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ABSTRACT  
Crop production is a cornerstone of agriculture, significantly 
influencing economies and farmers' livelihoods. However, 
fluctuating environmental conditions complicate the selection of 
suitable crops, requiring expertise in factors such as soil type, 
climate, humidity, rainfall, and temperature. Existing crop 
recommendation models primarily focus on a limited range of 
crops, such as rice, maize, and wheat, which restricts their utility 
across varied agricultural settings. Additionally, these models often 
exhibit inconsistent accuracy and high false-positive rates, 
undermining their reliability for practical use. To overcome these 
challenges, this study proposes a Bagging-based ensemble model 
that integrates seven machine-learning algorithms: Decision Tree, 
Support Vector Machine, Logistic Regression, Naive Bayes, 
Random Forest, K-Nearest Neighbor, and XGBoost. Leveraging a 
dataset enriched with diverse environmental and soil features—
using soil type encoding and feature normalization—the model 
captures complex relationships that influence crop suitability. The 
ensemble model demonstrates an outstanding 99.9% accuracy, 
with macro-average precision, recall, and F1 scores of 99%, 
surpassing traditional models in performance. This advanced 
predictive tool offers a robust and versatile solution, enabling 
accurate and adaptable crop recommendations to support farmers 
and agricultural stakeholders in diverse environmental conditions. 
 
Keywords: Crop Recommendation, Ensemble Learning, Multi-
Crop Prediction, Bagging, Machine Learning. 
 
INTRODUCTION 
The farming sector serves as a crucial engine of revenue 
generation, especially in developing nations in which a significant 
segment of the population depends on growing crops for earnings 
and nourishment (Vishnoi & Goel, 2024). The projected rise in 
demand for food worldwide, coupled with the challenges posed by 
changing weather patterns regarding crop production, necessitates 
the adoption of more effective methods of farming (Nazir et al., 
2024).  
Crop recommendation systems serve as essential instruments for 
enhancing worker efficiency by providing farmers with data-driven 
insights regarding optimal crop selection based on ecological and 
economic factors (Abdullahi et al.,2024; Bhola & Kumar, 2024). 
These systems analyze factors such as soil composition, climate, 
and rainfall patterns to provide tailored advice, helping to boost 
yields while conserving resources (Ayoola et al., 2024). However, 
despite their potential, existing crop recommendation systems face 
significant challenges, particularly in the context of multi-crop 
prediction, where the task is to recommend the best combination 

of crops for a given area (Reddy et al., 2024; Na & Na, 2024). 
Conventional predictive models, such as Decision Trees and 
Support Vector Machines (SVM), often struggle to capture the 
intricate relationships between these variables (Rozenstein et al., 
2024). Furthermore, the multi-crop recommendation problem adds 
another layer of difficulty, as models must provide 
recommendations that account for the needs of multiple crops, 
which may have competing requirements (Ma, Ritsema & Wang, 
2024). This results in sub-optimal predictions, reducing the 
potential for maximizing land productivity. Additionally, agricultural 
datasets are often noisy and imbalanced, which exacerbates the 
problem (Turchetta et al., 2022). Models trained on incomplete or 
skewed data tend to perform poorly when applied to new or unseen 
conditions (Pecher, Srba & Bielikova, 2024). 
One of the major limitations of conventional single-model 
approaches is their tendency to over-fit the data (Depaoli, Winter & 
Liu, 2024). In agricultural applications, over-fitting can occur when 
a model becomes too finely tuned to the training data, losing its 
ability to generalize to real-world situations (Xiong et al., 2024). 
This leads to inaccurate crop recommendations, which can waste 
resources and diminish yields (Kumar et al., 2024). Furthermore, 
these models often struggle with data variability, failing to adapt to 
different regions or environmental conditions (Fisher & Koven, 
2020). The result is inconsistent performance across different 
farming contexts, making it difficult for farmers to rely on such 
systems for actionable insights (Simelton & McCampbell, 2021). 
To overcome these challenges, ensemble learning has gained 
distinction as a solution. Ensemble methods combine the 
predictions of multiple models to create a more accurate and stable 
output than any single model could achieve alone (Abdullahi et 
al.,2024; Sagana et al., 2024). Bagging (Bootstrap Aggregating), in 
particular, has emerged as a promising technique for improving 
predictive performance in complex domains like agriculture 
(Mohammad et al., 2024). Bagging works by generating multiple 
versions of a model, each trained on a different subset of the data, 
and then averaging their predictions (Özbayrak, Foster & Pyrcz, 
2024). This process reduces variance and mitigates the risk of 
over-fitting, resulting in more stable and accurate predictions. 
Bagging’s ability to handle noisy and diverse datasets makes it 
especially well-suited for the unpredictable nature of agricultural 
data (Sharma et al., 2024).  
In the context of multi-crop recommendation, a Bagging-based 
ensemble model holds significant promise. By aggregating the 
outputs of multiple models, Bagging can effectively manage the 
non-linear relationships and high variability in agricultural data, 
delivering more reliable and accurate crop recommendations 
(Savaş, 2024). This is particularly important in multi-crop settings, 
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where the system must balance the varying needs of different 
crops grown together in the same environment (Rudinskienė et al., 
2024). Moreover, the ensemble approach helps reduce the 
chances of over-fitting, ensuring that the model remains robust 
when applied to real-world scenarios (Coulibaly, 2024). These 
advantages make Bagging a powerful tool for addressing the 
limitations of conventional crop recommendation systems, 
enabling more precise, stable, and generalization predictions 
(Gatou et al.,2024).  
This paper focuses on developing a Bagging-based ensemble 
model for a multi-crop recommendation, aiming to enhance 
predictive accuracy and stability in the face of agricultural data 
complexity. The proposed model is designed to help farmers make 
informed decisions, ultimately improving productivity, resource 
management, and sustainability. The model will be evaluated on 
an agricultural dataset, and its performance will be compared with 
traditional machine learning models to demonstrate its superiority 
in real-world applications. Through this research, the study 
contributes to advancing the use of machine learning in agriculture, 
addressing the growing need for innovative solutions to optimize 
food production in a changing global landscape. 
 
