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ABSTRACT 
This study developed a mathematical model of COVID-
19 infection transmission dynamics incorporating 
asymptomatically and symptomatically-infectious 
individuals, the vital dynamics such as birth rate and 
mortality rate, face-mask use, diagnosis of 
asymptomatic infectious individuals, and isolation of 
infected individuals as control strategy are also 
incorporated. The model is shown to have two unique 
equilibrium states, namely: the disease-free and 
endemic equilibrium states, and the basic reproduction 
number was computed using the next generation 
matrix operator. The results obtained from the 
normalised forward sensitivity index show that the 
contact rate, face-mask efficacy and compliance, and 
isolation rate are the most influential factors on the 
spread of COVID-19 infectious disease. Numerical 
simulations show that, decreasing the infection 
transmission parameter will also reduce the size of the 
infective population. From the numerical simulations 
and results, it is recommended that a combination of 
decreasing contact rate, increasing face mask 
compliance and efficacy, clinical diagnosis of 
asymptomatic individuals, and isolation of symptomatic 
individuals is vital to public health strategy in 
eradicating COVID-19 infection and death in the 
shortest possible time. 
 
Keywords: COVID-19, Positivity of Solution, 
Equilibrium States, Sensitivity Index, Basic 
Reproduction Number. 
 
INTRODUCTION 
The COVID-19 pandemic, caused by the novel severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), has created unprecedented public health and 
socioeconomic challenges worldwide. First identified in 
Wuhan, China, in December 2019 (Zhu et al., 2020). 
On 12 Jan 2020, the Chinese authorities shared the 
sequence of a novel coronavirus termed the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). Since then, the disease caused by SARS-CoV-2 
has been named coronavirus disease 2019 (COVID-
19) (Firas et al., 2020). Due to human-human 
transmission, the number of infected people grew 
rapidly, forcing Wuhan to go into a strict lockdown. 
Since then, the pandemic has spread to over 210 
countries, thereby inflicting severe public health and 

socio-economic burden in many parts of the world, 
including Nigeria. Nigeria, the most populous country 
in Africa, is one of the epicenters of COVID-19 in Africa. 
It has, as of 18 October 2021, accounted for over 
209,298 confirmed cases, and 2,337 deaths (NCDC, 
2021). Kaduna State in Northern Nigeria is also one of 
the most populous states in Nigeria. Like every other 
state in Nigeria, Kaduna State Government 
implemented measures such as the closing of schools, 
suspension of weekly church and mosque gatherings, 
the shutdown of sports centers, closing marketplaces, 
placing a curfew from 8 AM to 6 PM, closing inter-state 
borders and limiting the number of passengers in a 
commercial bus during intra-state travels. The virus 
rapidly spread globally, resulting in over 762 million 
confirmed cases and 6.8 million deaths as of April 2023 
(WHO, 2023). Nigeria, as Africa’s most populous 
nation, has faced significant burdens, with Kaduna 
State reporting over 9,901 confirmed cases and 78 
deaths by October 2021 (NCDC, 2021). 
According to Indwiana & Ysrafil (2020), COVID-19 is 
an infectious disease caused by a new coronavirus 
called SARS-CoV-2 which stands for Severe Acute 
Respiratory Syndrome Coronavirus 2. SARS-CoV-2 
belongs to the beta subgrouping of the coronaviridae 
family and is an enveloped virus containing a positive-
sense, single-stranded RNA with 29,891 bases of size. 
The genome encodes for 29 proteins involved in the 
infection, replication, and virion assembly process. The 
coronavirus gets its name from the crown-like spikes 
on its surface. Several types of coronaviruses can 
cause mild to severe respiratory illness, including the 
common cold, Middle East Respiratory Syndrome 
(MERS), and Severe Acute Respiratory Syndrome 
(SARS) (CDC, 2021). 
The spike S protein from SARS-CoV-2 contains a 
receptor binding domain (RBD) that binds the human 
angiotensin-converting enzyme 2 (ACE2) and thereby, 
promotes membrane fusion and uptake of the virus into 
human cells by endocytosis. The RBD present in the 
spike protein is the most variable region of the 
coronavirus genome. Structural and biochemical 
studies have suggested that RBD from SARS-CoV-2 
binds with high affinity to ACE2 compared to other 
SARS-CoV viruses, However, the human ACE2 
protein variability may also be a factor for the high 
binding affinity. Because this virus is new, no one has 
any immunity to it. This means it will potentially infect 
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very large numbers of people (WHO, 2021).  
From the time of exposure to COVID-19 infection to the 
moment when symptoms begin is on average 5-6 days 
and can range from 1-14 days (Li et al., 2020). 
According to WHO (2021), the most common 
symptoms of COVID-19 are Fever, dry cough, and 
fatigue. Symptoms of severe COVID-19 disease 
include loss of appetite, shortness of breath, confusion, 
persistent pain or pressure in the chest, and high 
temperature (above). People of all ages who 
experience fever and/or cough associated with 
difficulty in breathing, shortness of breath, chest pain 
or pressure, or loss of speech or movement should 
seek medical care immediately. Some people may 
experience severe illness, which can lead to 
hospitalisation and death (Guan et al., 2020). 
The primary mode of transmission is through 
respiratory droplets generated when an infected 
person talks, coughs, or sneezes. These droplets can 
land on nearby surfaces or directly on the mouth, nose, 
or eyes of another person nearby, leading to infection 
(CDC, 2022). As such, it is crucial to maintain physical 
distance, wear masks, and practise good hand hygiene 
to reduce the risk of transmission. 
However, there is also evidence that the virus can be 
transmitted through aerosols, which are smaller 
particles that can remain suspended in the air for 
longer periods. Poorly ventilated indoor spaces, 
particularly those with limited air exchange or 
recirculation, increase the risk of airborne transmission 
(Zhang et al., 2021). Proper ventilation and air filtration 
systems can help reduce the risk of airborne 
transmission in indoor environments. The COVID-19 
pandemic has been a stark reminder of the importance 
of understanding how infectious diseases spread and 
taking the necessary precautions to prevent their 
transmission.  
Several models have been formulated and analysed to 
explain the dynamics of COVID-19.  Andrea et al. 
(2020) proposed the challenges of modelling and 
forecasting the spread of COVID-19. They insisted that 
modelling and forecasting the spread of COVID-19 
remains a challenge, but they were able to present 
three macroscopic models, which include: Exponential 
growth model, the self-exciting branching process, and 
the SIR (susceptible-infected-resistant) compartmental 
model. Their study showed that addressing the 
coronavirus disease 2019 (COVID-19) outbreak will 
depend critically on the successful implementation of 
public health measures such as social distancing, 
shelter-in-place orders, disease surveillance, contact 
tracing, isolation, and quarantine.  
Barbarossa et al. (2020) described modelling the 
spread of covid-19 in Germany, its early assessment, 
and possible scenarios. They simulated different 
possible strategies for the mitigation of the current 
outbreak which can help in slowing down the spread of 
the virus and thus, reduce the peak in daily diagnosed 
cases, the demand for hospital intensive care unit 
admissions, and eventually the number of fatalities. 
Their results suggested that a partial and gradual lifting 

