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ABSTRACT 
This study presents a modified Laplace-variational iteration method 
(MLVIM) designed to solve linear and nonlinear Volterra integro-
differential equations (VIDEs) with specified initial conditions. The 
MLVIM is a hybrid approach that integrates the strengths of the 
Laplace transform and the variation iteration method (VIM), 
effectively enhancing the overall solution process by improving 
both the efficiency and convergence rate. Specifically, the method 
refines the correction functional and optimizes the handling of the 
integral term, which directly leads to a reduction in the number of 
iterations needed and decreases the associated computational 
complexity. To demonstrate the effectiveness of MLVIM, the study 
applies it to two illustrative examples involving both linear and 
nonlinear VIDEs, with initial conditions. The results are then 
compared to those obtained using the Adomian decomposition 
method (ADM) and the fourth-order Runge-Kutta (RK4) algorithm. 
The findings show that MLVIM consistently exhibits a faster 
convergence rate and higher accuracy compared to both ADM and 
RK4 in all the examples presented. The MLVIM can be applied to 
a broad range of linear and nonlinear VIDEs. This makes it a 
valuable tool with potential applications in various scientific and 
engineering fields, where integro-differential equations frequently 
arise in modeling complex systems and processes. 
 
Keywords: Volterra integro-differential equations, linear, 
nonlinear, Laplace transform, variational iteration method. 
 
INTRODUCTION 
Integro-differential equations is an important branch of modern 
Mathematics often encountered in various applied disciplines such 
as engineering, electrostatics, mechanics, elasticity theory, and 
mathematical physics (Hamoud and Ghadle (2018). These 
equations can be generated in two main ways. One method is by 
converting an initial value problem (IVP) with prescribed initial 
conditions, into an integro-differential form. Alternatively, they can 
also arise from boundary value problems (BVPs), where the 
equation is defined with certain boundary conditions. It is important 
to point out that transforming initial value problems into integral 
equations, or vice versa, is a well-established practice in literature. 
This method simplifies the process of solving these equations. 
However, converting boundary value problems into integral 
equations, or reversing that process, is less commonly explored in 
mathematical practice (Burton, 2005; Brunner, 2017). 
Integro-differential equations arise when a differential equation 
involves a combination of derivatives and integrals of unknown 
functions. When real-life phenomena are modelled and analyzed, 
they usually result in functional differential equations such as partial 
differential equations, integral and integro-differential equations, 

stochastic equation etc. Integral and integro-differential equations 
are mathematical formulations that serve as models for a wide 
range of practical scenarios. In applied science and engineering, 
integro-differential equations are very useful. Integro-differential 
equations are a natural way to characterize models originating from 
challenges studied in fluid dynamics, ecology, biology, networking 
analysis, viscoelasticity, chemical kinematics, and financial matters 
(Cushing, 1977, Constantin, 1996; Christensen, 2003). The Italian 
mathematician Vito Volterra (1860–1940) created a particular kind 
of integro–differential equation known as Volterra integro–
differential equations. In the early 1900s, Volterra investigated the 
effects of heredity while looking at a population growth model. The 
investigation produced a particular issue wherein integral and 
differential operators coexist in one equation. The Volterra integro-
differential equations are a novel class of equations that bear his 
name. Regarding the theory of integral equations and their 
applications, Volterra made important contributions. Integral and 
differential equations are combined to create Volterra integro-
differential equations. A general 𝑛𝑡ℎ −order integro-differential 
equation is given in the form: 
 

  𝑢(𝑛)(𝑡) = 𝑓(𝑡) +

 𝜆 ∫ 𝑘(𝑡, 𝑟)𝑢(𝑟)𝑑𝑟,
𝑡

0
                                         (1) 

 

where 𝑢(𝑛)(𝑡) =
𝑑𝑛(𝑡)