MATERIALS AND METHODS 
This study employed a machine pipeline methodology that 
encompasses several stages including data collection, data pre-
processing, data splitting, model training, and evaluation.  This 
design is illustrated in Figure 1. The subsequent sections of the 
design will be discussed separately to understand the processes 
involved in achieving the objectives of this study. 
 

 
Figure 1: Research Design 
 
Data Collection  
The dataset used in this study was obtained from a secondary 
source on Kaggle. This dataset includes 2,200 instances with 
seven key features related to environmental and climatic conditions 
essential for crop growth. These features include temperature, 
rainfall, humidity, and soil composition elements like nitrogen, 
phosphorus, potassium, and pH. To enhance the dataset’s 
relevance and specificity to the study objectives, new features were 
introduced, particularly soil types (such as clay, sandy, loamy, 
sandy-loam, loamy-sandy, etc.). These additional features were 
determined based on the unique requirements and properties of 
different crops, providing a more comprehensive dataset that aligns 
with the study's crop recommendation goals. 
 
 

Table 1: Dataset Description 

 

 
 
Data Preprocessing  
In this study, data preprocessing played a pivotal role in 
transforming the raw dataset into a structured and ready-to-use 
format for training machine learning models. The process began by 
addressing common issues such as duplicate entries, which were 
removed to minimize noise and ensure cleaner data. Accuracy was 
a priority, so erroneous labels were corrected, and categorical 
variables like soil types were encoded into numerical values to 
ensure compatibility with the machine learning algorithms. 
Additionally, handling missing and infinity values was crucial for 
maintaining the integrity of the dataset—missing values were either 
imputed or discarded, while infinite values were set to zero, 
ensuring consistency throughout the dataset. 
To further refine the data, data normalization was applied using a 
Min-Max scaler, which brought all feature values within a specified 
range of 0 to 1. This step was particularly beneficial for models 
sensitive to the magnitude of features, such as Support Vector 
Machine (SVM) and k-Nearest Neighbor (KNN). The normalization 
process ensured that all features contributed equally to the model’s 
learning process, avoiding biases caused by differences in scale. 
Once preprocessing was complete, the dataset was split into 
training and testing sets to allow for unbiased model evaluation. 
Finally, a correlation matrix, depicted in Figure 2, was generated to 
examine the relationships between features, providing valuable 
insights into feature importance and interactions that could further 
enhance the model's performance. 
 