of introduced control measures could soon be possible 
if accompanied by further increased testing activity, 
strict isolation of detected cases, and reduced contact 
with risk groups.  
Tiwari (2020) investigated the modelling and analysis 
of covid-19 epidemic in India. Using the SIQR 
(susceptible-infectious-quarantined-recovered) model 
effective reproduction number, he was able to 
determine the epidemic doubling rate, and the infected-
quarantined ratio was used to check the temporal 
evolution of the pandemic in India. He estimated that 
there is a strong positive correlation between testing 
rate and detection of new cases; up to 6 million tests 
per day. 
Yuliya et al. (2020) developed mathematical modelling 
of the dynamics and containment of covid-19 in 
Ukraine. Their model included age-stratified disease 
parameters, as well as age-specific and location-
specific contact matrices, to represent contacts. They 
showed that the model can provide an accurate short-
term forecast for the numbers and age distribution of 
cases, and deaths. They also simulated different 
lockdown scenarios and the result suggested that 
reducing work contacts is more efficient at reducing the 
disease burden than reducing school contacts or 
implementing shielding for people over 60. 
Daniel (2020) presented a mathematical model for the 
transmission of COVID-19 with nonlinear forces of 
infection and the need for prevention measures in 
Nigeria. She proposed a mathematical model, 
SEIQCRW (susceptible, exposed, infected, 
quarantined, confirmed, recovered, and virus) to study 
the current outbreak of COVID-19 in Nigeria with 
nonlinear forces of infection, considering the routes 
from the environment to humans and from human to 
human. The model defined the transmission channels 
in the infection dynamics and the impact of the 
environmental reservoir in the spread of this disease to 
humans. The study suggested washing hands, 
fumigation, etc. as helpful to control the transmission of 
the virus. 
Enahoro et al. (2020) developed a mathematical model 
and analysis of the COVID-19 pandemic in Nigeria. 
The study showed that, in the absence of a safe and 
effective vaccine or antiviral for use against the 
pandemic in humans, control and efforts are focused 
on the use of non-pharmaceutical interventions (NPIs), 
community lockdown, contact tracing, quarantine of 
suspected cases, isolation of confirmed cases and the 
use of face masks in public. They also stated that 
relaxing or fully lifting the lockdown to re-open the 
economy or country might trigger a deadly second 
wave of the pandemic.  
Yusuf et al. (2020) analysed mathematical modelling of 
covid-19 transmission and control strategies in the 
population of Bauchi State, Nigeria. This research work 
extended the epidemic SEIR model by introducing new 
parameters based on the transmission dynamics of the 
novel COVID-19 pandemic, which are: susceptible 
class, exposed class, infected class, quarantined 
class, and recovered class. The analysis and model 
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building was done using Maple software. They 
concluded by stating that contact tracing must be taken 
seriously because the models showed the rise in the 
infected class is a sign of the high vulnerability of the 
population and lack of vaccines. Unless quarantine is 
done adequately, despite the rate of recovery, the rate 
of infection will keep increasing in the absence of the 
COVID-19 vaccine at that moment. 
Adewole et al. (2021) study showed how to model the 
dynamics of COVID-19 in Nigeria. They used 
Pontryagin’s maximum principle to optimise the time-
dependent intervention strategies to suppress the 
transmission of the virus. Numerical simulations were 
used to explore various optimal control solutions 
involving single and multiple controls. Also, sensitivity 
analysis was carried out to investigate the influence of 
the parameters in curtailing the disease. Their results 
suggested that a strict intervention effort is required, 
which involves identifying and isolating the infectious 
individuals to help reduce the spread of the disease.  
Suleiman et al. (2021) presented an estimation of the 
case of COVID-19 epidemiological data in Nigeria 
using statistical regression analysis. They employed 
two statistical regression models, such as the linear 
and polynomial models to estimate the case fatality 
rate (CFR), based on the early phase of the Covid-19 
outbreak in Nigeria. They recommended that the 
estimated CFR level of 0.03% in Nigeria will be 
maintained shortly only if there are no significant 
changes in the healthcare facilities, detection methods, 
continuous clinical treatments, and other factors. They 
also advised that the Government and relevant 
stakeholders should provide sufficient bed space and 
associated clinical care services to achieve a 
successful and effective control of COVID-19 in 
Nigeria.           
Okolo et al., (2021) developed a compartmental non-
linear deterministic epidemic model of coronavirus 
information 2019 (COVID-19) transmission dynamics 
incorporating social distancing; face mask use and 
hospitalisation is formulated. The results of the 
sensitivity index show that the most sensitive 
parameter is the infection transmission probability 
which was also taken as the social distancing 
parameter. Numerical simulations show that using a 
single intervention strategy is beneficial in reducing the 
COVID-19 disease burden. It is further demonstrated 
that the effective combination of social distancing, use 
of face masks in public, and isolation (hospitalisation) 
of infected individuals will lead to a great disease in 
COVID-19 infection burden. 
Mathematical models have been critical tools for 
understanding the transmission dynamics of infectious 
diseases and evaluating intervention strategies. 
Various studies have explored the dynamics of COVID-
19 using compartmental models such as SEIR, SIQR, 
and other extensions (Tiwari, 2020; Yusuf et al., 2020). 
However, many existing models fail to account for key 
factors such as population demography (birth and 
death rates), clinical diagnosis of asymptomatic cases, 
and the impact of localised interventions of face-mask 

compliance and isolation measures. Furthermore, 
limited research focuses on COVID-19 dynamics in 
specific Nigerian states, such as Kaduna, despite the 
unique demographic and epidemiological factors. 
This study aims to address these gaps by extending 
Danjuma et al., (2023) model, incorporating vital 
dynamics, a proportion of the population that uses 
face-mask, the efficacy of face masks, the effect of 
isolating infected individuals, and the impact of clinical 
diagnosis of the asymptomatically-infectious 
individuals. Using confirmed COVID-19 data from 
Kaduna State, the model evaluates the effectiveness 
of various control measures in reducing COVID-19 
transmission. The findings provide insights for public 
health policymakers in managing infectious disease 
outbreaks. 
 
MATERIALS AND METHODS 
The Models 
The total human population at time 𝑡 denoted by 𝑁(𝑡) 
is divided into six mutually-exclusive compartments of 
Susceptible (𝑆(𝑡)), Exposed (𝐸(𝑡)), Asymptomatically-

infectious (𝐼𝑎(𝑡)),  Symptomatically-infectious (𝐼(𝑡)), 

Isolated (𝐼𝑠(𝑡)) and Recovered (𝑅(𝑡)) individuals, so 

that, 
 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼𝐴(𝑡) + 𝐼(𝑡) + 𝐼𝑠(𝑡) +
𝑅(𝑡)                                       (∗)  
The variables and parameters used in the model are 
defined in Table 1. 
 
Table 1: Description of variables and parameters  

Variables / 
Parameters 

Description 

𝑆(𝑡) Number of Susceptible 
individuals at a given time t. 

𝐸(𝑡) Number of Exposed 
individuals at a given time t. 

𝐼𝐴(𝑡) Number of Asymptomatic 
individuals at a given time t. 

𝐼(𝑡) Number of Symptomatic 
individuals at a given time t. 

𝐼𝑆(𝑡) Number of Isolated individuals 
at a given time t. 

𝑅(𝑡) Number of Recovered 
individuals at a given time t. 

Π The population influx rate. 

𝛽 Infection transmission rate. 

𝜃 Proportion of individuals who 
wear face-masks in public. 

𝑞 Efficacy of face-masks. 

𝜂 The rate at which the 
asymptomatic individuals 
develop symptoms as a result 
of clinical diagnosis. 

𝑣 The isolation rate for 
symptomatic-infectious 
individuals. 

𝜎 The proportion of exposed 
individuals who show no 
clinical symptoms. 
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𝜔 The rate of progression from 
the exposed compartment to 
the infectious compartment. 

𝛾 The recovery rate for 
individuals asymptomatically-
infected, symptomatically-
infected and isolated 
compartments. 

𝑑 The COVID-19 fatality rate of 
the asymptomatically-infected, 

symptomatically-infected and 
isolated class. 

𝜇 Natural death rate. 

   
From the above description of variables and 
parameters, the interaction and flow in the different 
compartments are as depicted in the schematic 
diagram below in Figure 1. 

 
Figure 1: Schematic diagram of COVID-19 transmission dynamics. 

               
The Model Equations 
The above assumptions and formulations lead to the 
following system of ordinary differential equations: 
𝑑𝑆

𝑑𝑡
= Π − 𝛽(1 − 𝜃𝑞)𝑆

(𝐼 + 𝐼𝐴)

𝑁
− 𝜇𝑆                                (1) 

 
𝑑𝐸

𝑑𝑡
= 𝛽(1 − 𝜃𝑞)𝑆

(𝐼 + 𝐼𝐴)

𝑁
− (𝜔 + 𝜇)𝐸                                  (2) 

 
𝑑𝐼𝐴
𝑑𝑡
= 𝜎𝜔𝐸 − (𝛾 + 𝜂 + 𝜇

+ 𝑑)𝐼𝐴                                             (3) 
 
𝑑𝐼

𝑑𝑡
= (1 − 𝜎)𝜔𝐸 + 𝜂𝐼𝐴

− (𝛾 + 𝑣 + 𝜇 + 𝑑)𝐼                          (4) 
 
𝑑𝐼𝑠
𝑑𝑡
= 𝑣𝐼 − (𝛾 + 𝜇 + 𝑑)𝐼𝑠                                                            (5) 

 
𝑑𝑅

𝑑𝑡
= 𝛾𝐼𝐴 + 𝛾𝐼 + 𝛾𝐼𝑠 − 𝜇𝑅                                                           (6) 
 

with the non-negative initial condition 𝑆(0) = 𝑆0 >
0,𝐸(0) = 𝐸0 > 0, 𝐼𝐴(0) = 𝐼𝐴0 > 0, 𝐼(0) = 𝐼0 > 0, 𝐼𝑠(0) =

𝐼𝑆0 > 0, 𝑅(0) = 𝑅0 >

0                                                                   (7) 
 