𝑑𝑡𝑛
,  is the 𝑛𝑡ℎ derivative with 𝑢(𝑡) being an 

unknown function, 𝑘(𝑡, 𝑟) is the kernel, f(t)  is a given real-valued 

function, λ is a parameter and u(r)  is the unknown function. 
These kinds of problems have already been solved using a variety 
of analytical and numerical techniques (Wazwaz 2010; 2011). 
Numerous fields have benefited from the use of these equations, 
including population dynamics, heat transport, glass making, 
dynamic systems, and mathematical biology.  Gribenberg et al 
(1985).  The Volterra integro-differential equations, both linear and 
nonlinear, have garnered increasing attention in recent times.  
Many disciplines of nonlinear functional analysis and its 
applications in the science of engineering, mechanics, physics, 
electrostatics, biology, chemistry, and economics rely heavily on 
the nonlinear Volterra integro-differential equations (Abbaoui and 
Cherruault, 1994). Integro-differential equations have been the 
subject of extensive investigation by a number of researchers in 
recent years. It is necessary to find approximate or numerical 
solutions to these equations because they are typically challenging 
to solve and difficult to find their exact solutions. Consequently, 
research efforts have concentrated on creating more advanced and 
effective analytical and numerical techniques for resolving integro-
differential equations. These techniques include the wavelet-
Galerkin method (Kumar and Mehra, 2006; Suk-in and Schulz, 
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2013), Adomain decomposition method (Adomian, 1998; Wazwaz, 
1999; Batiha et al., 2008; Heidarzadeh et al., 2012); Homotopy 
analysis method (He, 2004); He (1999) produced the Homotopy 
perturbation technique of solution, Hemeda (2012) presented a 
new Iterative Method of application to nth-Order integro-differential 
equations and lot more. 
The Laplace transform is a widely used method in Mathematics and 
Engineering to solve differential equations. It converts a function of 
a real variable t (often time) to a function of a complex variable. The 
method transforms a time-domain function into an s-domain 
function, simplifying the process of solving linear differential 
equations (Ingham, 2013).  
The variational iteration method (VIM) Proposed by Ji-Huan He is 
an iteration method for finding approximate solutions to various 
types of differential equations, including nonlinear ones. The 
method uses variational theory to construct correction functional, 
iteratively refining the solution (He, 1999).  
In recent years, combining these methods in solving integro-
differential equations has been an interesting study.  Njoseh (2016) 
presented a numerical method called the Variation iteration 
Adomian decomposition method (VIADM) for solving nonlinear 
partial differential equations (PDEs) and opined that the method 
modifies the traditional formulation of the variation iteration 
decomposition method (VIDM) such that it converges more rapidly 
to the analytic solution.   In 2019, Hamound et-al applied the 
modified Laplace Adomian decomposition method to find the 
approximate solutions of Caputo fractional Volterra-Fredholm 
integro-differential equation and asserted that the reliability of the 
method and reduction in the size of the computational work gave 
the method a wider applicability. 
The Laplace variational iteration method (LVIM) combines the 
concepts and methodologies of two significant Mathematical 
techniques: Laplace transforms and variational iteration method to 
solve VIDES. The process involves applying the Laplace transform 
to the integro-differential equation, solving the resulting algebraic 
equation using VIM, and then applying the inverse Laplace 
transform to obtain the solution in the time domain. The initial 
approximation is defined and solving iteratively, the approximate 
solution is obtained.  The combination of these approaches 
provides a robust framework that enables the efficient solution of 
complex Volterra integro-differential equations.  
In mathematics, Laplace transform based numerical methods play 
a major role in the field of computational and applied mathematics. 
To make it iterative, variational methods have attracted the 
attention of various researchers and scientists. Combination of 
these two methods gives numerical results with significant 
convergence. Gurpreet and Inderdeep (2020) presented a semi 
analytical method for solving three- dimensional    diffusion and 
wave equations arising in several applications of engineering.  The 
proposed technique was based on the combination of Laplace 
transform and modified variational iterative method. The results 
obtained shows that the numerical technique based on the 
combination of two well-known numerical methods such as Laplace 
transform method and variational iteration method, is a powerful 
semi analytical technique for solving three- dimensional heat and 
wave equations.  Laplace variational iteration strategy has been 
adopted to find the solution of differential equations, time fractional 
diffusion equations arising in porous medium, nonlinear partial 
differential equations, homogeneous Smoluchowski coagulation 
equation arising in engineering, modified fractional derivatives with 
non-singular kernel and numerical solutions of a family of 

Kuramoto-Sivashinsky equations.  
Ibrahim et al (2021) derived and applied a new approach by 
modifying Laplace transform variational iteration method to solve 
fourth-order fractional integro-differential equations. Nonlinear 
boundary value problems for fourth-order fractional integro-
differential equations were solved by modified Laplace transform 
variational iteration method. This modification is designed to 
improve the accuracy of the approximate solutions obtained by 
LVIM. In this research work, we combined the Laplace transform 
and the variation method (VIM) with some modifications to solve 
linear and nonlinear volterra integro-differential equations. 
The study of Volterra integro-differential equations (VIDEs) has 
garnered significant attention due to their widespread application in 
various scientific and engineering fields, such as biological 
systems, population dynamics, and fluid mechanics. These 
equations, which combine integral and differential terms, are often 
complex and challenging to solve, especially in the nonlinear case. 
Over time, several analytical and numerical methods have been 
proposed to address this challenge. 
However, significant gaps remain, particularly in addressing 
nonlinear VIDEs, improving convergence rates, handling complex 
boundary conditions, and developing more computationally 
efficient methods. The Modified Laplace-Variational Iteration 
Method (MLVIM) seeks to address these gaps by combining the 
strengths of the Laplace transform and VIM, offering a more robust 
and efficient approach to solving both linear and nonlinear VIDEs.  
 