 
Figure 2: Correlation Matrix 
 
Feature Extraction 
In this study, feature selection was a critical step in narrowing down 
the most relevant environmental and soil-related factors for crop 
prediction. The primary focus was on variables like temperature, 
rainfall, humidity, and soil nutrient content, which includes key 
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elements such as nitrogen, phosphorus, potassium, and pH levels. 
These factors are known to significantly influence plant growth and 
crop yields. Additionally, a novel feature was introduced—soil types 
(e.g., clay, sandy, loamy)—which was derived from the specific 
properties of the crops. This new dimension of the dataset was 
essential for capturing the varying preferences of crops for different 
soil conditions, which could further enhance prediction accuracy. 
To ensure the model was driven by the most impactful features, the 
study employed statistical techniques such as correlation analysis 
to evaluate the relationships between the selected features and the 
target variable (crop type). Features that showed a strong 

correlation to the target were retained, while those with minimal or 
no contribution were discarded, simplifying the dataset without 
sacrificing predictive power. The crop distribution across these 
selected features was then visualized using a boxplot (as shown in 
Figure 3), which provides a clear representation of how each factor 
varies across different crop groups. The plots revealed outliers in 
all factors, except nitrogen, underscoring the fact that plants have 
distinct optimal soil conditions. These outliers reflect the natural 
variation in how different crops respond to environmental and soil 
conditions, providing valuable insights for improving crop 
recommendations. 

 
Figure 3: Outliers Detection of the Crop Distribution 
 
Data Splitting 
Data splitting is a fundamental step in machine learning workflows, 
ensuring that models are evaluated effectively on unseen data to 
assess their generalization capabilities. In this study, the dataset is 
divided into two main subsets: a training set, which comprises 80% 
of the total data, and a testing set, which accounts for the remaining 
20%. This 80%-20% split ratio is a commonly adopted standard, 
striking a balance between providing enough data for the model to 
learn and leaving sufficient data for rigorous evaluation. 
The training set is used to teach the models underlying patterns, 
relationships, and distributions within the data. By leveraging this 
subset, models iteratively adjust their parameters to minimize 
errors and improve predictions. The test set, on the other hand, 
serves as an unbiased dataset to evaluate how well the trained 
model can generalize to new, unseen data. This separation 
ensures that the model's performance metrics reflect its true 
predictive power and not its ability to memorize the training data. 
This approach prevents overfitting, where a model performs 
excellently on the training data but poorly on new data. Additionally, 
by keeping the test set isolated throughout the training process, this 
study ensures an objective and reliable evaluation of the models' 
predictive accuracy, precision, recall, and other performance 
metrics. The 80%-20% split provides a robust foundation for 
assessing the individual model's ability to make accurate 
predictions while maintaining generalizability to real-world 
scenarios. 
 
Model Training  
In this research work, seven machine learning models i.e., Decision 

Tree, Support Vector Machine (SVM), Logistic Regression, Naive 
Bayes Random Forest K-Nearest Neighbor, and extreme Gradient 
Boosting (XGBoost) as an ensemble is utilized for crop 
recommendation. There are strengths and weaknesses of every 
model, and these give rise to a stronger prediction system when 
combined. The ensemble then trains an independent model over 
subsets of the training data taught to associate environmental 
conditions (for example temperature and humidity) with soil 
nutrients. You may need to use an ensemble method that uses 
multiple algorithms in the background, which aims at improving 
predictive accuracy by capturing different views of data. 
 
Bagging (Bootstrap Aggregating) 
This research deploys an ensemble-based Bagging (Bootstrap 
Aggregating) approach to enhance the crop recommendation 
model and prediction accuracy. As illustrated in Figure 4, the 
process involves first training arrays of base learners (B1 to B7) 
using several models with random forest, support vector machine, 
logistic regression, decision tree, XGBoost, K-nearest neighbor, 
and naive Bayes across combined portions of the training data. The 
subsets are created using bootstrapping, i.e., random sampling of 
the data with replacement to ensure that each model uses a slightly 
different variation of the dataset for training. After the prediction 
from each model is obtained, an aggregation method (usually 
majority voting) combines the predictions for the final output. This 
aggregated prediction uses the potential of each model in 
mitigating which reduces the overfitting and variance hence 
improving the predictiveness and robustness of crop 
recommendation. 
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Figure 4: Bagging (Bootstrap Aggregating) 
 

To indicate the models explicitly mathematically, we can label each 
base learner with its corresponding model.  
Let the seven base models be denoted as: 
𝑀1: Random Forest, 𝑀2: Support Vector Machine (SVM), 𝑀3: 

Logistic Regression, 𝑀4:  Decision Tree, 𝑀5: XGBoost, 𝑀6:  K-

Nearest Neighbor (KNN) and 𝑀7:  Naive Bayes. 