Invariant Region 
Consider the biologically feasible region 

Ω = {(𝑆(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼(𝑡), 𝐼𝑠(𝑡), 𝑅(𝑡)) ∈ ℝ
6: 𝑁

≤
𝜋

𝜇
}        (8) 

Lemma 2.1: The closed set Ω is positively invariant 
and attracting with respect to the system equations (1) 
– (6). 
Proof: 
Adding equation (1) – (6) gives the rate of change of 
the total population 
𝑑𝑁

𝑑𝑡
= Π − 𝜇𝑁 − 𝑑(𝐼𝐴 + 𝐼

+ 𝐼𝑠)                                                     (9) 
It is clear from the equation (10) that 
𝑑𝑁

𝑑𝑡
≤ Π
− 𝜇𝑁                                                                                    (10) 

it follows that 
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𝑑𝑁

𝑑𝑡
≤ 0, if 𝑁(𝑡) ≥

Π

𝜇
 

Thus, by a standard comparison theorem 
(Lakshmikantham et al., 1989) can be used to show 
that  

𝑁(𝑡)
= 𝑁(0)𝑒−𝜇𝑡

+ 
Π

𝜇
(1 − 𝑒−𝜇𝑡)                                                  (11) 

In particular, 

𝑁(𝑡) ≤
Π

𝜇
      if    𝑁(0) ≤

Π

𝜇
 

Thus, the region Ω = {(𝑆, 𝐸, 𝐼𝐴 𝐼, 𝐼𝑆, 𝑅) ∈ ℝ
6: 𝑁 ≤

𝜋

𝜇
} is 

positively invariant. However, if 𝑁(𝑡) ≤
Π

𝜇
, then either 

the solution enters Ω in a finite time, or 𝑁(𝑡) 

approaches 
Π

𝜇
 asymptotically. Hence, the region Ω 

attracts all solutions in ℝ6. 
Therefore, it is sufficient to consider the dynamics of 

the flow generated by equations (1) – (6) in Ω where 
the usual existence, uniqueness, and continuation 
results hold for the system (1) – (6), that is, the system 
is mathematically and epidemiologically well-posed in 
Ω. 
 
Model Analysis 
Disease-Free Equilibrium (DFE) Point 
The Disease-Free Equilibrium (DFE) state of the model 
(1) – (6) , ℇ0 is given as: 

ℇ0  = (𝑆0, 0, 0, 0, 0, 0) =

(
Π

𝜇
, 0, 0, 0, 0, 0)                                      (12)  

To assess the stability of COVID-19, the computation 
of the basic reproduction number 𝑅0  is needed.  
 
Basic Reproduction Number (𝑹𝟎) 
The basic reproduction number of an infectious 
disease is the average of secondary infections when 

one infected individual is introduced into a host 
population where everyone is susceptible (Diekmann, 
et al., 1990; Van Den Driessche & Watmough, 2002). 
We use the next-generation matrix approach to 
compute the basic reproduction number 𝑅0. The basic 

reproduction number 𝑅0 is the spectral radius of the 

product matrix 𝐹𝑉−1. That is, 
 

𝑅0 = 𝜎(𝐹𝑉
−1)                                   (13) 

 
where 𝜎 denotes the spectral radius. 

The associated non-negative matrix 𝐹, for the new 

infective terms and the non-singular M-matrix, 𝑉, for 
the remaining transfer terms at the DFE are 
respectively given by 
𝐹𝑥(ℇ0)

= (
0 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
0 0 0
0 0 0

)                          (14) 

and 
𝑉

= (

(𝜔 + 𝜇) 0 0

−𝜎𝜔 (𝛾 + 𝜂 + 𝜇 + 𝑑) 0

−(1 − 𝜎)𝜔 −𝜂 (𝛾 + 𝑣 + 𝜇 + 𝑑) 

)               (15) 

𝑉𝑥
−1

=

(

 
 
 
 

1

(𝜔 + 𝜇)
0 0

𝜎𝜔

𝑎1(𝜔 + 𝜇)

1

𝑎1
0

𝜂𝜎𝜔 + 𝑎1(1 − 𝜎)𝜔

𝑎1𝑎2(𝜔 + 𝜇)

𝜂

𝑎1𝑎2

1

𝑎2)

 
 
 
 

                                           (16) 

where, 
𝑎1 = (𝛾 + 𝜂 + 𝜇 + 𝑑) 
𝑎2 = (𝛾 + 𝑣 + 𝜇 + 𝑑)  

so that 

𝐹𝑥𝑉𝑥
−1 = 

(
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
[

𝜎𝜔

𝑎1(𝜔 + 𝜇)
] + 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
[
𝜂𝜎𝜔 + 𝑎1(1 − 𝜎)𝜔

𝑎1𝑎2(𝜔 + 𝜇)
] 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
[
1

𝑎2
] + 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
[
𝜂

𝑎1𝑎2
] 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
[
1

𝑎1
]

0 0 0
0 0 0

)         (17) 

 
 
It follows that the basic reproduction number, denoted 

by 𝑅0,  given by 𝜎(𝐹𝑉−1) 
where 𝜎 denotes the spectral radius is 

ℛ0 =   
𝛽(1 − 𝜃𝑞)Π

𝜇Ν(𝜔 + 𝜇)
[
𝜎𝜔

𝑎1

+
𝜂𝜎𝜔 + 𝑎1(1 − 𝜎)𝜔

𝑎1𝑎2
 ]             (18) 

 
Local Stability of Disease Free Equilibrium (DFE) 
State 
We investigated the local stability of the Disease-Free 
Equilibrium (DFE) state by evaluating the associated 
Jacobian of equations (1) – (6) at the DFE state. The 
Jacobian matrix J the system (1) – (6), evaluated at the 
disease-free equilibrium, 𝐽(ℇ0) is given by  
𝐽(ℇ0) =

(

 
 
 
 
 

−𝜇 0 −𝛽(1 − 𝜃𝑞)
Π

𝜇𝑁
−𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
0 0

0 −(𝜔 + 𝜇) 𝛽(1 − 𝜃𝑞)
Π

𝜇𝑁
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
0 0

0 𝜎𝜔 −(𝛾 + 𝜂 + 𝜇 + 𝑑) 0 0 0

0 (1 − 𝜎)𝜔 𝜂 −(𝛾 + 𝑣 + 𝜇 + 𝑑) 0 0

0 0 0 𝑣 −(𝛾 + 𝜇 + 𝑑) 0
0 0 𝛾 𝛾 𝛾 −𝜇)

 
 
 
 
 

 (19) 
 
Theorem 3.1: The DFE state of the model (1) – (6) 
given by ℇ0, is locally asymptotically stable whenever 

𝑅0 < 1 and ℇ0 is unstable if  𝑅0 > 1. 
 
Proof: 
It suffices to show that all the eigenvalues of the 
characteristics equation of the Jacobian matrix 𝐽(ℇ0), 
have negative real parts. The eigenvalues are 
determined by solving the characteristics equation 
det(𝐽(ℇ0) − 𝜆𝐼) = 0 

https://dx.doi.org/10.4314/swj.v19i4.31
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Evaluating equation (19) to obtain, 
                                                                                                         
(−𝜇 − 𝜆)(−𝜇 − 𝜆)(−𝑎3 −

𝜆) |

−(𝜔 + 𝜇) − 𝜆 𝛽(1 − 𝜃𝑞)
Π

𝜇𝑁
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁

𝜎𝜔 −𝑎1 − 𝜆 0
(1 − 𝜎)𝜔 𝜂 −𝑎2 − 𝜆

| = 0                                

 where, 

𝑎1 = (𝛾 + 𝜂 + 𝜇 + 𝑑) 
𝑎2 = (𝛾 + 𝑣 + 𝜇 + 𝑑) 
𝑎3 = (𝛾 + 𝜇 + 𝑑) 

Simplifying to obtain 

(−𝜇 − 𝜆) (−𝜇 − 𝜆)(−𝑎3 − 𝜆) [𝜆
3 + 𝜆2(𝑎1 + 𝑎2 +  𝜔 +

𝜇) + 𝜆 [−𝛽(1 − 𝜃𝑞)
Π𝜎𝜔

𝜇𝑁
− 𝛽(1 − 𝜃𝑞)

Π(1−𝜎)𝜔

𝜇𝑁
 + 𝑎1𝑎2 +

(𝑎1 + 𝑎2)(𝜔 + 𝜇)] −  𝛽(1 − 𝜃𝑞)
Π

𝜇𝑁
[𝜂𝜎𝜔 + 𝑎1𝜔 −

𝑎1𝜎𝜔 + 𝑎2𝜎𝜔] + 𝑎1𝑎2(𝜔 + 𝜇)] = 0       

     (20)                                                                                                     
Thus, the eigenvalues are: 𝜆 =  −𝜇 (twice),  𝜆 = − 𝑎3 
and the polynomial 𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0   
where, 
𝐴 = 𝑎1 + 𝑎2 +  𝜔 + 𝜇,    
     (21) 

