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ABSTRACT 
This paper addresses the numerical solutions of fractional 
differential equations (FDEs) using the Generalized Kudryashov 
Method (GKM) in the context of the conformable fractional 
derivative. Fractional calculus, particularly the conformable 
derivative, provides a versatile framework for modeling systems 
exhibiting memory and hereditary properties commonly found in 
complex physical phenomena. Traditional integer-order derivatives 
lack the capability to accurately represent such dynamics, which 
fractional derivatives effectively handle. The conformable 
derivative, a recent addition to fractional calculus, retains many 
advantageous properties of integer-order differentiation, such as 
the chain rule, while extending to non-integer orders. The 
Generalized Kudryashov Method, initially developed for solving 
nonlinear ordinary differential equations, is adapted here to 
address nonlinear FDEs involving conformable derivatives. By 
employing a traveling wave transformation, the study converts 
fractional partial differential equations into ordinary differential 
equations, facilitating the application of GKM. Through this 
approach, the study derives numerical solutions, demonstrating the 
method’s ability to capture complex dynamics in nonlinear 
fractional systems. The results indicate that GKM, in conjunction 
with the conformable derivative, offers a robust tool for accurately 
approximating solutions of FDEs, with potential applications across 
fields such as fluid mechanics, quantum mechanics, and 
anomalous diffusion. 
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INTRODUCTION 
Fractional calculus generalizes the concept of integer order 
differentiation and integration to non-integer order as 1/2, 3/2, 2.5, 
that is, etc., and is very useful to modeling practical problems that 
involve memory and hereditary effects. Such systems cannot be 
well described by conventional integer-order derivatives, especially 
when the system exhibits oscillatory behavior. The conformable 
derivative which was recently defined is a more elementary form of 
applying fractional calculus and retains some of the basic features 
of the integer-order derivatives while possessing the fractional 
nature. Therefore, it has been applied in different fields such as 
physics, engineering as well as biology. 
Fractional calculus is just a generalization of the traditional calculus 
where differentiation and integration can be performed on non-
integer order; this allows one to get powerful machinery for 
modelling of many intricate physical and engineering systems. 
There is substantial evidence of the usefulness of fractional 
derivatives in areas of viscoelasticity, diffusion, control theory, and 
quantum mechanics where classical integer-order models are 

insufficient to model anomalous behaviors. In most engineering 
problems, if we consider local variations or perturbations in a 
system, conventional derivatives suffice, but if one has to model 
long-term memory and hereditary effects, then fractional 
derivatives are more appropriate due to their time and space 
variation features. Several definitions of fractional derivatives exist; 
however, the conformable fractional derivative (CFD) has recently 
attracted attention because of its simplicity and compatibility with 
traditional calculus.  
In this study we consider the numerical solutions of the FDEs 
having incorporated the conformable fractional derivative as well 
as by using the methods of GKM. This method, employed to make 
exact analytical/numerical solutions to a number of non-linear 
differential equations, has been further used to seek the exact 
solutions of the following PDEs, nonlinear Schrödinger, Korteweg-
de Vries equations accompanied by other evolutionary equations. 
The conformable fractional derivatives have been used to combine 
with the Kudryashov method to overcome the difficulties brought by 
the fractional orders of the differential equations. 
The conformable fractional derivative, introduced by Khalil et al. 
(2014), presents a modification to the standard definitions of 
fractional derivatives, offering a framework that maintains certain 
desired properties of integer-order derivatives, such as the chain 
rule and the Leibniz rule for products. For a function 𝑓: ℝ ⟶
ℝand a fractional order 0 < 𝛼 ≤ 1, the conformable fractional 

derivative of 𝑓𝑎𝑡𝑡is defined by: 
 

𝐷α𝑓(𝑡) =  lim
𝑒→0

𝑓(𝑡 + 𝜖𝑡1−α) − 𝑓(𝑡)

𝜖
 

 
or, equivalently, for differentiable functions, 
 

𝐷α𝑓(𝑡) =  𝑡1−α𝑓′(𝑡) 
 
This derivative provides a natural extension of the traditional first 
derivative as α→1 and reduces to the identity operator when α = 
0. 
 
While the literature on analytical methods for solving fractional 
differential equations (FDEs) is extensive, fewer studies address 
numerical methods capable of solving FDEs involving conformable 
derivatives. The Kudryashov method, initially proposed for exact 
solutions of nonlinear ordinary differential equations (ODEs), 
shows promise in solving nonlinear FDEs by transforming them into 
simpler forms. This study aims to extend the Kudryashov method 
to handle conformable derivatives, enabling the numerical 
approximation of solutions for complex fractional systems. 
 
