend pattern looks more
similar for sLDA50 than LDA30. This further strengthens the
fact that SLDA models is reliable and do better in prediction tasks.

Conclusion

To compare and identify the best model between the LDA and the
sLDA for predicting the response variable for unlabelled new
documents, the study has used textual data (labelled documents)
on Bitcoin cryptocurrency operations. The correlated topic model is
also unsupervised, but it goes one step further than the LDA to
demonstrate correlations between the topics, words, and
documents. It is thought that the LDA model performs better in
identifying Latent Topics from the documents. Compared to the
unsupervised version, the sLDA is more effective at predicting
response variables (labels) for unlabelled documents and reveals
more cohesive hidden subjects.

Conversely, in this paper, the LDA can be concurrently trained with
other regression or classification models for prediction purposes.
The findings demonstrated that the sLDA performs better than the
LDA model + (classification or regression model) when used for
prediction. "K" number was chosen at random from 3 to 200 to
compare which model performs better in prediction between the
LDA and the sLDA. The models were trained using this technique
for every value. When only applying a topic model to a given
corpus, the coherence graph, perplexity graph, or both used to
determine the optimal value of "k."

The best results obtained with a coherence graph of "k" with the
largest coherence value; however, care must be taken if the value
selected under or over-fits the model. It takes less time to converge
when obtaining the correct value of "k" from a corpus through
coherence, perplexity, or both when comparing models, although
the two approaches have different goals and tasks. Not selecting
the appropriate "k" value implies that the subjects will be less
coherent for a high-quality result. To improve the production of
cohesive topics, there was extreme caution when handling the
hyperparameter tuning during the research.

Until the relative change in the probability was less than 10-6,
variational inference was used, and until the relative change in the
likelihood bound was less than 10-4, variational Expectation-
Maximization was used. Similarly, the F-score and accuracy have
always been employed by various literatures to assess how well
their topic model’'s function. It was found that when utilizing the
sLDA model for prediction, this metric evaluation performs better
when employing a bi-classification approach rather than a multi-
classification method. As a result, this led to the decision to use R-
squared, RMSE, and MAE measures.

https://dx.doi.org/10.4314/swj.v19i4.8
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