𝐵 = 𝑎1𝑎2 + 𝑎1( 𝜔 + 𝜇) + 𝑎2( 𝜔 + 𝜇) − 𝛽(1 − 𝜃𝑞)
Π𝜎𝜔

𝜇𝑁
−

𝛽(1 − 𝜃𝑞)
Π(1−𝜎)𝜔

𝜇𝑁
,  (22) 

𝐶 = −
𝛽(1−𝜃𝑞)

Π

𝜇𝑁

(𝜔+𝜇)
[
𝜂𝜎𝜔+𝑎1(1−𝜎)𝜔

𝑎1𝑎2
+
𝜎𝜔

𝑎1
] + 𝑎1𝑎2(𝜔 + 𝜇), 

    (23) 
The Routh-Hurwitz stability (Routh-Hurwitz, 1964) 
criteria could be used to determine the sign of the 
eigenvalues. By the Routh-Hurwitz criteria, all the roots 
of the characteristics equation (20) have negative real 
parts if: 𝐴, 𝐵, 𝐶 > 0, 𝐴𝐵 − 𝐶 > 0    
Obviously,     

𝐴 = 𝑎1 + 𝑎2 +  𝜔 + 𝜇 >  0            

𝐵 = 𝑎1𝑎2 + 𝑎1( 𝜔 + 𝜇) [1 − 𝑅0

+ (
𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁

+
𝛽(1 − 𝜃𝑞)Π(1 − 𝜎)𝜔

𝑎2( 𝜔 + 𝜇)𝜇𝑁
)]

+ 𝑎2( 𝜔 + 𝜇) [1 − 𝑅0

+ (
𝛽(1 − 𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔 + 𝜇)𝜇𝑁

+
𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁
)] > 0, 𝑖𝑓 𝑅0 < 1 

𝐶 =  𝑎1𝑎2( 𝜔 + 𝜇) [1 − 𝑅0

+ (
𝛽(1 − 𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔 + 𝜇)𝜇𝑁
+
𝛽(1 − 𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔 + 𝜇)𝜇𝑁

+
𝛽(1 − 𝜃𝑞)Π(1 − 𝜎)𝜔

𝑎2( 𝜔 + 𝜇)𝜇𝑁
)] > 0, 𝑖𝑓 𝑅0

< 1 

Thus, = 𝑎1
2𝑎2 + 𝑎1

2( 𝜔 + 𝜇) [1 − 𝑅0 + (
𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π(1−𝜎)𝜔

𝑎2( 𝜔+𝜇)𝜇𝑁
)] + +𝑎1𝑎2( 𝜔 + 𝜇) [1 − 𝑅0 +

(
𝛽(1−𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔+𝜇)𝜇𝑁
+
𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
)] + 𝑎1𝑎2

2 + 𝑎1𝑎2( 𝜔 +

𝜇) [1 − 𝑅0 + (
𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
+
𝛽(1−𝜃𝑞)Π(1−𝜎)𝜔

𝑎2( 𝜔+𝜇)𝜇𝑁
)] + 𝑎2

2( 𝜔 +

𝜇) [1 − 𝑅0 + (
𝛽(1−𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔+𝜇)𝜇𝑁
+
𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
)] + 𝑎1𝑎2( 𝜔 +

𝜇) + 𝑎1( 𝜔 + 𝜇)
2 [1 − 𝑅0 + (

𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π(1−𝜎)𝜔

𝑎2( 𝜔+𝜇)𝜇𝑁
)] + 𝑎2( 𝜔 + 𝜇)

2 (
𝛽(1−𝜃𝑞)Π𝜎𝜔

𝑎1( 𝜔+𝜇)𝜇𝑁
+

𝛽(1−𝜃𝑞)Π𝜎𝜂𝜔

𝑎1𝑎2( 𝜔+𝜇)𝜇𝑁
) − 𝑎1𝑎2( 𝜔 + 𝜇)+𝑎1𝑎2( 𝜔 + 𝜇)𝑅0 > 0,

if 𝑅0 < 1        (24) 
 
Global Stability of Disease-Free Equilibrium (DFE) 
State 
To ensure that COVID-19 infection eradication is 
independent of the initial size of the population of the 
model, it is imperative to show that the DFE of the 
model (1) – (6) given by ℇ0 is globally asymptotically 
stable (GAS). To achieve this, we will use the following 
results introduced by (Castillo-Chavez et al, 2002). 
Lemma 3.1: (Castillo-Chavez et al, 2002). Let systems 
of equation (1) – (6) be written in the form: 
𝑑𝑋

𝑑𝑡
= 𝑊(𝑋, 𝑌)                                                 

           (25) 
𝑑𝑌

𝑑𝑡
= 𝐺(𝑋, 𝑌),            𝐺(𝑋, 0) = 0        

           (26) 
where 𝑋 ∈ ℝ𝑚 denotes (its components), the number 

of uninfected individuals and 𝑌 ∈ ℝ𝑛 denotes (its 
components), the number of infected individuals 
including latent, infectious, etc. 𝑋0 = (𝑋

∗, 0) denotes 

the DFE of the system. Also assume the conditions 𝐻1 
and 𝐻2 below: 

(𝐻1) for 
𝑑𝑋

𝑑𝑡
= 𝑊(𝑋, 0), 𝑋∗ is globally asymptotically 

stable (GAS), 

(𝐻2) for 𝐺(𝑋, 𝑌) = 𝑄𝑌 − �̂�(𝑋, 𝑌), �̂�(𝑋, 𝑌) ≥ 0 for 
(𝑋, 𝑌) ∈ Ω,  

where the Jacobian 𝑄 = (
𝜕𝐺

𝜕𝑌
)
𝑋0

is an Metzler matrix (M-

matrix, for off-diagonal elements of 𝑄 are non-

negative) and Ω is the region where the model makes 

biological sense. Then the DFE, 𝑋0 = (𝑋
∗, 0) is globally 

asymptotically stable provided that 𝑅0 < 1. If the 
system satisfies these two conditions, then the 
following lemma holds. 

Lemma 3.2: The disease free equilibrium 𝑋0 =
(𝑋∗, 0) of the system of equations (1) - (6) is globally 

asymptotically stable (GAS) provided that 𝑅0 < 1 and 

the assumptions 𝐻1 𝑎𝑛𝑑 𝐻2 are satisfied. 
Now, we state the following theorem. 
Theorem 3.2: The disease-free equilibrium of the 
system of equations (1) – (6) is globally asymptotically 
stable if 𝑅0 < 1. 
Proof: We adopt the notations in Lemma 3.2 and verify 
the conditions  (𝐻1) 𝑎𝑛𝑑 (𝐻2).  
In our model,  𝑋 = (𝑆, 𝑅)𝑇, 𝑌 = (𝐸, 𝐼𝐴, 𝐼, 𝐼𝑆), and 𝑋∗ =

https://dx.doi.org/10.4314/swj.v19i4.31
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(
𝜋

𝜇
, 0). 

The uninfected subsystem is: 
  
𝑑

𝑑𝑡
[
𝑆
𝑅
] = 𝑊

= [
Π − 𝛽(1 − 𝜃𝑞)𝑆

(𝐼 + 𝐼𝐴)

𝑁
− 𝜇𝑆

𝑌(𝐼𝐴 + 𝐼 + 𝐼𝑆) − 𝜇𝑅
]                                      (27) 

When 𝐸 = 𝐼𝐴 = 𝐼 = 𝐼𝑆 = 0, the uninfected subsystem 

(27) becomes, 
𝑑

𝑑𝑡
[
𝑆
𝑅
]

= [
Π − 𝜇𝑆
−𝜇𝑅

]                                                                                (28) 

and its solution is, 

𝑅(𝑡) = 𝑅(0)𝑒−𝜇𝑡, 𝑆(𝑡) = 𝑆(0)𝑒−𝜇𝑡 +
Π

𝜇
(1 − 𝑒−𝜇𝑡) 

clearly, 𝑅(𝑡) ⟶ 0 𝑎𝑛𝑑 𝑆(𝑡) ⟶
Π

𝜇
 𝑎𝑠 𝑡 ⟶ ∞, 

regardless of the values of 𝑅(0) 𝑎𝑛𝑑 𝑆(0). Hence, 𝑋∗ =

(
Π

𝜇
, 0) is globally asymptotically stable for the 

subsystem. 
𝑑𝑋

𝑑𝑡
= 𝑊(𝑋, 0) 