Training Data: Let 𝐷 represent the training dataset, where: 

𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁   

    
 (1) 

where 𝑥𝑖 is the input feature vector, and 𝑦𝑖 is the corresponding 
target value. 
Base Learners: Each model 𝑀𝑗(where 𝑗 ∈ {1,2,3, … ,7}) 

produces a prediction �̂�𝑖
(𝑗)

 for each input sample 𝑥𝑖 : 

�̂�𝑖
(1)

= 𝑀1(𝑥𝑖), �̂�𝑖
(2)

= 𝑀2(𝑥𝑖), �̂�𝑖
(3)

= 𝑀3(𝑥𝑖), 

�̂�𝑖
(4)

= 𝑀4(𝑥𝑖), �̂�𝑖
(5)

= 𝑀5(𝑥𝑖), �̂�𝑖
(6)

= 𝑀6(𝑥𝑖), 

�̂�𝑖
(7)

= 𝑀7(𝑥𝑖)    

    
 (2) 

Aggregation: After obtaining the individual predictions from all 
base learners, we aggregate these predictions to obtain the final 

prediction �̂�𝑖
(𝑓𝑖𝑛𝑎𝑙)

. The aggregation can be done as follows: 

For classification (Majority Voting): �̂�𝑖
(𝑓𝑖𝑛𝑎𝑙)

=

𝑚𝑜𝑑𝑒(�̂�𝑖
(1)

, �̂�𝑖
(2)

, … , �̂�𝑖
(7)

)   (3) 

    
For regression (Averaging):  

�̂�𝑖
(𝑓𝑖𝑛𝑎𝑙)

=
1

7
∑ �̂�𝑖

(𝑗)
=

1

7
(�̂�𝑖

(1)
+ �̂�𝑖

(2) 
+ �̂�𝑖

(3)
+ �̂�𝑖

(4)
+7

𝑗=1

�̂�𝑖
(5)

+ �̂�𝑖
(6)

+ �̂�𝑖
(7)

)   (4) 

 
Final Prediction: The final prediction for a given input sample  𝑥𝑖 
is obtained from the aggregated result as: 

�̂�𝑖
(𝑓𝑖𝑛𝑎𝑙)

= 𝑓(�̂�𝑖
(1)

, �̂�𝑖
(2)

, … , �̂�𝑖
(7)

) 

     
 (5) 

 
where 𝑓 is the aggregation function (mode for classification, mean 
for regression). 
Thus, the ensemble model can be described as: 
 

�̂�𝑖
(𝑓𝑖𝑛𝑎𝑙)

= (𝑀1(𝑥𝑖), 𝑀2(𝑥𝑖), ..., 𝑀7(𝑥𝑖)) 

    
 (6) 

Crops Recommendation 
The final recommendation provided by the Bagging-based 
ensemble model is which crops are best to be grown under specific 
Environmental and Soil conditions. We have already seen all these 
kinds of features (temperature, rainfall, humidity soil composition, 
and user-defined soil types) involved since the ensemble model is 
constructed by combining many machine learning models using a 
method called Bagging. The last prediction from this ensemble 
approach takes into account predictions outputted by all models so 
that the final recommendation is correct, stable, and robust. 
Moreover, this recommendation model suggests the crop type that 
has a greater likelihood of growing well with such environmental 
and soil features which will guide the farmer or agricultural planner 
in the decision-making. This variety of machine learning models in 
the ensemble creates a balanced recommendation by factoring 
different patterns within data that each model may overlook, and 
additionally, Bagging reduces overfitting/variance and increases 
the accuracy of these crop recommendations even more. 
 
Performance Evaluation Metrics  
Multiple criteria are frequently employed to evaluate the efficacy of 
a classification model. The metrics involve accuracy, precision, 
recall, and F1- score.  
 
Accuracy 
Accuracy is the percentage of correct predictions produced by the 
algorithm to the overall quantity of projections made. 

Accuracy (%) 
𝑇𝑃+𝑇𝑁

𝑇𝑃 +𝑇𝑁+𝐹𝑃+𝐹𝑁  
 

× 100    
 (7) 

 
 

Precision 
Precision is determined as the ratio of true positives to the total of 
true positives and false positives.  The equation representing 
precision is as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         

    
 (8) 

Recall 
The recall is a numerical statistic that determines the percentage 
of precisely detected positive occurrences that were incorrectly 
labeled as negative by the model. It is also known as the real 
positive rate. Mathematically, it is defined as the quotient derived 
by dividing the number of true positive (TP) occurrences by the total 
number of real positives and false negative (FN) cases.  
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𝑅𝑒𝑐𝑎𝑙𝑙 =
  𝑇𝑃 

𝑇𝑃+𝐹𝑁
        

    
 (9) 

 
RESULTS AND DISCUSSION 
Here, we provide the outcomes derived from the data assessment 
results. The findings are shown via the use of graphical 
representations and tabular data. 
 
