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ABSTRACT 
Recent advancements in deep learning, particularly through 
Transformer architectures, have significantly improved code 
generation tasks. However, current pre-trained language models 
still encounter limitations when applied to code generation. The 
Improved RoBERTaMarian model, built upon the Marian neural 
machine translation framework, addresses these limitations by 
fine-tuning on natural language descriptions to generate code. The 
model was trained and tested on Django and CoNaLa datasets. 
The results in the CoNaLa dataset, was BLEU score of 36.834, 
Exact Match Accuracy of 15.300%, SacreBLEU score of 34.215, 
and ROUGE score of 49.827, reflecting its ability to generate 
accurate and semantically aligned code. Similarly, when evaluated 
on the Django dataset, the Improved RoBERTaMarian model 
outperformed BERTMarian, ELECTRAMarian, LUKEMarian, 
MarianCG and RoBERTaMarian models with a BLEU score of 
91.230, Exact Match Accuracy of 83.676%, SacreBLEU score of 
75.984, and ROUGE score of 95.210. These results indicate that 
the Improved RoBERTaMarian model excels in both syntactic and 
semantic code generation, making it a robust solution for 
applications requiring precise, contextually relevant code 
generation. Its high performance suggests significant potential for 
use in automated code synthesis and language model-based code 
assistants in software engineering tasks. 
 
Keywords: Code Generation, Fine-Tuning, Task-Adaptive 
Pretraining, Domain-Specific Data, Data Augmentation, Accuracy 
Enhancement 
 
INTRODUCTION 
Code generation, defined as the automated creation of executable 
code from natural language descriptions or other related inputs, 
has gained significant traction in recent research due to its potential 
to greatly enhance software development efficiency. Recent 
advancements in deep learning, particularly through the use of 
Transformer architectures, have marked a significant improvement 
in the performance of code generation tasks. For instance, the 
MarianCG model introduced by Soliman et al. (2022) leverages a 
Transformer architecture fine-tuned on natural language 
descriptions to generate Python code. This model builds upon the 
Marian neural machine translation framework and has 
demonstrated superior performance, achieving a BLEU on the 
CoNaLa dataset and DJANGO dataset, underscoring its 
effectiveness in translating natural language into code.The 
evolution of pre-trained language models has had a profound 
impact on code generation methodologies. Initially, Recurrent 