Next, we have 
 
𝑄

=

(

  
 
−(𝜔 + 𝜇) 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
0

𝜎𝜔 −(𝛾 + 𝜂 + 𝜇 + 𝑑) 0 0
(1 − 𝜎)𝜔 𝜂 −(𝛾 + 𝑣 + 𝜇 + 𝑑) 0

0 0 𝑣 −(𝛾 + 𝜇 + 𝑑))

  
 
       (29) 

From 𝐺(𝑋, 𝑌) = 𝑄𝑌 − �̂�(𝑋, 𝑌) 
�̂�(𝑋, 𝑌) =  𝑄𝑌 − 𝐺(𝑋, 𝑌) 

(

 
 
−(𝜔 + 𝜇) 𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
0

𝜎𝜔 −(𝛾 + 𝜂 + 𝜇 + 𝑑) 0 0

(1 − 𝜎)𝜔 𝜂 −(𝛾 + 𝑣 + 𝜇 + 𝑑) 0
0 0 𝑣 −(𝛾 + 𝜇 + 𝑑))

 
 
(

𝐸
𝐼𝐴
𝐼
𝐼𝑆

)

−

(

  
 
𝛽(1 − 𝜃𝑞)

Π

𝜇𝑁
(𝐼𝐴 + 𝐼) − (𝜔 + 𝜇)𝐸

𝜎𝜔𝐸 − (𝛾 + 𝜂 + 𝜇 + 𝑑)𝐼𝐴
(1 − 𝜎)𝜔𝐸 + 𝜂𝐼𝐴 − (𝛾 + 𝑣 + 𝜇 + 𝑑)𝐼

𝑣𝐼 − (𝛾 + 𝜇 + 𝑑)𝐼𝑆 )

  
 
                                                           (30) 

  
 

�̂�(𝑋, 𝑌)

=

(

 
 
𝛽(1 − 𝜃𝑞)

(𝐼 + 𝐼𝐴)

𝑁
[
Π

𝜇
− 𝑆]

0
0
0 )

 
 
                                     (31) 

It is clear that �̂�(𝑋, 𝑌) ≥ 0 for all (𝑋, 𝑌) ∈ Ω. We also 

note that 𝐺 is an M-Matrix since its off-diagonal 
elements are non-negative. Based on Lemma 3.2, the 

DFE ℇ0 = (
Π

𝜇
, 0,0,0,0) is globally asymptotically stable 

when 𝑅0 < 1. 
 
Existence & Local Stability Analysis of the 
Endemic Equilibrium (EE) State 
We investigated the local stability of the Endemic 

Equilibrium (EE) state by evaluating the associated 
Jacobian of equations (1) – (6) at the EE state. The 
Jacobian matrix J the system (1) – (6), evaluated at the 
endemic equilibrium, 𝐽(ℇ1) is given by  
𝐽(ℇ1) =

=

(

 
 
 
 
 
 
−𝛽(1 − 𝜃𝑞)

(𝐼∗ + 𝐼𝐴
∗)

𝑁
− 𝜇 0 −𝛽(1 − 𝜃𝑞)

S∗

𝑁
−𝛽(1 − 𝜃𝑞)

S∗

𝑁
0 0

𝛽(1 − 𝜃𝑞)
(𝐼∗ + 𝐼𝐴

∗)

𝑁
−(𝜔 + 𝜇) 𝛽(1 − 𝜃𝑞)

S∗

𝑁
𝛽(1 − 𝜃𝑞)

S∗

𝑁
0 0

0 𝜎𝜔 −(𝛾 + 𝜂 + 𝜇 + 𝑑) 0 0 0

0 (1 − 𝜎)𝜔 𝜂 −(𝛾 + 𝑣 + 𝜇 + 𝑑) 0 0

0 0 0 𝑣 −(𝛾 + 𝜇 + 𝑑) 0
0 0 𝛾 𝛾 𝛾 −𝜇)

 
 
 
 
 
 

 

Theorem 3.3: The EE state of the model (1) – (6) given 
by ℇ1, is locally asymptotically stable whenever 𝑅0 > 1. 
Proof: 
It suffices to show that all the eigenvalues of the 

characteristics equation of the Jacobian matrix 𝐽(ℇ1), 
have negative real parts. The eigenvalues are 
determined by solving the characteristics equation 
det(𝐽(ℇ1) − 𝜆𝐼) = 0 

|

|

−𝛽(1 − 𝜃𝑞)
(𝐼∗+𝐼𝐴

∗ )

𝑁
− 𝜇 − 𝜆 0 −𝛽(1 − 𝜃𝑞)

S∗

𝑁
−𝛽(1 − 𝜃𝑞)

S∗

𝑁
0 0

𝛽(1 − 𝜃𝑞)
(𝐼∗+𝐼𝐴

∗ )

𝑁
−(𝜔 + 𝜇) − 𝜆 𝛽(1 − 𝜃𝑞)

S∗

𝑁
𝛽(1 − 𝜃𝑞)

S∗

𝑁
0 0

0 𝜎𝜔 −𝑎1 − 𝜆 0 0 0

0 (1 − 𝜎)𝜔 𝜂 −𝑎2 − 𝜆 0 0
0 0 0 𝑣 −𝑎3 − 𝜆 0
0 0 𝛾 𝛾 𝛾 −𝜇 − 𝜆

|

|

=

0      
                  (32) 

𝑎1 = (𝛾 + 𝜂 + 𝜇 + 𝑑), 
𝑎2 = (𝛾 + 𝑣 + 𝜇 + 𝑑), 
𝑎3 = (𝛾 + 𝜇 + 𝑑), 

Evaluating equation (32) to obtain,   
 (−𝜇 − 𝜆) (−𝑎3 − 𝜆)                                                                                                           

  |

𝑎4 − 𝜇 − 𝜆 0 𝑏 𝑏

−𝑎4 −(𝜔 + 𝜇) − 𝜆 −𝑏 −𝑏
0 𝜎𝜔 −𝑎1 − 𝜆 0

0 (1 − 𝜎)𝜔 𝜂 −𝑎2 − 𝜆

| = 0                 

        (33)       
where, 

𝑏 =
−𝑎1𝑎2(𝜔 + 𝜇)

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
 , 

𝑎4 =
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2

+
(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0
[1

− 𝑅0] 
Simplifying to have, 

(−𝜇 − 𝜆) (−𝑎3 − 𝜆) [𝜆
4 + [(𝜔 + 𝜇) + (𝑎1 + 𝑎2) + 𝜇 −

𝑎4)]𝜆
3 + [(𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2 + 𝑏𝜎𝜔 + 𝜇(𝜔 +

𝜇) + 𝜇(𝑎1 + 𝑎2) − 𝑎4(𝜔 + 𝜇) + (𝑎1 + 𝑎2)]𝜆
2 + [(𝜔 +

𝜇)𝑎1𝑎2 + 𝑏𝜎𝜔𝑎2 + 𝑏𝜎𝜔𝜂 + 𝑏(1 − 𝜎)𝜔𝑎2 + 𝜇((𝜔 +
𝜇)(𝑎1 + 𝑎2)) + 𝑎1𝑎2 + 𝑏𝜎𝜔 − 𝑎4((𝜔 + 𝜇)(𝑎1 + 𝑎2) +
𝑎1𝑎2 + 𝑏𝜎𝜔) + 𝑏(𝜎𝜔 + (1 − 𝜎)𝜔 + 𝑎4𝜎𝜔 + 𝑎4(1 −
𝜎)𝜔]𝜆 + [𝜇(𝜔 + 𝜇)𝑎1𝑎2 + 𝑏𝜎𝜔𝑎2 + 𝑏𝜎𝜔𝜂 + 𝑏(1 −
𝜎)𝜔𝑎2 − 𝑎4[𝑏𝜎𝜔𝑎2 + 𝑏𝜎𝜔𝜂 + 𝑏(1 − 𝜎)𝜔𝑎2 +
(𝜔+𝜇)𝑎1𝑎2] + 𝑏(𝜎𝜔𝑎2 + 𝜎𝜔𝜂 + (1 − 𝜎)𝜔𝑎1 +
𝑎4𝜎𝜔𝑎2 + 𝑎4𝜎𝜔𝜂 + 𝑎4(1 − 𝜎)𝜔𝑎1 = 0  
  (34) 
                                                                                                                                                                                                      
Thus, the eigenvalues are 𝜆1 = −𝜇, 𝜆2 = −𝑎3 and the 
fourth-order polynomial 

 𝜆4 + 𝐴𝜆3 + 𝐵𝜆2 + 𝐶𝜆 + 𝐷 = 0   

https://dx.doi.org/10.4314/swj.v19i4.31
http://www.scienceworldjournal.org/
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where, 
𝐴 = (𝜔 + 𝜇) + (𝑎1 + 𝑎2) + 𝜇 − 𝑎4)  
𝐴
= (𝜔 + 𝜇) + (𝑎1 + 𝑎2) + 𝜇