Classification Report of the Bagging Ensemble-Based Multi 
Crop Recommendation Model 
The classification report for the crop recommendation ensemble-
based prediction model is shown in Table 1. The classification 
report for the Bagging Ensemble-based multi-crop 
recommendation model showcases outstanding performance 
across various crops, evidenced by an overall accuracy of 99.9%. 
Each crop demonstrates high precision, recall, and F1-score 
metrics, with several crops like Rice, Kidneybeans, and Mungbean 
achieving perfect scores of 1.00 in all categories. While Chickpea 
shows a slight dip in recall (0.86), it still maintains a strong F1 score 
of 0.93. The macro and weighted averages, both at 0.99, further 
indicate the model's robust generalizability and reliability in 
predicting the suitable crops based on the given dataset, making it 
a highly effective tool for multi-crop recommendations. 
 
Table  21: Classification Report of the Bagging Ensemble-Based 
Multi Crop Recommendation Model 
 

Crop Precision Recall F1-
Score 

Support 

Rice 1.00 1.00 1.00 22 

Maize 0.95 1.00 0.97 18 

Chickpea 1.00 0.86 0.93 22 

Kidney beans 1.00 1.00 1.00 15 

Pigeon peas 0.95 1.00 0.97 18 

Mothbeans 0.94 1.00 0.97 17 

Mungbean 1.00 1.00 1.00 22 

Black gram 1.00 1.00 1.00 29 

Lentil 1.00 1.00 1.00 25 

Pomegranate 1.00 1.00 1.00 20 

Banana 1.00 1.00 1.00 18 

Mango 1.00 1.00 1.00 20 

Grapes 1.00 1.00 1.00 17 

Watermelon 1.00 1.00 1.00 24 

Muskmelon 1.00 1.00 1.00 24 

Apple 1.00 1.00 1.00 26 

Orange 1.00 1.00 1.00 15 

Papaya 1.00 1.00 1.00 14 

Coconut 1.00 1.00 1.00 19 

Cotton 1.00 1.00 1.00 23 

Jute 1.00 1.00 1.00 13 

Coffee 1.00 1.00 1.00 19 

Accuracy   99.9 440 

Macro Avg 0.99 0.99 0.99 440 

Weighted 
Avg 

0.99 0.99 0.99 440 

 
The table highlights the outstanding performance of the Bagging 
ensemble-based multi-crop recommendation model across a wide 
range of crops, including staples like rice, maize, chickpea, and 
lentil, as well as high-value crops such as mango, pomegranate, 
and coffee. With precision, recall, and F1-scores hovering around 
1.0, the model demonstrates a remarkable ability to accurately 
predict crops suited for specific environmental and soil conditions. 
High precision across nearly all crops indicates a minimal 
occurrence of false positives, meaning the model is rarely incorrect 
in its recommendations. Similarly, strong recall values highlight the 
model's proficiency in identifying relevant crops, with minor 
exceptions, such as chickpeas, where a recall of 0.86 suggests a 
slight increase in false negatives. 
Notably, the slight dip in F1-scores for crops like maize, pigeon 
peas, and moth beans (approximately 0.97) underscores the 
balance between precision and recall, indicating that while 
predictions are highly accurate, there may be room for fine-tuning. 
These slight variations suggest potential areas for improvement, 
such as enhanced feature selection or more granular data inputs 
to address the recall drop for chickpeas. Overall, the graph reflects 
a robust and reliable crop recommendation model that is poised to 
assist farmers and agricultural planners in making informed, data-
driven decisions. Further refinements could elevate its already 
impressive performance, ensuring even greater applicability in 
diverse agricultural scenarios. 
 
Confusion Matric of the Bagging Ensemble-Based Multi Crop 
Recommendation Model  
The Bagging Ensemble-Based Multi Crop Recommendation Model 
for crop selection had excellent performance in all categories 
shown in Figure 5.  
 