 
 

F
u

ll 
L

en
g

th
 R

es
ea

rc
h

 A
rt

ic
le

 

https://dx.doi.org/10.4314/swj.v19i4.12
http://www.scienceworldjournal.org/
mailto:oladayoe2000@yahoo.com


Science World Journal Vol. 19(No 4) 2024   https://dx.doi.org/10.4314/swj.v19i4.12 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Numericasl Solutions of Fractional Conformable Derivative Using a Generalized 
Kudryashov Method 

995 

Literature Review 
The conformable derivative has been one of the exciting topics of 
interest since its introduction aimed at presenting a natural way of 
defining the fractional derivatives. Research has been directed 
towards the characterization of conformable derivatives’ properties 
as well as their use. For example, Khalil et al. (2014) and 
introduced the preliminary theory of conformable derivatives that 
showed the effectiveness of such approach for description of the 
processes having the memory In recent years, conformable 
derivatives have been applied in fractional models across various 
fields, including topics such as viscoelasticity and thermal 
conductivity. Notable examples of this include studies by 
Abdeljawad (2015) and Zhao et al. (2019), among others. 
With regards to solution methods, a number of analytical and 
numerical techniques have been employed on fractional differential 
equations among them are Adomian decomposition, homotopy 
perturbation and variational iteration. However, nonlinear portions 
of fractional systems or the fractional systems in general, pose 
certain challenges and may need quite specific methods. The 
Kudryashov method has a recent version implemented for 
polynomial-type nonlinear ODEs and adaptations have been 
developed for fractional and conformable derivatives by 
Kudryashov (1988) and Zhang, Baleanu, and Machado (2021). 
While these adaptations show potential, they have not been able 
to exhaustively solve the conformable derivative cases in the 
general statements and this informed the need for the present work 
scouting for a generalized model. 
 
MATERIALS AND METHODS 
Generalized Kudryashov Method 
In domains such as fluid mechanics, plasma physics, and nonlinear 
optics, the Generalized Kudryashov Method is a potent analytical 
tool for obtaining precise solutions to nonlinear differential 
equations, especially those that describe soliton and traveling wave 
solutions. By permitting more general forms of the solution and 
expanding the set of differential equations that can be used, this 
approach improves upon the traditional Kudryashov method. Let's 
review the overall framework, including equations and 
mathematical specifics. 
 
Formulation of the Problem 
Consider a nonlinear partial differential equation (PDE) of the form: 
 

𝑃(𝑢, 𝑢𝑡, 𝑢𝑥 , 𝑢𝑥𝑥, 𝑢𝑥𝑡, … ) = 0 
 
Where  𝑢 = 𝑢(𝑥, 𝑡) is an unknown function of the spatial variable 

𝑥and time 𝑡 and 𝑃represents a nonlinear function involving 𝑢and 
its partial derivatives. 
 
To simplify the problem, we often seek traveling wave solutions of 
the form: 
 
𝑢(𝑥, 𝑡) =  𝑈(ξ),  where ξ = 𝑥 − 𝑐𝑡 
 
with c being the wave speed. By substituting this transformation, 
we convert the PDE into an ordinary differential equation (ODE) for 
U(ξ). 
Converting the PDE to an ODE 
The traveling wave transformation 𝑢(𝑥, 𝑡) =  𝑈(ξ)simplifies the 
derivatives as follows: 
 

𝑑𝑢

𝑑𝑡
=  −𝑐𝑈′,

𝑑𝑢

𝑑𝑥
= 𝑈′ ,

𝑑2𝑢

𝑑𝑥2 = 𝑈′′ 

 
Substitute these into the original PDE to obtain an ODE for U(ξ) 
 

𝑄(𝑈, 𝑈′, 𝑈′′
, … ) =  0 

 
where Q represents a nonlinear function involving U and its 
derivatives. 
 
Assuming the Solution Form in the Generalized Kudryashov 
Method 
In the Generalized Kudryashov Method, we assume that the 
solution U(ξ) can be expressed as a rational function of a new 
variable ϕ(ξ), where ϕ(ξ) satisfies a simple auxiliary ODE. One 

commonly used form is: 
 

U(ξ) =  
∑ 𝑎𝑖𝜙𝑖(ξ)N

𝑖=0

∑ 𝑏𝑗𝜙𝑗(ξ)N
𝑖=0

 

 
where 𝑎𝑖and 𝑏𝑖 are constants to be determined, and Nand M are 
non-negative integers that determine the order of the numerator 
and denominator, respectively. 
 