+
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+
(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0
[𝑅0 − 1]

> 0 𝑖𝑓 𝑅0
> 1                                                                                             (35) 
𝐵 = (𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2 + 𝜇(𝜔 + 𝜇) + 𝜇(𝑎1 + 𝑎2)

+
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2

+
(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0
[𝑅0

− 1](𝜔 + 𝜇) + (𝑎1 + 𝑎2)]

−
𝑎1𝑎2(𝜔 + 𝜇)𝜎𝜔

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
 𝑖𝑓 𝑅0

> 1        (36)  
𝐶
= (𝜔 + 𝜇)𝑎1𝑎2

+
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+
(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0
[𝑅0

− 1]((𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2)) + 𝜇((𝜔 + 𝜇)(𝑎1 + 𝑎2) + 𝑎1𝑎2)

+
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+
(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0
[𝑅0

− 1] [
𝑎1𝑎2(𝜔 + 𝜇)

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
] (𝜔 + 𝜎𝜔)

>
𝑎1𝑎2(𝜔 + 𝜇)[(𝜎𝜔𝜂 + 𝜔𝑎2 + 𝜇𝜎𝜔 + 𝜔)]

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
 𝑖𝑓 𝑅0

> 1                       (37) 
𝐷
= 𝜇(𝜔 + 𝜇)𝑎1𝑎2

+
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+
(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0
[𝑅0

− 1](𝜔+𝜇)𝑎1𝑎2

+
𝛽(1 − 𝜃𝑞)

𝑁
[
𝜎𝜔

𝑎2
+
(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔

𝑎1𝑎2
]

Π

(𝜔 + 𝜇)𝑅0
[𝑅0

− 1] [
𝑎1𝑎2(𝜔 + 𝜇)

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
] [(1 − 𝜎)𝜔𝑎1]

>
𝛽(1 − 𝜃𝑞)Π[𝑅0 − 1][(1 − 𝜎)𝜔𝑎2]

𝑁𝑅0

+ [
𝑎1𝑎2(𝜔 + 𝜇)[2𝜎𝜔𝜂 + 𝜔𝑎2 + 𝜎𝜔𝑎2 + (1 − 𝜎)𝜔𝑎1]

[(1 − 𝜎)𝜔𝑎2 + 𝜂𝜎𝜔 + 𝜎𝜔𝑎1]
]  𝑖𝑓 𝑅0

> 1       (38) 

 
From the Routh-Hurwitz stability criteria, all the roots of 
the characteristics equation (34) have negative real 

parts if: 𝐴, 𝐵, 𝐶, 𝐷 > 0, 𝐴𝐵𝐶 − 𝐶2 − 𝐴2𝐷 > 0, 𝑎𝑛𝑑 𝐴𝐵 −
𝐶 > 0. 
 
Global Stability of Endemic Equilibrium (EE) State 
Theorem 3.4: The system of equations (1) – (6) has 
no periodic orbits. 
Proof: We applied the Dulac’s Criterion.  

Let 𝑋 = (𝑆, 𝐸, 𝐼𝐴, 𝐼, 𝐼𝑆, 𝑅). Taking the Dulac’s function: 

𝐺 =
1

𝑆𝐸
                                                                                         

        (39) 
we have, 

𝐺
𝑑𝑆

𝑑𝑡
=
Π

𝑆𝐸
− 𝛽(1 − 𝜃𝑞)

(𝐼 + 𝐼𝐴)

𝑁𝐸
−
𝜇

𝐸
                                 

 

𝐺
𝑑𝐸

𝑑𝑡
= 𝛽(1 − 𝜃𝑞)

(𝐼 + 𝐼𝐴)

𝑁𝐸
−
(𝜔 + 𝜇)

𝑆
                              

 

𝐺
𝑑𝐼𝐴
𝑑𝑡
=
𝜎𝜔

𝑆
−
(𝛾 + 𝜂 + 𝜇 + 𝑑)𝐼𝐴

𝑆𝐸
                                      

 

𝐺
𝑑𝐼

𝑑𝑡
=
(1 − 𝜎)𝜔

𝑆
+
𝜂𝐼𝐴
𝑆𝐸
−
(𝛾 + 𝑣 + 𝜇 + 𝑑)𝐼  

𝑆𝐸
               

 

𝐺
𝑑𝐼𝑆
𝑑𝑡
=
𝑣𝐼

𝑆𝐸
−
(𝛾 + 𝜇 + 𝑑)𝐼𝑠

𝑆𝐸
                                              

𝐺
𝑑𝑅

𝑑𝑡
=
𝛾𝐼𝐴
𝑆𝐸
+
𝛾𝐼

𝑆𝐸
+
𝛾𝐼𝑠
𝑆𝐸
−
𝜇𝑅

𝑆𝐸
                                                  

Thus, 
𝑑𝐺𝑋

𝑑𝑡
=
𝜕

𝜕𝑆
(𝐺
𝑑𝑆

𝑑𝑡
) +

𝜕

𝜕𝐸
(𝐺
𝑑𝐸

𝑑𝑡
) +

𝜕

𝜕𝐼𝐴
(𝐺
𝑑𝐼𝐴
𝑑𝑡
)

+
𝜕

𝜕𝐼
(𝐺
𝑑𝐼

𝑑𝑡
) +

𝜕

𝜕𝐼𝑆
(𝐺
𝑑𝐼𝑆
𝑑𝑡
)

+
𝜕

𝜕𝑅
(𝐺
𝑑𝑅

𝑑𝑡
) 

=
𝜕

𝜕𝑆
(
Π

𝑆𝐸
− 𝛽(1 − 𝜃𝑞)

(𝐼 + 𝐼𝐴)

𝑁𝐸
−
𝜇

𝐸
)

+
𝜕

𝜕𝐸
(𝛽(1 − 𝜃𝑞)

(𝐼 + 𝐼𝐴)

𝑁𝐸
−
(𝜔 + 𝜇)

𝑆
)

+
𝜕

𝜕𝐼𝐴
(
𝜎𝜔

𝑆
−
(𝛾 + 𝜂 + 𝜇 + 𝑑)𝐼𝐴

𝑆𝐸
 )

+
𝜕

𝜕𝐼
(
(1 − 𝜎)𝜔

𝑆
+
𝜂𝐼𝐴
𝑆𝐸

−
(𝛾 + 𝑣 + 𝜇 + 𝑑)𝐼  

𝑆𝐸
)

+
𝜕

𝜕𝐼𝑆
(
𝑣𝐼

𝑆𝐸
−
(𝛾 + 𝜇 + 𝑑)𝐼𝑠

𝑆𝐸
)

+
𝜕

𝜕𝑅
(
𝛾𝐼𝐴
𝑆𝐸
+
𝛾𝐼

𝑆𝐸
+
𝛾𝐼𝑠
𝑆𝐸
−
𝜇𝑅

𝑆𝐸
)  

 

= −
Π

𝑆2𝐸
−
𝛽(1 − 𝜃𝑞)(𝐼 + 𝐼𝐴)

𝑁2𝐸
−
(𝛾 + 𝜂 + 𝜇 + 𝑑)

𝑆𝐸

−
(𝛾 + 𝑣 + 𝜇 + 𝑑)  

𝑆𝐸
−
(𝛾 + 𝜇 + 𝑑)

𝑆𝐸

−
𝜇

𝑆𝐸
 

= −(
Π

𝑆2𝐸

+
(𝛾 + 𝜂 + 𝜇 + 𝑑) + (𝛾 + 𝑣 + 𝜇 + 𝑑) + (𝛾 + 𝜇 + 𝑑) + 𝜇

𝑆𝐸
) 

< 0.      
     (40) 
Hence, the systems of equation (1) - (6) has no periodic 

orbit. Thus proven. Since Ω is positively invariant, it 
follows from Poincare Bendixson theorem that all 
solutions of the systems of equation (1) – (6) originate 
and remain in Ω for all 𝑡. We conclude with the following 
theorem: 
 
Theorem 3.5: The endemic equilibrium for the systems 
of equation is globally asymptotically stable whenever 
𝑅0 > 1. 
 

https://dx.doi.org/10.4314/swj.v19i4.31
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Sensitivity Analysis 
Sensitivity analysis for the basic reproduction number 
𝑅0mainly helps to discover parameters that have a high 

impact on the values of 𝑅0 and hence, it should be 
targeted for designing intervention strategy (Sanchez 
& Blower, 1997).The sensitivity analysis helps to 
discover the significance of the generic parameters 
present in the basic reproduction number 𝑅0. The 
definition below is used to find the sensitivity index of 

each of the parameters involved in 𝑅0. 
 