Neural Networks (RNNs) served as the foundation for these 
models. However, they faced significant limitations, particularly in 
capturing long-range dependencies, due to their sequential 
processing nature. To overcome these challenges, Transformer 
models such as BERT, RoBERTa, and ELECTRA have been 
developed. These models utilize self-attention mechanisms that 
allow for parallel processing, enabling them to better handle 
dependencies across input sequences and address the limitations 
inherent in RNNs. These advancements have led to significant 
improvements in various natural language processing tasks, 
including code generation. The use of pre-trained models for code 
generation offers several notable advantages. For example, the 
work by Beau and Crabbé (2022) introduced a new encoder-
decoder architecture that combines BERT with grammar-based 
constraints to ensure syntactically correct code generation. Their 
model achieved a BLEU score of 34.2 on the CoNaLa dataset and 
an accuracy of 81.03% on DJANGO, demonstrating the efficacy of 
integrating grammatical rules within code generation frameworks. 
Moreover, contemporary tools such as Hugging Face’s 
Transformers library have made advanced models like GPT-3 and 
GPT-Neo more accessible, enabling developers to generate 
contextually relevant code snippets based on high-level prompts. 
These tools have revolutionized software development by 
automating complex coding tasks, allowing developers to focus 
more on high-level logic rather than routine coding. 
Despite these advancements, challenges remain in generating 
accurate and syntactically correct code that adheres to specific 
programming language constraints. Pre-trained models, although 
powerful, still face difficulties in consistently producing error-free 
code that satisfies the syntactical and semantic rules of 
programming languages. Furthermore, while these models can 
generate code across various languages, capturing domain-
specific coding patterns and long-term dependencies remains a 
significant challenge, especially for complex software systems. 
Current language models, despite their strengths, face several 
limitations when applied to code generation tasks: Even 
transformer-based models struggle with handling long-range 
dependencies between code tokens, which is essential for 
generating syntactically and semantically correct code. While pre-
trained models are proficient in generating code across different 
programming languages, they still lack the ability to effectively 
generalize across diverse codebases, especially in specialized 
domains such as web development, data science, and machine 
learning. Pré-trained models may not capture domain-specific 
coding patterns, making them less effective for complex tasks that 
require an in-depth understanding of a particular framework or 
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language. Although fine-tuning the model is less computationally 
demanding than training from scratch, it still requires substantial 
domain-specific data to achieve optimal results, particularly in 
niche areas of code generation. These limitations highlight the 
need for an enhanced approach to code generation that can 
effectively capture long-term dependencies, improve 
generalization across domains, and minimize the need for 
extensive fine-tuning. While pre-trained transformer models, 
including RoBERTa and LUKE, have demonstrated substantial 
improvements in natural language tasks, their application in code 
generation remains suboptimal. The major limitations observed in 
current code generation models are: Models such as RoBERTa-
Marian achieve moderate BLEU scores, but the exact match 
accuracy remains low, especially on datasets like CoNaLa. This 
suggests that the models may struggle with capturing the fine-
grained details required for accurate code generation. Pré-trained 
models tend to perform well on familiar datasets but often fail to 
generalize across diverse coding styles or domains, leading to 
issues when applied to new or varied coding environments, such 
as DJANGO versus CoNaLa. Despite some success in generating 
syntactically correct code, the models still produce outputs with 
logical or contextual errors, which reduces their practical utility for 
developers. These issues highlight the need for a more robust 
approach that can improve the consistency, generalization, and 
precision of code generation models, especially in real-world 
software development environments. The primary aim of this paper 
is to enhance code generation accuracy by addressing the 
limitations of existing pre-trained transformer models through fine-
tuning, task-adaptive pretraining, and domain-specific data 
augmentation. This approach will aim to improve both the exact 
match accuracy and the overall performance of code generation 
models in various coding environments. Currently, ongoing 
research continues to explore innovative approaches to improving 
code generation through deep learning techniques. The integration 
of pre-trained models with grammatical constraints, as well as the 
continued development of more sophisticated Transformer-based 
architectures, holds promise for advancing the quality and 
applicability of automated code generation. By addressing the 
remaining challenges, the potential for these models to significantly 
enhance software development efficiency remains substantial. 
 
Related Works 
The related works on code generation using large language models 
(LLMs) show a diverse array of approaches, each focusing on 
various aspects of model development and application in software 
engineering tasks. 
Soliman et al. (2022) introduced MarianCG, a transformer-based 
model inspired by machine translation for code generation, which 
enhances efficiency but struggles with complex code logic and 
edge cases. Alaçam et al. (2022) applied transformers for semantic 
understanding in code generation, though it requires substantial 
training data and computational resources. Gupta & Kumar (2022) 
focused on robustness in neural language translation through a 
sequence-to-sequence approach but noted challenges in handling 
code syntax errors and context understanding. 
Poesia et al. (2022) developed Synchromesh, which emphasizes 
reliability and pre-training, but warned about the inefficiencies and 
biases inherent in pre-trained models. 
Wan et al. (2022) provided a structural analysis of pre-trained 
language models for code, helping improve understanding but not 
accounting for highly customized programming patterns. 