Choosing an Auxiliary Equation for ϕ(ξ) 

A common choice for ϕ(ξ) is a function that satisfies an auxiliary 

ODE, such as: 
 

𝜙′(ξ) =  λ𝜙(ξ)(1 − 𝜙(ξ)) 
 
Or 
 

𝜙′′(ξ) =  𝑘𝜙(ξ) +  𝜇𝜙2(ξ) 
 
where λ, 𝑘 and μ are parameters to be determined. These choices 
are useful because they yield polynomial solutions or solutions 
involving hyperbolic or trigonometric functions, depending on the 
parameter values. 
 
Determining the Parameters and Constants 
The next step is to substitute the assumed form of U(ξ) into the 
ODE obtained in Step 2. This process involves: 

1. Differentiating U(ξ) with respect to ξ, as required. 
2. Plugging U(ξ), U'(ξ), U′′(ξ), etc., into the ODE. 
3. Setting up a system of algebraic equations for the 

parameters 𝑎𝑖 , 𝑏𝑗 , 𝑐, λ, 𝑘, 𝜇,etc., by equating 

coefficients of like powers of ϕ(ξ) to zero. 

 
Solving this algebraic system yields the values of the parameters, 
which in turn provides the explicit form of U(ξ) and hence the 
solution 𝑢(𝑥, 𝑡). 
 
Generalized Kudryashov Method for Fractional Conformable 
Derivative 
Generalized Kudryashov Method for Fractional Conformable 
Derivatives simply offers an adaptation of the Kudryashov method 
for use in the fight against fractional differential equations. 
Conformable fractional derivatives are a form of fractional 
derivatives that obey some general properties of integer order 
derivatives, for example product and chain rule that makes them 
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appropriate for analytical applications. 
 
Problem Formulation with Fractional Conformable Derivative 
Consider a nonlinear fractional partial differential equation (PDE) 
involving a conformable fractional derivative, which we express as: 
 

𝑃 (𝑢, 𝐷𝑡
𝛼𝑢, 𝐷𝑥

𝛽
𝑢, 𝐷𝑥𝑥

𝛽
𝑢, … ) = 0 

 
where 𝑢 = 𝑢(𝑥, 𝑡) is the unknown function of spatial and 

temporal variables 𝑥 𝑎𝑛𝑑 𝑡, and 𝐷𝑡
𝛼and 𝐷𝑥

𝛽
 represent the 

conformable fractional derivatives with respect totand x of orders 
αand β, respectively. 
 
The Conformable Fractional Derivative 
For a function 𝑓(𝑡)the conformable fractional derivative of order 
α(where 0<α≤1) is defined as: 
 

𝐷α𝑓(𝑡) =  lim
𝑒→0

𝑓(𝑡 + 𝜖𝑡1−α) − 𝑓(𝑡)

𝜖
 

 
which, for differentiable functions, simplifies to: 
 

𝐷α𝑓(𝑡) =  𝑡1−α𝑓′(𝑡) 
 
Similarly, for 𝑓(𝑥), the conformable fractional derivative of order β 
with respect to xis: 
 

𝐷𝑥
α𝑓(𝑥) =  𝑥1−β𝑓′(𝑥) 

 
Reducing the PDE to an ODE Using a Traveling Wave 
Transformation 
To find a traveling wave solution, we assume: 
 
𝑢(𝑥, 𝑡) =  𝑈(ξ),  where ξ = 𝑥 − 𝑐𝑡 
 
Here, cis the wave speed and 𝑡𝛼modifies the wave based on the 
fractional order of the time derivative. This transformation converts 
the fractional PDE into a fractional ODE in terms of ξ: 
 

𝑄 (𝑈, 𝐷𝜉
𝛽

𝑈, 𝐷𝜉𝜉
𝛽

𝑈, … ) =  0 

 
 
Assuming a Solution Form in the Generalized Kudryashov 
Method 
In the Generalized Kudryashov Method, the solution 𝑈(𝜉) is 
assumed to be a rational function in terms of an auxiliary function 
𝜙(𝜉), which satisfies its own fractional ODE: 
 
 

U(ξ) =  
∑ 𝑎𝑖𝜙𝑖(ξ)N

𝑖=0

∑ 𝑏𝑗𝜙𝑗(ξ)N
𝑖=0

 

 
where 𝑎𝑖 and 𝑏𝑖 are constants to be determined, and 𝜙(𝜉) is 
chosen to satisfy an auxiliary fractional differential equation, such 
as: 
 

𝐷𝜉
𝛼𝜙(ξ) =  λ𝜙(ξ)(1 − 𝜙(ξ)) 

 
Or a more complex fractional equation like 

 

𝐷𝜉
𝛼𝜙(ξ) =  𝜙(ξ) +  𝜇𝜙2(ξ) 

 
 
where 𝜆and μare parameters to be determined. 
 