Definition 1: Normalized Forward Sensitivity Index is 
differentiable with respect to a given parameter 𝑃 
(Chutnis et al., 2008). 
 

∆𝑉
𝑅0=

𝜕𝑅0
𝜕𝑉

.
𝑉

𝑅0
                                                  (41) 

 
The sensitivity indices of the basic reproduction 
number 𝑅𝑂 with respect to the model parameters, are 
presented in Table 2.  
 
Table 2: Sensitivity Indices of  𝑅0 

𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫 𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 𝐈𝐧𝐝𝐢𝐜𝐞𝐬 

𝛽 1 

Π 1 

𝜎 0.00089609 

𝜃 −0.05263158 

𝑞 −0.05263158 

𝜂 −0.00081066 

𝑑 −0.00007047 

𝛾 −0.95596023 

𝜔 0.00975243 

𝜇 −1.03510029 

𝑣 −0.01753131 

 
From table 2, the sensitivity analysis reveals that the 
infection transmission rate (𝛽) has the highest positive 

impact on the basic reproduction number 𝑅𝑂. A 10% 

increase in 𝛽 results in a corresponding 10% increase 

in 𝑅𝑂, underscoring the need to reduce the contact 
rates through interventions like face-mask use. 
Similarly, the negative index for isolation rate 𝑣 
indicates that increasing isolation efforts can 

significantly lower 𝑅𝑂, highlighting its importance in 
controlling the outbreak. 
 
Numerical Simulations of the System 
We present the numerical solutions of the model (1) – 
(6) for different values of the parameters to assess the 
impact of control strategies on the spread of the 
coronavirus outbreak. We conducted numerical 
simulations to investigate the effects of the control 
strategies on the transmission dynamics of COVID-19. 
 

Parameter Estimation and Curve Fitting 
We use COVID-19 cumulative confirmed cases in 
Kaduna State as given in Table 3 for validation of the 
proposed COVID-19 model and also to obtain best-
fitted values of some unknown biological parameters 
that occur in the model. There are eleven parameters 
among which four are to be fitted whereas the 
remaining seven are estimated from literature. 
 
From the data of confirmed COVID-19 cases in 
Kaduna State, we set 28th March, 2020 as the initial 
time with 3 confirmed cases (NCDC, 2020). The 
population of Kaduna State as at 2020 population 
estimate is put at 8,252,400 (Kaduna State Govt., 
2020), so we put 𝑁(0) = 8,252,400 and the initial value 

of the Isolated class, 𝐼𝑆(0) = 3 while the value of 

Susceptible 𝑆(0) = 8,252,397 and recovered 

population, 𝑅(0) = 0. The initial values for Exposed, 
𝐸(0), Asymptomatic, 𝐼𝐴(0), Symptomatic, 𝐼(0), are 
obtained through parameter estimation.  
 
The incubation period of COVID-19 is estimated to be 

5.2 (Li et al., 2020), hence  𝜔 =
1

5.2
. It is reported that 

infectious individuals can recover within two weeks 

(Tang et al., 2020), thus the recovery rate 𝛾 =  
1

14
. The 

natural death rate is computed as 𝜇 =  
1

44×12
 per month, 

where 44 years is the average life expectancy in 
Kaduna (Kaduna State Govt., 2020). The recruitment 

rate, 𝜋 is calculated as 𝜋 =  𝜇 × 𝑁(0) =  
1

44×12
 ×

8,252,400 = 15,629 per month. The face mask 

compliance is estimated to be 𝜃 = 0.5 (Davies et al, 

2013) and the efficacy of face mask is given as 𝑞 = 0.1 
(Ngonghala et al., 2020). The population of exposed 
individuals with no clinical symptoms of COVID-19 is 
estimated as 𝜎 = 0.5 (Ferguson et al., 2020; Moriarty, 
2020). 
 
In addition to these estimated values, values of other 
parameters are mentioned in Table 2 where the 
parameters 𝛽 (infection transmission rate), 𝑑 (Disease-

induced mortality rate),  𝜂 (proportion of individuals 
who move to symptomatic class as a result of 
diagnosis) and 𝑣 (isolation rate for symptomatic – 
infectious individuals) are obtained through parameter 
estimation technique using the least square method 

which is implemented by 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 routine, a part of the 
optimization toolbox in MATLAB software. The least-
square estimation is to find the parameter values to 
minimize the following objective function 

 𝑓(𝜙, 𝑛) =  ∑ (𝐼𝑗(𝑡) −
𝑛
𝑗=1

 𝐼�̂�(𝑡))
2                               (42) 

where 𝜙  is a parameter vector to be estimated, 𝑛 is the 

number of reported data, 𝐼(𝑡) is the actual reported 

confirmed cases and 𝐼(𝑡) is the theoretical confirmed 
at day 𝑡.  
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Table 3: Cumulative confirmed cases of COVID-19 infection from March 2020 to June 2021 
Month March Apr May June July Aug Sept Oct Nov Dec Jan Feb March April May June 

Total  
Confirmed 
Case 

3 35 258 766 1457 2141 2419 2655 3064 4940 7661 8476 8914 9040 9070 9121 

Source: NCDC (2020)
 
The simulation results obtained for the COVID-19 
confirmed cases in Kaduna State by fitting the 
proposed model (1) – (6) with the real statistics of the 
first 15 months from March 2020 to June 2021 are 
shown in Table 3. Also, Table 4 gives the values of the 
parameters used in the simulations. 

 
Figure 2: Model fit with the cumulative number of 
reported cases. 
 
Table 4: Baseline values of the parameters of the 
model (1) – (6). 

    
Parame
ter 

     
Baselin
e Value 

                        Reference  

𝛽 0.013280 Estimated 

Π 15,629 Estimated 

𝜎 0.5 (Ferguson et al, 2020;  Moriarty, 2020) 

𝜃 0.5 (Davies et al, 2013) 
𝑞 0.1 (Ngonghala et al, 2020) 
𝜂 0.69431 Estimated 

𝑑 0.0000262 Estimated 

𝛾 0.07142857 (Tang et al, 2020) 

𝜔 0.19230769 (Li et al, 2020) 
𝜇 0.00189394             (Kaduna State Govt, 

2020) 
𝑣 0.001377 Estimated 

The estimation of basic reproduction number for the 
model is given by 
 

𝑅0

=
𝛽(1 − 𝜃𝑞)Π

𝜇Ν(𝜔 + 𝜇)
[

𝜎𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)

+
𝜂𝜎𝜔 + (𝛾 + 𝜂 + 𝜇 + 𝑑)(1 − 𝜎)𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)(𝛾 + 𝑣 + 𝜇 + 𝑑)
 ] = 0.16732832

< 1                                                                                  (43) 
 
 

 
 
Figure 3: Dynamical behavior of exposed population 
for decreasing values of COVID-19 contact rate, 𝛽 with 

no control (𝜃 = 𝑞 = 𝜂 = 𝑣 = 0). Other parameter 
values are as in Table 4 
 

 
 
Figure 4: Dynamical behavior of asymptomatic 
population for decreasing values of COVID-19 contact 
rate, 𝛽 with no control (𝜃 = 𝑞 = 𝜂 = 𝑣 = 0). Other 
parameter values are as in Table 4  
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Figure 5:Dynamical behavior of symptomatic 
population for decreasing values of COVID-19 contact 

rate, 𝛽 with no control (𝜃 = 𝑞 = 𝜂 = 𝑣 = 0). Other 
parameter values are as in Table 4  
 

 
 
Figure 6:Dynamical behavior of exposed population 
for decreasing values of COVID-19 contact rate, 𝛽, with 
control. Other parameter values are as in Table 4  
 

 
Figure 7:Dynamical behavior of asymptomatic 
population for decreasing values of COVID-19 contact 
rate, 𝛽, with control. Other parameter values are as in 
Table 4 
 

 
Figure 8: Dynamical behavior of symptomatic 
population for decreasing values of COVID-19 contact 
rate, 𝛽, with control. Other parameter values are as in 
Table 4 
 

 
Figure 9: Effect of face masks compliance on 
symptomatic infectious population as a function of 
time, while using parameters from Table 4 
 
 

 
Figure 10: Effect of Diagnosis of asymptomatic 
individuals on the population of symptomatic 
individuals as a function of time without other control. 
 

https://dx.doi.org/10.4314/swj.v19i4.31
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Figure 11: Effect of isolation of infectious population 
with no control. All other parameters are as stated in 
Table 4 
 

 
Figure 12: Dynamical behavior of symptomatic 
population for a decreasing value of COVID-19 contact 
rate, 𝛽 and increasing values of isolation rate, 𝑣 without 

other control (𝜃 = 𝑞 = 𝜂 = 0). Other parameter values 
are as in Table 4 
 

 
Figure 13: Effect of diagnosis and isolation without 
other control as a function of time. All other parameters 
are as stated in Table 4 
 
 
 
 

 
Figure 14: Dynamical behavior of symptomatic 
population for decreasing contact rate, increasing 
values of face masks compliance and efficacy, 
diagnosis and isolation of infectious individuals. Other 
parameters are as given in Table 4 
 

 
Figure 15: Dynamical behavior of asymptomatically 
infectious population with no control and with control. 
 