Madaan et al. (2022) explored few-shot commonsense learning in 
language models for code, enabling generalization with minimal 
examples but with performance degradation in complex tasks. 
Xu & Zhu (2022) provided a comprehensive survey on pre-trained 
language models for neural code intelligence, offering valuable 
insights into the applicability of these models in various 
programming-related tasks. However, the study is survey-based 
and lacks direct application or hands-on validation of the models.  
Xia et al. (2022) focused on program repair, leveraging large pre-
trained language models for automated solutions. While this 
approach enhances repair capabilities, the quality of the repairs 
can vary, and the models may struggle with complex or ambiguous 
bug reports. 
Huang et al. (2022) focused on using pre-trained programming 
language models for repairing security vulnerabilities, providing 
automatic detection and repair. However, these models may miss 
advanced vulnerabilities that require more in-depth analysis or 
domain-specific expertise. Zan et al. (2022) proposed CERT, which 
uses continual pre-training on sketches for library-oriented code 
generation, improving accuracy. However, continual learning 
introduces complexity and challenges in data management. 
Zeng et al. (2022) conducted an extensive study of pre-trained 
models for program understanding and generation, revealing their 
potential to improve performance but also highlighting the biases 
introduced by large datasets. Chakraborty et al. (2022) proposed 
Natgen, a generative pre-training approach for “naturalizing” 
source code, which improves understanding but faces challenges 
with non-standard code styles. 
Chen et al. (2022) developed Codet, a model that generates both 
code and corresponding tests, enhancing code reliability, though 
generated tests may not always cover all possible edge cases. 
Ding et al. (2022) revisited the use of pre-trained code embeddings, 
which enhance model performance but may miss context-specific 
nuances. 
Guo et al. (2023) presented Longcoder, a long-range pre-trained 
model for code completion, improving accuracy for complex code 
but increasing computational costs for simpler tasks.  
Jiang et al. (2023) evaluated the impact of code language models 
on automated program repair, observing that while these models 
can improve repair performance, they may miss subtle bugs, 
especially in legacy codebases. Sarda et al. (2023) introduced 
Adarma, a system for auto-detecting and auto-remediating micro 
service anomalies using large language models. Despite its 
promising applications, the model's accuracy can be compromised 
when working with complex service architectures. 
Zhang et al. (2023) explored integrating code planning with 
generation, creating more structured and efficient code using large 
language models. However, the planning may not always align with 
the actual coding logic, leading to performance issues. 
 Wang et al. (2023) reviewed the wide applications of pre-trained 
language models, highlighting their adaptability across a range of 
tasks, though the generality of the models can be both an 
advantage and a limitation, as they may not excel in task-specific 
scenarios. 
Deng et al. (2023) demonstrated the use of large language models 
as zero-shot fuzzers for deep-learning libraries, enhancing testing 
capabilities. However, zero-shot learning may miss critical 
vulnerabilities or unusual bugs that require more targeted testing.  
Liu et al. (2023) presented a model for code execution with pre-
trained language models, facilitating real-time testing, but 
performance can degrade when models are forced to work outside 
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their training domains. 
Guan et al. (2023) leveraged pre-trained large language models for 
model-based task planning, enhancing decision-making but at the 
cost of computational expense and the need for fine-tuning. 
Weyssow et al. (2023) explored parameter-efficient fine-tuning 
techniques, showing improvements in scalability but 
acknowledging the risk of overfitting.  
Xia et al. (2023) applied large pre-trained language models to 
automated program repair, boosting repair accuracy while requiring 
extensive training data and failing to address novel types of bugs. 
Yang et al. (2024) focused on large language models for 
automated code translation, improving translation accuracy while 
encountering difficulties in maintaining semantic correctness 
across languages. 
Dakhel et al. (2024) combined pre-trained models with mutation 
testing for effective test generation, but noted that mutation testing 
may not cover all edge cases. 
Di et al. (2024) introduced Codefuse-13b, a multi-lingual model for 
cross-lingual code generation, which struggles with highly 
specialized languages and novel syntax. 
Gao et al. (2024) expanded the applicability of pre-trained code 
models by leveraging unlabeled data for fine-tuning, though 
unsupervised data reliance may lead to suboptimal performance.  
Zeng (2024) and Isaac et al. (2023) leveraged large language 
models for code-mixed data augmentation in sentiment analysis, 
improving robustness. However, the effectiveness of this approach 
relies on high-quality mixed data and may struggle with under-
represented languages. Karkera et al. (2023) applied pre-trained 
language models to mine microbiome-disease relationships, 
improving biomedical text mining but facing difficulties in 
generalizing to other areas due to the specificity of the biomedical 
domain. 
These studies collectively emphasize the potential of pre-trained 
language models in a variety of code-related tasks, from program 
repair and anomaly detection to code generation and execution. 
However, common challenges include limitations in handling 
complex or ambiguous cases, performance degradation outside 
the models' training domains, and domain-specific issues that 
hinder broader applicability. These studies collectively highlight the 
progress and challenges in utilizing large language models for code 
generation, with a focus on improving efficiency, robustness, and 
adaptability, while addressing issues like computational demands, 
context understanding, and model biases. 
 