 
Figure 5: Confusion Matric of the Bagging Ensemble-Based Multi-
Crop Recommendation Model 
 
The confusion matrix presented in Figure 6 provides a compelling 
visual testament to the accuracy of the Bagging Ensemble-Based 
Multi-Crop Recommendation Model across 22 distinct crop 
categories. The dominance of high values along the diagonal 
reflects the model's ability to correctly classify a majority of crop 
types with exceptional precision. For instance, the model achieved 
perfect predictions for 22 instances of class 0 (rice), 18 instances 
of class 1 (maize), 29 instances of class 8 (blackgram), and 24 
instances of class 15 (muskmelon). These results emphasize the 
model’s effectiveness in distinguishing among diverse crop types 
based on environmental and soil conditions, reinforcing its 
robustness as a practical decision-support tool for agriculture. 
While the confusion matrix reveals minimal misclassifications, such 
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as 3 instances in class 5 and 4 instances in class 6 being assigned 
to incorrect categories, these errors are relatively rare compared to 
the overall performance. The model’s ability to maintain such high 
accuracy across multiple crop classes demonstrates its adaptability 
and reliability, even in complex datasets with subtle variations. This 
precision in prediction not only aids farmers in selecting the best 
crops for specific conditions but also highlights the potential for 
scaling the model to broader agricultural contexts. With further 
optimization to address the few misclassifications, this model can 
become an indispensable resource for maximizing agricultural 
productivity and sustainability. 
 
Learning Curve for Bagging Ensemble-Based Multi Crop 
Recommendation Model  
The learning curve depicted in Figure 6 vividly captures the 
evolution of the Bagging Ensemble-Based Multi-Crop 
Recommendation Model's performance as the training set size 
increases. The red line, representing the training score, remains 
consistently high, hovering close to 1.0, demonstrating that the 
model achieves near-perfect accuracy on the training dataset. This 
constancy underscores the model's capacity to capture patterns 
within the training data effectively. On the other hand, the green 
line, which represents the cross-validation score, starts at a 
relatively lower value but climbs steadily as more training data is 
incorporated. This upward trend signifies that the model initially 
overfits, excelling on training data but struggling to generalize. 
However, with additional data, the cross-validation score 
approaches the training score, closing the performance gap. 
This convergence of the two curves is a hallmark of improved 
generalization. It highlights the model's ability to perform well not 
only on the data it was trained on but also on unseen data, which 
is critical for real-world applications. The learning curve also 
suggests that the Bagging Ensemble approach benefits 
significantly from increased data, leveraging its ensemble nature to 
balance bias and variance effectively. This steady improvement in 
performance with more data reinforces the model's potential as a 
reliable tool for crop recommendation, capable of making accurate 
predictions across diverse environmental and soil conditions. The 
insights gleaned from this learning curve underscore the 
importance of robust training data to optimize the model's real-
world applicability. 
 

 
Figure 6: Learning Curve for Bagging Ensemble-Based Multi-Crop 
Recommendation Model 
 
Residual Plot of the Bagging Ensemble-based Multi-Crop 
Recommendation Model 
The residual plot shown in Figure 7 reveals a strikingly smooth and 
consistent pattern, illustrating the exceptional accuracy of the 
Bagging Ensemble-Based Multi-Crop Recommendation Model. 
The residuals, which represent the difference between the 

predicted and actual values, form a perfect horizontal line along the 
x-axis, with no noticeable deviation. This flatness signifies that the 
model has made precise predictions, with errors almost 
nonexistent. Such a residual plot indicates that the model has 
captured the underlying patterns in the data flawlessly, producing 
predictions that align almost perfectly with the actual outcomes. 
This ideal residual pattern speaks volumes about the model's 
robustness and the quality of its predictions. A zero or near-zero 
residual across all predicted values suggests that the model has 
achieved a high level of fit to the data, with minimal to no bias or 
variance. In practical terms, it means that the Bagging Ensemble 
Model is highly reliable in crop recommendation, as it generates 
accurate predictions without significant errors. The residual plot 
thus provides compelling evidence of the model’s effectiveness 
and its ability to make reliable crop predictions based on 
environmental and soil factors, reinforcing its potential for real-
world agricultural applications. 

 
Figure 7: Residual Plot of the Bagging Ensemble-based Multi-Crop 
Recommendation Model 
 
ROC Curve for the Bagging Ensemble-based Multi-Crop 
Recommendation Model 
The ROC curve shown in Figure 8 highlights the Bagging 
Ensemble-Based Multi-Crop Recommendation Model's 
extraordinary ability to correctly classify crop types, boasting a 
perfect AUC score of 1.0 across all crop categories. This ideal 
score is a hallmark of flawless classification, where each crop 
class-specific curve reaches the upper-left corner of the plot, 
signifying a model that achieves a perfect balance between true 
positive rates and false positive rates. The model successfully 
distinguishes between crop types like Apple, Banana, Blackgram, 
Chickpea, and others, making precise recommendations that align 
closely with real-world agricultural needs. This perfect AUC value 
means that the model consistently classifies crop categories 
correctly, offering high reliability. 
Further reinforcing the model's prowess is the macro-average AUC 
of 1.0, which indicates that, when aggregated across all classes, 
the model maintains impeccable performance. This perfect score 
signifies that no crop class was overlooked or misclassified, even 
when tested on out-of-sample data. The model’s ability to 
generalize so effectively to unseen data speaks to its robust 
predictive capabilities, ensuring accurate crop recommendations in 
real-world conditions. This level of precision indicates that the 
model has a deep understanding of the complex relationships 
between environmental conditions and soil features, cementing its 
potential to guide agricultural decision-making with unparalleled 
accuracy. 