DISCUSSION OF RESULTS 
In this study, we developed a mathematical model of 
COVID-19 infection transmission dynamics 
incorporating the vital dynamics, face-mask use, 
asymptomatically and symptomatically-infectious 
individuals, clinical diagnosis of asymptomatic 
individuals and isolation of infected individuals taking 
confirmed COVID-19 data from Kaduna State, Nigeria. 
The model is presented in section 2. We obtained the 
disease-free and endemic equilibrium states of the 
model in section 3. The analytical and numerical 
results are presented as follows: 
 
The analytical result of the model shows that the 
solution of the model is bounded and positively 
invariant. Fundamental to our analytical result is, the 
basic reproduction number, 𝑅0 computed using the 
next-generation method and given by  

𝑅0 =
𝛽(1 − 𝜃𝑞)Π

𝜇Ν(𝜔 + 𝜇)
[

𝜎𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)

+
𝜂𝜎𝜔 + (𝛾 + 𝜂 + 𝜇 + 𝑑)(1 − 𝜎)𝜔

(𝛾 + 𝜂 + 𝜇 + 𝑑)(𝛾 + 𝑣 + 𝜇 + 𝑑)
 ] 
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as a tool for effective disease management. Using the 
baseline and fitted parameter values in Table  4, the 
value of the basic reproduction number 𝑅0 for Kaduna 

is 0.16732832 < 1. This shows clearly that the 
effectiveness and coverage levels of the currently 
adopted public health intervention must be significantly 
enhanced to enable such effective control or 
elimination of COVID-19 infection.  
 
The sensitivity analysis of 𝑅0 with respect to the model 
parameters, was carried out using the normalized 
forward sensitivity indices. The results of the sensitivity 
index of 𝑅0 is given in Table 2 and it shows that the 
more sensitive parameter is the infection transmission 

rate 𝛽. It is followed by the recruitment rate Π, recovery 
rate 𝛾, face-mask use and compliance 𝜃, 𝑞. The 

parameter 𝛽 as a positive index 1 as shown in Table 2 
reveals that by decreasing or increasing infection 
parameter will decrease or increase the basic 
reproduction number, 𝑅0. Thus, efforts should be 
geared toward decreasing infection transmission to 
ensure COVID-19 disease elimination. The parameters 
with the negative sensitivity indices, 
−0.05263158; −0.01753131; −0.00081066 as shown 
in Table 4.1 influence reducing the disease burden in 
the population as their values increase.  
 
Various numerical simulations of the model are carried 
out to assess the effectiveness of the various control 
strategies using the baseline parameter values in 
Table 4 and depicted in Figure 3 − 15. The simulations 

in Figure 3 –  5 shows the dynamical behavior of the 
population of exposed, asymptomatic and symptomatic 
individuals for decreasing values of contact rate with 
no other control measure. It shows decreasing 
prevalence of COVID-19 infection for decreasing 

infection transmission rates (𝛽 =
 0.01328, 0.008, 0.0004) in the absence of face mask 
compliance, diagnosis of asymptomatic infectious 
individuals, isolation of symptomatic infectious 
individuals. Hence, for an effective control measure, 
effort should be geared at reducing the contact rate. 
Thus, the contact rate plays a significant role as a 
preventive strategy. 
 
Figure 6 –  8 shows the dynamical behavior of the 
population of exposed, asymptomatic and symptomatic 
individuals for decreasing values of contact rate (𝛽 =
 0.01328, 0.008, 0.0004) with control measures (𝜃 =
0.5, 𝑞 = 0.1, 𝜂 = 0.69431, 𝑣 = 0.0001377) respectively. 

With the basic reproduction number, 𝑅0 < 1 in each 
case, shows the convergence of the solution profile to 
the disease-free equilibrium (DFE) which is consistent 

with Theorem 1 and Theorem 2. Figure 6 –  8 further 
reveals that with the baseline values of face-mask use 
and compliance, diagnosis of asymptomatic infectious 
individuals, isolation of symptomatic infectious 
individuals, the disease can be eradicated in the 
shortest possible time. 
 

Figure 9 shows the effect of face-mask compliance on 
symptomatic infectious population by increasing the 

face-mask compliance rate (𝜃 = 0.5, 0.75, 0.9) with 
other parameters as in Table 4. This figure reveals that 
increasing the use of face-mask, it reduces the number 
of infected individuals in the population, with the basic 
reproduction number, 𝑅0 < 1 in each case, shows the 
convergence of the solution profile to the disease-free 
equilibrium (DFE). In Figure 10, the effect of a 
diagnosis of asymptomatic individuals is depicted 
using the baseline parameters in Table 4 by increasing 
the screening and diagnosis effort by 10% (𝜂 =
0.69431, 0.79431, 0.89431). The Figure shows a 
decrease in the proportion of infected individuals with 
an increasing diagnosis rate.  
The effect of isolation of symptomatic infectious 
individuals on the dynamic of COVID-19 is simulated in 

Figure 11 using the baseline parameters in Table 4 by 

varying the isolation rate (𝑣 =
0.0001377, 0.01377, 0.1377). The Figure shows a 
decrease in the basic reproduction number with an 
increasing isolation rate. Thus, isolation of infected 
individuals can reduce the risk of future COVID-19 
spread. 
 

Figure 12 shows the dynamical behavior of 
symptomatic infectious individuals for a decreasing 
value of COVID-19 contact rate and increasing values 
of isolation rate without other control measures. The 
figure shows that by decreasing the contact rate and 
increasing the isolation rate simultaneously, we 
eliminate the COVID-19 disease burden in a possible 
short time. Figure 13reduces the impact of combining 
diagnosis of asymptomatic individuals and isolation of 
symptomatic individuals as an intervention strategy. As 
the Figure displays a decreasing number of infected 
individuals in the presence of increasing diagnoses of 
asymptomatic individuals and isolation of symptomatic 
individuals (𝜂 = 0.69431, 𝑣 = 0.0001377;  𝜂 =
0.79431, 𝑣 = 0.01377;  𝜂 = 0.89431, 𝑣 = 0.1377). 
 
Figure 14 shows the dynamical behavior of COVID-19 
infection in the presence of decreasing contact rate, 
increasing values of face mask compliance and 
efficacy, diagnosis, and isolation of infectious 
individuals as control measures. It shows a decreasing 
number of infected individuals with the combination of 
all the control strategies in the model. Thus, it can be 

deduced from Figure 15 that the combination of 
decreasing contact rate, increasing values of face 
mask compliance and efficacy, diagnosis and isolation 
of infectious individuals as control measures, COVID-
19 infection can be eradicated in the shortest possible 

time. Figure 15 shows the dynamical behavior of 
asymptomatic infectious individuals with no 
intervention strategies and with control measures. The 
Figure further reveals that the solution profile without 
control measure is consistent with Theorem 3 and 
Theorem 4 while the solution profile with intervention 
strategy is consistent with Theorem 1 and Theorem 2. 
 

https://dx.doi.org/10.4314/swj.v19i4.31
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Conclusion 
We developed a mathematical model of COVID-19 
infection transmission to assess the impact of face-
mask use & compliance, clinical diagnosis of infectious 
asymptomatic individuals, and isolation of infected 
individuals. We used confirmed COVID-19 data from 
Kaduna State to validate our model. Based on the 
findings from the study, it was evident that the infection 
transmission (contact) rate plays a significant role in 
disease management and eradication. Thus, efforts 
geared at reducing the contact rate will significantly 
eliminate the disease burden. It was further established 
that the basic reproduction number, 𝑅𝑂 which serves 
as a threshold parameter that predicts whether an 
infection will spread can be used as a guide to public 
health or control agencies on the amount of effort 
needed to eradicate the disease. Finally, it was shown 
from the findings that a combination of face-mask use, 
early clinical diagnosis of asymptomatically infectious 
individuals, and isolation of infectious individuals is a 
crucial control measure against pandemics. 
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