METHODOLOGY 
To address the identified limitations, this research proposes a 
hybrid model that combines fine-tuning with task-adaptive 
pretraining and domain-specific data augmentation. The model will 
leverage the strengths of existing pre-trained language models like 
BERT, RoBERTa, and LUKE, but enhance them by fine-tuning on 
specific datasets (CoNaLa and DJANGO). The task-adaptive 
pretraining will help adapt the models to the unique syntax and 
semantics of programming languages, while domain-specific data 
augmentation will generate a wider range of code examples to 
improve generalization. By refining the generated code through a 
feedback loop and continuously adjusting the model's learning 
process, this approach is expected to significantly enhance code 
generation accuracy, efficiency, and error reduction, offering a 
more reliable tool for developers in complex coding environments. 
RoBERTaMarian combines fine-tuning, task-adaptive pretraining, 
and domain-specific data augmentation to enhance pre-trained 

language models like BERT, RoBERTa, and LUKE for more 
accurate, efficient, and reliable code generation in real-world 
software development. 

 
Figure 1: 

 
Figure 2: 
 

 
Figure 3: 
 
The improved RoBERTaMarian is a hybrid model that 
integrates fine-tuning, task-adaptive pretraining, and domain-
specific data augmentation to enhance code generation. The 
model operates as follows: 
1. Task-Adaptive Pretraining 
Before fine-tuning, the model performs task-adaptive pretraining, 
where it is pre-trained on task-specific data to align the model's 
capabilities with the specific requirements of code generation. This 
process helps the model understand the syntax and semantics of 
programming languages, enabling it to adapt to the structure of 
code. 
2. Fine-Tuning 
The model undergoes fine-tuning on domain-specific datasets, 
such as code-related datasets, to improve its performance on 
generating relevant and accurate code snippets. Fine-tuning 
refines the pre-trained models to better handle the nuances of 
programming languages and software development tasks. 
3. Domain-Specific Data Augmentation 
To enhance generalization and robustness, the model leverages 
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domain-specific data augmentation, generating a broader range of 
code examples. This process enriches the training data by 
introducing variations of code snippets, which improves the model's 
ability to handle diverse coding scenarios and edge cases. 
RoBERTaMarian's Operational Stages 
RoBERTaMarian combines these processes to improve code 
generation by leveraging a sequence of stages: 
1. Input Stage 
Natural language (NL) text and code are used as inputs to the 
model. 
2. Preprocessing 
Both the NL text and code undergo preprocessing to standardize 
and clean the data. The output of this preprocessing is prepared 
for further embedding. 
3. Embedding Stage 

1. For Natural Language Input: 

a. Word Embeddings: Converts words into 
vector representations. 

b. Positional Embeddings: Encodes the 
position of each word in the sequence. 

c. Token Type Embeddings: Differentiates 
between tokens in the sentence, such as 
question or context. 

d. Layer Normalization and Dropout: Ensures 
stable training and reduces overfitting. 

2. For Code Input: 

a. The code is also processed and passed 
through the embedding stage, which 
includes: 

i. Word Embeddings: Converts 
code elements into vector 
representations. 

ii. Sinusoidal Embeddings: A form 
of positional encoding that helps 
in distinguishing tokens based on 
their position in the code 
sequence. 