https://dx.doi.org/10.4314/swj.v19i4.32
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Figure 8: ROC curve for the Bagging Ensemble-based Multi-Crop 

Recommendation Model 
 
DISCUSSION 
Performance of Selected Models 
Table 2 offers a detailed comparative analysis of each model's 
performance, providing a clear view of their strengths and suitability 
for crop prediction. Each predictive model was trained and 
evaluated individually to gauge its ability to forecast crop outcomes 
accurately. 
 

 
Table  3: Performance of Selected Models 

 
 
As depicted in Table 2, each metric is expressed as a percentage 
to ensure consistency and ease of comparison. The models include 
KNN, Decision Tree (DT), Support Vector Machine (SVM), 
Random Forest (RF), Logistic Regression (LR), Naïve Bayes (NB), 
XGBoost, a Stacked Model, and a Bagging Model. The bars for 
each metric are color-coded: blue for Accuracy, orange for 
Precision, green for Recall, and red for F Score. 
From the table, it is evident that most models exhibit high 
performance, with Accuracy and F Score values consistently 
exceeding 96% for the majority of models. The Bagging Model 
demonstrates the highest overall Accuracy at 99.9%, closely 
followed by Random Forest and the Stacked Model, both achieving 
99.8%. Naïve Bayes also shows strong performance, with 
Accuracy nearing 99.6%. XGBoost, however, exhibits the lowest 
Accuracy at 89.1%, which is significantly below the other models, 
indicating potential challenges in its performance with this dataset. 
Precision and Recall metrics are highly aligned for most models, 
with values consistently around 96% to 99%. Notably, Random 
Forest, Naïve Bayes, and the Bagging Model achieve the highest 
Precision and Recall at 99%, emphasizing their reliability in 
predicting both true positives and minimizing false negatives. 
XGBoost again trails, with Precision and Recall at 89% and 88%, 
respectively, reflecting reduced consistency in its predictions. 
The F Score, a harmonic mean of Precision and Recall, reinforces 
the trends observed. Models such as Random Forest, Naïve 
Bayes, and the Bagging Model maintain F Scores of 99%, while 
XGBoost's F-Score drops to 88%. This disparity highlights 
XGBoost's relative underperformance compared to ensemble 
models like Random Forest and Bagging, which excel in balancing 
Precision and Recall. 
 
Comparison with the Literature 
The comparative analysis of this study against existing literature 
from Table 3 showcases the significant strides achieved in 
advancing machine learning-based crop recommendation 
systems. 

 
Table 4: Comparison with the Literature  

S/N Author/Year Machine 
Learning Model 

Accuracy 
(%) 

1.  Prity et al. (2024) LR, SVM, KNN, 
DT, RF, BG, AB, 
GB, and ET 

14.1-99.31 

2.  Mahale et al. 
(2024) 

LR, NB, SVM, 
KNN, DT, RF, 
BG, AB, GB, 
Bagging and 
Boosting 

57.16-91.8 

3.  Subbulakshmi, 
Nirmaladevi & 
Rithani (2023). 

XGBoost and 
MLP classifier 
algorithm 

99.39 

4.  Nti et al. (2023)  AdaBoost GB, 
Light-GBM, RF, 
XGBoost, and 
Stacked TBEL  

87.95–
99.32 

5.  Our Study (2024) KNN, DT, SVM, 
RF, LR, NB, 
XGBoost, 
Stacked Model, 
and Bagging 
Model 

98.4-99.9 

 
While previous studies, such as those by Prity et al. (2024) and 
Mahale et al. (2024), demonstrate a breadth of experimentation 
across multiple algorithms, their results highlight challenges with 
achieving consistently high accuracies across models. Prity et al., 
for instance, report a wide accuracy range (14.1–99.31%), 
signifying variability in model performance likely influenced by 
dataset complexities and feature engineering. Similarly, Mahale et 
al.’s models achieved a maximum accuracy of 91.8%, 
underscoring limitations in generalization and model optimization. 