Applying the Conformable Fractional Derivative and Setting 
up Equations 
After choosing an appropriate form for 𝑈(𝜉) and an auxiliary 

equation for 𝜙(𝜉), follow these steps: 

1. Substitute 𝑈(𝜉) = U(ξ) =  
∑ 𝑎𝑖𝜙𝑖(ξ)N

𝑖=0

∑ 𝑏𝑗𝜙𝑗(ξ)N
𝑖=0

into the 

fractional ODE. 
2. Compute the conformable fractional derivatives 

𝐷𝜉
𝛼𝑈(ξ), 𝐷𝜉

2𝛼𝜙(ξ), etc., as required. 

3. Substitute these into the original fractional ODE, 

𝑄 (𝑈, 𝐷𝜉
𝛼𝑈, 𝐷𝜉𝜉

𝛽
𝑈, … ) =  0 

4. Collect terms by powers of 𝜙(𝜉)and set each 
coefficient to zero. This results in a system of algebraic 
equations for the constants 𝑎𝑖 , 𝑏𝑖, 𝑐, λ, μ, etc. 

 
Solving the System of Algebraic Equations 
By solving the algebraic system, we determine the values of the 
constants, allowing us to write down an explicit form for 𝑈(𝜉). This 

solution then provides a particular form for 𝑢(𝑥, 𝑡), which is a 
solution to the original fractional PDE. 
 
RESULTS AND DISCUSSION 
Suppose the fractional PDE we want to solve is: 
 

𝐷𝑡
𝛼𝑢 + 𝑢𝐷𝑥

𝛽
𝑢 + 𝐷𝑥𝑥

𝛽
𝑢 =  0 

 
Using the traveling wave transformation 𝑢(𝑥, 𝑡) = 𝑈(𝜉)with 𝜉 =
𝑥 − 𝑐𝑡𝛼the equation becomes: 
 

𝑐𝐷𝜉
𝛼𝑈 + 𝑈𝐷𝜉

𝛽
𝑈 + 𝐷𝜉𝜉

𝛽
𝑈 =  0 

 
Table 1. Comparison of results between exact and computed 

T Exact Approximate Error 

0.00 0.0000000 1.0000000 1.0000e+00 

0.10 0.0990000 1.1111100 1.0121e+00 

0.20 0.1920000 1.2499200 1.0579e+00 

0.30 0.2730000 1.4275300 1.1545e+00 

0.40 0.3360000 1.6598400 1.3238e+00 

0.50 0.3750000 1.9687500 1.5938e+00 

0.60 0.3840000 2.3833600 1.9994e+00 

0.70 0.3570000 2.9411700 2.5842e+00 

0.80 0.2880000 3.6892800 3.4013e+00 

0.90 0.1710000 4.6855900 4.5146e+00 

1.00 0.0000000 6.0000000 6.0000e+00 
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Figure 1: Graphical view of Fractional Conformable Derivative 
Solution 
 
Conclusion 
The Generalized Kudryashov Method (GKM) was successfully 
used in this study to solve fractional differential equations (FDEs) 
with the conformable fractional derivative. The research aimed to 
develop robust numerical solutions to FDEs, addressing the 
limitations of traditional integer-order calculus in modeling complex 
systems with memory and hereditary effects. The objectives of the 
study were clearly met by Demonstrating the Compatibility of 
Conformable Derivatives: The research showcased how the 
conformable fractional derivative maintains essential properties of 
integer-order differentiation, such as the chain rule, while extending 
its applicability to fractional orders. This adaptability highlights its 
potential in representing dynamic physical and engineering 
systems. Adapting the Generalized Kudryashov Method: The 
method was tailored to handle the complexities of fractional 
systems by transforming nonlinear partial differential equations into 
simpler ordinary differential equations using traveling wave 
transformations. The study's modifications allowed GKM to capture 
the intricate dynamics of nonlinear fractional systems effectively. 
Producing Accurate Numerical Solutions: The results confirmed 
that GKM, when combined with the conformable fractional 
derivative, provides precise approximations of FDE solutions. The 
method’s accuracy was validated through comparative analysis 
between exact and computed solutions, as illustrated in the results 
table and graphical plots. Highlighting Applicability Across 
Disciplines: The research emphasized the versatility of the 
approach, suggesting applications in fluid mechanics, quantum 
mechanics, and anomalous diffusion, where traditional methods 
may fall short. By integrating the conformable fractional derivative 
with the Generalized Kudryashov Method, this study contributes 
significantly to the field of fractional calculus and its applications. 
The findings underline the method's capability to address the 
challenges posed by nonlinear fractional systems, paving the way 
for further exploration in diverse scientific and engineering 
disciplines. Future research could focus on extending this 
approach to multi-dimensional FDEs and exploring its 
computational efficiency in real-world scenarios. 
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