4. Model Stages 

i. The output of the embedding stage is fed into 
the DistilRoBERTa Model, a distilled version of 
RoBERTa that enhances efficiency while retaining 
performance. This model processes the input, 
extracting features relevant for code generation. 

ii. The output from DistilRoBERTa is passed 
to MarianForCausalLM, a transformer model trained for 
causal language modeling, which is fine-tuned for 
generating code. 

5. Combining Outputs 
The embeddings from both the NL text and code are combined at 
the MarianForCausalLM stage to generate the final output. 
6. Output 
The final result is the model’s prediction of the most likely code 
snippet or completion based on the provided input, providing a 
more accurate, efficient, and context-aware tool for code 
generation. This hybrid approach, which combines fine-tuning, 
task-adaptive pretraining, and domain-specific data augmentation, 
leverages the power of multiple models and techniques. It 
enhances the model's ability to generate high-quality code that 
aligns with natural language instructions while improving 
adaptability, accuracy, and efficiency in real-world software 

development. This paper aims to push the boundaries of 
automated code generation by integrating state-of-the-art 
language models with domain-specific strategies, making them 
more adaptable, accurate, and efficient in real-world software 
development. The model was trained using the CoNaLa and 
DJANGO datasets. 
 
BLEU Score (Bilingual Evaluation Understudy Score) 
The BLEU score is a metric for evaluating the quality of text 
generated by a machine, such as machine translation or code 
generation. It measures the precision of n-grams (i.e., sequences 
of n words) between the generated output and a reference. 
The formula for BLEU is: 

𝐵𝐿𝐸𝑈 = 𝐵𝑃𝑥𝑒∑ 𝑟𝑘 log 𝑝𝑛
𝑁
𝑛=1 …………………… 1 

 
Where: 
BP is the Brevity Penalty (to penalize short outputs): 
 

𝐵𝑃 = {
1   𝑖𝑓 𝑐 > 𝑟

𝑒
(1−

𝑟

𝑐
)  𝑖𝑓 𝑐<𝑟

………………………………2 

where c is the length of the candidate translation, and r is the length 
of the reference translation. 

 
pn is the precision of n-grams (precision of 1-grams, 2-
grams, etc.), calculated as: 

𝑝𝑛 =
∑ 𝑚𝑖𝑛(𝑐𝑘,𝑟𝑘)𝑘

∑ 𝑐𝑘𝑘
…………………………..3 

where 𝑐𝑘  is the count of n-grams in the candidate output, and r𝑟𝑘 
is the count of n-grams in the reference. 

𝑤𝑛 is the weight for each n-gram precision (commonly 
set to 1 for equal weighting). 

 
2. Exact Match Accuracy 
Exact Match Accuracy (EMA) measures the percentage of 
instances where the generated output exactly matches the 
reference output. 
 

𝐸𝑀𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑎𝑐𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 𝑥 100 … … … … 4 

Where: 
The Exact Match is counted when the generated output is identical 
to the reference output. 
 
3. SacreBLEU Score 
SacreBLEU is a standardized version of the BLEU score that uses 
predefined settings for computation to ensure reproducibility and 
consistency. The formula for SacreBLEU is similar to BLEU, but 
with fixed parameters for brevity penalty and smoothing. 
The formula for SacreBLEU is: 

𝑆𝑎𝑐𝑟𝑒𝐵𝐿𝐸𝑈 = 𝑒
(

1

𝑁
∑ log 𝑝𝑛

𝑁
𝑛=1 )

………………………….5 
Where: 
pn is the precision for n-grams, calculated as in BLEU. 
Smoothing is typically applied to handle cases where n-grams do 
not appear in the candidate translation. 
 