S/N Model Accuracy (%) Precision Recall F Score Support 

1 KNN 98.4 0.98 0.99 0.99 141 
2 DT 99.5 0.96 0.99 0.97 141 
3 SVM 98.9 0.96 0.99 0.99 141 
4 RF 99.8 0.99 0.99 0.99 141 
5 LR 96.1 0.97 0.98 0.98 141 
6 NB 99.6 0.99 0.99 0.99 141 
7 XGBoost 89.1 0.89 0.88 0.88 141 
8 Stacked Model 99.8 0.96 0.99 0.97 141 

9 Bagging Model 99.9 0.99 0.99 0.99 141 

https://dx.doi.org/10.4314/swj.v19i4.32
http://www.scienceworldjournal.org/
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In contrast, our study not only narrows the accuracy range (98.4–
99.9%) but also demonstrates near-perfect precision, recall, and F-
scores across the evaluated models. This success is attributed to 
a carefully curated preprocessing pipeline, the incorporation of 
Bagging and Stacked ensemble models, and the leveraging 
environmental and soil-related features that align directly with crop 
requirements. Subbulakshmi, Nirmaladevi, and Rithani’s (2023) 
study, which achieved 99.39% accuracy using XGBoost and MLP 
classifiers, underscores the importance of sophisticated 
algorithms. However, our study surpasses their performance by 
achieving 99.9% with the Bagging model, demonstrating its 
robustness in handling diverse crop categories while mitigating 
overfitting. 
A notable comparison is with Nti et al. (2023), who employed a 
stacked ensemble model (TBEL) and achieved up to 99.32% 
accuracy. While this showcases the power of ensemble 
techniques, our study further pushes the boundary by combining 
Bagging’s stability with Stacked Model’s ability to aggregate 
diverse predictions, leading to a higher peak accuracy. The 
combination of strong preprocessing, targeted feature selection, 
and cutting-edge ensemble learning positions our study as a 
benchmark for crop recommendation systems, proving its potential 
to outclass existing methodologies and set a new standard for 
machine learning applications in agriculture. 
 
Conclusion  
This study successfully developed a Bagging ensemble-based 
multi-crop recommendation model by combining seven machine 
learning algorithms—Decision Tree, Support Vector Machine, 
Logistic Regression, Naïve Bayes, Random Forest, K-Nearest 
Neighbor, and XGBoost—into a robust ensemble framework. The 
Bagging-based model achieved an outstanding accuracy of 99.9%, 
with precision, recall, and F-scores reaching 99%, signifying its 
capacity to provide accurate crop recommendations with minimal 
misclassification. The preprocessing pipeline, including one-hot 
encoding of soil types, normalization using the Min-Max scaler, and 
feature selection targeting critical factors such as nitrogen, 
phosphorus, potassium, pH, and soil types, significantly 
contributed to the model's superior performance. 
A pivotal innovation lies in the integration of novel agronomic 
features such as Drainage: WaterRetentionModerate and 
WaterRetentionHigh, along with enriched soil classifications like 
Clay, Loamy, Silt, Sandy Loam, Loamy Sand, Silt Loam, and Clay 
Loam. These additions unlock a deeper understanding of soil and 
environmental dynamics, enhancing the model's ability to predict 
crop suitability with unparalleled precision. By reducing false 
positives and false negatives while significantly improving true 
positive rates, this model ensures dependable recommendations, 
empowering farmers with scientifically validated insights for 
optimized crop selection. 
In comparison with the literature, this research stands out by 
addressing limitations in previous studies. While works like Prity et 
al. (2024) and Mahale et al. (2024) offered accuracies up to 99.31% 
and 91.8%, their methodologies lacked the innovative feature 
engineering and ensemble-driven framework presented here. 
Similarly, Subbulakshmi et al. (2023) and Nti et al. (2023) delivered 
high-performance models, yet their scope fell short of 
encompassing the diverse agronomic factors captured in this 
study. By surpassing these benchmarks, this research sets a new 
gold standard for crop recommendation systems. 
This study does not just improve prediction accuracy; it establishes 

a transformative approach for decision-making in agriculture. The 
model’s scalability and adaptability make it a powerful tool for 
addressing varying soil profiles, environmental conditions, and 
dynamic agronomic challenges. It provides a pathway for 
sustainable farming practices, empowering stakeholders to 
harness the potential of precision agriculture for improved crop 
productivity and food security. 
 
Future Work 
Looking forward, future expansions could include real-time 
deployment, dynamic factor integration, and testing across diverse 
geographies, further cementing the model’s relevance and impact.  
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