4. ROUGE Score (Recall-Oriented Understudy for Gisting 
Evaluation) 
ROUGE is a set of metrics for evaluating summaries and other 
generated content by comparing n-grams, word sequences, and 
word pairs. The most commonly used ROUGE metric is ROUGE-
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N, which focuses on n-gram overlap, and ROUGE-L, which 
measures the longest common subsequence. 
The formula for ROUGE-N is: 
 

𝑅𝑂𝑈𝐺𝐸 − 𝑁 =
∑ 𝑆𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑛)𝑛−𝑔𝑟𝑎𝑚 𝑛∈𝑆

∑ 𝑆𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ∑ 𝐶𝑜𝑢𝑛𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑛)𝑛−𝑔𝑟𝑎𝑚 𝑛∈𝑆
 ……6 

Where: 
𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑛)is the number of n-grams in the candidate that 
match n-grams in the reference. 
𝐶𝑜𝑢𝑛𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑛)is the total number of n-grams in the 

reference. 
For ROUGE-L, which evaluates the longest common subsequence 
(LCS), the formula is: 
 

𝑅𝑂𝑈𝐺𝐸 − 𝐿 =
LCS Length 

LCS of Reference
…7 

Where: 
LCS Length is the length of the longest common subsequence 
between the candidate and the reference. 
Each of these metrics provides a different perspective on the 
quality of generated code or text, helping assess various aspects 
such as accuracy, fluency, and semantic similarity. 
 
RESULTS 
The results of the trained model using DJANGO and CoNaLa 
datasets trained using the proposed model are presented in this 
section. The datasets were partitioned as showed in Table 4.1. 
 
Table 1: Data Partition of the dataset 

Dataset 
Dataset 
Size 

Train Split 
Validation 
Split 

Test Split 

DJANGO 19K 16,000 1,000 1,805 

CoNaLa 26K 24,687 1,237 500 

 
Table 1 outlines the data partitioning for two datasets, DJANGO 
and CoNaLa, which are used in model training and evaluation. 
DJANGO Dataset has a total of 19,000 samples. For training, 
16,000 samples are used, which represents the majority of the 
data. 1,000 samples are allocated for validation, allowing for model 
tuning and adjustment. The remaining 1,805 samples are 
designated for testing, to assess the model's performance on 
unseen data. TheCoNaLa Dataset has 26,000 samples. Out of 
these, 24,687 samples are used for training, providing the model 
with substantial data for learning code generation patterns. 1,237 
samples are set aside for validation, while 500 samples are 
reserved for testing. 
These partitions help ensure that the model is trained, validated, 
and tested on distinct subsets of data, optimizing the training 
process and improving the reliability of model evaluation. 
 
 
 
 
 
 

 
Table 2: Performance of the algorithms with CoNaLa Dataset 

Model 
BLEU 
Score 

Exact 
Match 
Accuracy 
(%) 

SacreBLEU 
Score 

ROUGE 
Score 

BERTMarian 33.870 11.350 28.900 44.270 

ELECTRAMarian 29.900 9.999 26.895 43.320 

 
  

30.281 7.900 23.970 40.451 

MarianCG 33.529 9.920 31.776 48.722 

Improved 
RoBERTaMarian 

36.834 15.300 34.215 49.827 

 
RoBERTaMarian 

34.956 12.980 31.450 43.823 

 
Table 2 summarized the performance metrics of various 
models evaluated using the CoNaLadataset. 
TheBERTMarian model achieved a BLEU score of 33.870 
and an Exact Match Accuracy of 11.350%. It also recorded a 
SacreBLEU score of 28.900 and a ROUGE score of 44.270, 
indicating its moderate performance in generating accurate 
and relevant code snippets. ELECTRAMarian showed a 
BLEU score of 29.900 and an Exact Match Accuracy of 
9.999%. Its SacreBLEU score was 26.895, with a ROUGE 
score of 43.320. These results suggested slightly lower 
accuracy compared to other models. 
LUKEMarian had a BLEU score of 30.281 and a 7.900% 
Exact Match Accuracy, along with a SacreBLEU score of 
23.970 and ROUGE score of 40.451. This model performed 
somewhat lower on most metrics. MarianCG demonstrated a 
BLEU score of 33.529 and 9.920% Exact Match Accuracy, 
with a SacreBLEU score of 31.776 and a high ROUGE score 
of 48.722, indicating strong semantic similarity in generated 
code. 
The Improved RoBERTaMarian model achieved the best 
performance, with a BLEU score of 36.834, an Exact Match 
Accuracy of 15.300%, a SacreBLEU score of 34.215, and a 
ROUGE score of 49.827. These scores reflected significant 
improvements in accuracy and semantic relevance over other 
models. 
Finally, the RoBERTaMarian model showed a BLEU score of 
34.956 and Exact Match Accuracy of 12.980%, along with a 
SacreBLEU score of 31.450 and a ROUGE score of 43.823. 
Overall, the Improved RoBERTaMarian model performed the 
best across all metrics, particularly in BLEU, Exact Match 
Accuracy, SacreBLEU, and ROUGE, suggesting its 
robustness and accuracy in code generation using the 
CoNaLa dataset. 
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Table 3: Performance of the algorithms with Django Dataset 

Model BLEU Score 
Exact Match 
Accuracy (%) 

SacreBLEU 
Score 

ROUGE Score 

BERTMarian 56.550 76.676 64.884 88.692 

ELECTRAMarian 53.020 65.319 58.155 83.905 

LUKEMarian 89.342 78.504 74.658 93.113 

MarianCG 90.410 81.830 75.906 94.647 

RoBERTaMarian 88.912 77.950 74.083 92.735 

ImprovedRoBERTaMarian 91.230 83.676 75.984 95.21.692 

Table 3 presented the performance of various models when evaluated on the Django dataset. 
 
DISCUSSION 
TheBERTMarian model achieved a BLEU score of 56.550 and an 
Exact Match Accuracy of 76.676%, with a SacreBLEU score of 
64.884 and a ROUGE score of 88.692. These scores indicated a 
moderate performance in code generation tasks on this dataset. 
ELECTRAMarian performed with a BLEU score of 53.020 and 
Exact Match Accuracy of 65.319%. The model had a SacreBLEU 
score of 58.155 and a ROUGE score of 83.905, showing slightly 
lower results across the metrics compared to other models. 
LUKEMarian achieved a BLEU score of 89.342 and an Exact 
Match Accuracy of 78.504%, alongside a SacreBLEU score of 
74.658 and a ROUGE score of 93.113. These results reflected high 
performance in terms of semantic similarity and match accuracy. 
MarianCG performed even better, with a BLEU score of 90.410 and 
Exact Match Accuracy of 81.830%. The SacreBLEU score was 
75.906, and the ROUGE score reached 94.647, demonstrating 
strong effectiveness in producing accurate and contextually 
relevant code. RoBERTaMarian scored a BLEU score of 88.912 
and an Exact Match Accuracy of 77.950%, with a SacreBLEU 
score of 74.083 and a ROUGE score of 92.735, indicating 
competitive performance. The Improved RoBERTaMarian model 
led in performance, achieving a BLEU score of 91.230 and Exact 
Match Accuracy of 83.676%, with a SacreBLEU score of 75.984 
and the highest ROUGE score of 95.210. These results marked it 
as the most effective model on the Django dataset, with the highest 
accuracy and semantic similarity, this is achieved due to the 
enhanced model architecture and improved hyperparameter tuning 
Overall, the Improved RoBERTaMarian model surpassed other 
models, particularly in BLEU, Exact Match Accuracy, SacreBLEU, 
and ROUGE scores, making it the most robust and reliable for code 
generation tasks with the Django dataset. The performance 
analysis of models on the CoNaLa and Django datasets revealed 
distinct strengths and implications for code generation accuracy 
and relevance in both contexts. 
For the CoNaLa dataset, Table 4.2 highlighted that the Improved 
RoBERTaMarian model outperformed other models across all 
metrics. With a BLEU score of 36.834, Exact Match Accuracy of 
15.300%, SacreBLEU score of 34.215, and ROUGE score of 
49.827, the model demonstrated superior accuracy and semantic 
alignment. This performance suggested that Improved 

RoBERTaMarian was better suited for generating relevant and 
accurate code, making it a potentially effective solution for natural 
language to code tasks where high semantic similarity is critical. In 
contrast, models like ELECTRAMarian and LUKEMarian showed 
lower BLEU and SacreBLEU scores, indicating limitations in 
capturing precise code details, which might affect tasks requiring 
exact match accuracy. 
On the Django dataset, Table 4.3 showed that the Improved 
RoBERTaMarian model continued to outperform with a BLEU 
score of 91.230, Exact Match Accuracy of 83.676%, SacreBLEU 
score of 75.984, and a ROUGE score of 95.210. This high accuracy 
and BLEU score suggested that the model was exceptionally 
robust in generating syntactically and semantically accurate code. 
This model's superior performance implied its high potential for 
applications where precise and contextually aligned code 
generation is required, such as automated code synthesis in 
software engineering tools. 
Other models, such as MarianCG and RoBERTaMarian, also 
performed competitively, particularly on BLEU and ROUGE scores. 
These models provided strong alternatives but did not reach the 
exact match or semantic precision levels demonstrated by the 
Improved RoBERTaMarian model. For instance, MarianCG’s 
BLEU score of 90.410 and Exact Match Accuracy of 81.830% 
indicated reliability but with slightly lower accuracy than the top 
performer. This could suggest their suitability for applications 
where close, but not exact, code similarity is acceptable. The 
Improved RoBERTaMarian model demonstrated the highest 
accuracy, semantic relevance, and robustness on both datasets, 
making it the most reliable for tasks requiring precise code 
generation. The findings suggest practical implications for 
deploying Improved RoBERTaMarian in real-world applications, 
such as automated code generation and language model-based 
code assistants, where generating syntactically correct and 
contextually relevant code is essential. Other models also showed 
potential, but they may be better suited for applications with lower 
exact match requirements or where computational efficiency is 
prioritized over semantic precision. 
 
Conclusion and Future Work 
In conclusion, the performance analysis of various models on the 
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CoNaLa and Django datasets revealed that the Improved 
RoBERTaMarian model consistently outperformed other models 
across key metrics, including BLEU, Exact Match Accuracy, 
SacreBLEU, and ROUGE scores. Specifically, the model 
demonstrated superior accuracy and semantic alignment, making 
it highly suitable for tasks that require precise and contextually 
relevant code generation. The results suggest that Improved 
RoBERTaMarian is a promising model for applications in 
automated code generation, especially in environments where 
accuracy and semantic similarity are critical. 
Other models, such as MarianCG and RoBERTaMarian, also 
performed well, particularly in BLEU and ROUGE scores, indicating 
their potential for use in scenarios that do not demand exact match 
precision. These models may be valuable alternatives for 
applications where high accuracy is less critical but performance is 
still important. 
Overall, the findings highlight the importance of model selection 
based on the specific requirements of code generation tasks. The 
Improved RoBERTaMarian model emerges as the most robust and 
reliable choice, especially when high performance in terms of both 
syntax and semantics is needed. Although it has limitations of 
handling non-standard programming languages or adapting to 
noisy, real-world datasets. 
 
While the Improved RoBERTaMarian model demonstrated strong 
results, there are several avenues for future research and 
improvement: Future work could explore fine-tuning the Improved 
RoBERTaMarian model on domain-specific code datasets to 
further improve its performance in specialized fields such as web 
development, machine learning, or data science. The models could 
be evaluated on even larger, more diverse datasets to assess their 
scalability and robustness in handling complex, real-world code 
generation tasks. Given the computational demands of large-scale 
models, future research could focus on optimizing model efficiency 
to reduce inference time without sacrificing performance, 
particularly for deployment in real-time code generation systems. 
Combining natural language processing with other modalities, such 
as code structure or visual representations (e.g., UI mockups for 
front-end code generation), could enhance model performance and 
broaden its applicability. Investigating hybrid systems where the 
model's suggestions are augmented by human feedback could 
improve the quality and relevance of the generated code, 
especially in ambiguous or context-dependent scenarios. 
By exploring these areas, future work can further enhance the 
capabilities of code generation models, making them more 
adaptable and efficient for real-world applications. 
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