MATERIALS AND METHODS 
Laplace Transform and Its Properties 
Laplace Transform: Let 𝑔(𝑡)  be a function of 𝑡 defined for all 

positive values of 𝑡. Then the Laplace transforms of 𝑔(𝑡), 
represented as 𝐿{𝑔(𝑡)} is defined as: 

   𝐿{𝑔(𝑡)} = ∫ 𝑒−𝑠𝑥𝑔(𝑡)𝑑𝑡
∞

0
= �̅�(𝑠)                             (2)             

provided the integral exists and ′𝑠′ is a parameter which may be a 
real or complex number.  
Therefore  
    𝐿{𝑔(𝑡)} =
�̅�(𝑠)                                                                                      (3)             
that is  
       𝑔(𝑡) =
𝐿−1{�̅�(𝑠)}                                                                 (4)             
The term 𝐿−1{�̅�(𝑠)}, is called the inverse Laplace transform of 

�̅�(𝑠) 
 
Linearity: Let 𝑓(𝑡), 𝑔(𝑡) be two functions of  𝑡 defined for all 

positive values of  𝑡.Then  

  𝐿{𝑎. 𝑓(𝑡) + 𝑏. 𝑔(𝑡)} = 𝑎. 𝐿{𝑓(𝑡)} +
𝑏. 𝐿{𝑔(𝑡)}                                (5)           
where  a and b  are arbitrary constants.  
Differentiation: Let 𝑓(𝑡) be a function of 𝑡 defined for all positive 

values of 𝑡. Then, the Laplace transform of  𝑛𝑡ℎ derivative of 

function 𝑓(𝑡) is  

ℒ [
𝑑𝑛(𝑓(𝑡))

𝑑𝑡𝑛
] = 𝑠𝑛ℒ[𝑓(𝑡)] − 𝑠𝑛−1𝑓(0) −

𝑠𝑛−2𝑓′(0) − ⋯− 𝑠𝑓(𝑛−2)(0) − 𝑓𝑛−1(0)   
                                     (6)       
 

Inverse Laplace transforms: Let  𝑓(𝑡), 𝑔(𝑡) be two functions of 

𝑡 defined for all positive values of 𝑡. Let 𝑓̅(𝑠)  and �̅�(𝑠) be the 

functions of 𝑠 such that 𝑓(̅𝑠) =  𝐿{𝑓(𝑡)} and  �̅�(𝑠) =  𝐿{𝑔(𝑡)}. 
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Then  

                           𝐿−1{𝑐. 𝑓̅(𝑠) + 𝑑. �̅�(𝑠)} = 𝑐. 𝐿−1{𝑓(̅𝑠)} +

𝑑. 𝐿−1{�̅�(𝑠)} = 𝑐. 𝑓(𝑡) 

+ 𝑑. 𝑔(𝑡)                                            (7)             
where c and d are arbitrary constants. 
 
Variational Iteration Method 
Variational iteration method is a most powerful technique for 
solving linear and nonlinear differential equations. This technique 
is widely used to evaluate the exact or approximate solutions of 
linear or nonlinear problems. The variational iteration method gives 
the solution in a rapidly convergent infinite series. 
Consider the following general nonlinear problem:  

 𝐿𝑢(𝑡) + 𝑁𝑢(𝑡)
= 𝑔(𝑡)                                                    (8)  

where L is a linear operator, N is a nonlinear operator, and  𝑔(𝑡) 
is a known analytical function. The variational iteration method (He, 
1999) constructs an iterative sequence called the correction 
functional as:   

                            𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) + 

∫ 𝜆(𝜏)(𝐿𝑢𝑛(𝜏) + 𝑁�̃�𝑛(𝜏) −
𝑥

0

𝑔(𝜏))𝑑𝜏                                                           (9) 

                         
 where 𝑢0(𝑡) initial approximation with possible unknowns, 𝜆 is the 
general Lagrange multiplier which can be identified optimally via 
the variational theory, �̃�𝑛(𝜏) is considered as the restricted 

variation, i.e. 𝛿�̃�𝑛(𝜏) = 0 , and the index 𝑛 denotes the 𝑛𝑡ℎ 

iteration.  The successive approximation can be established by 
determining a general Lagrange multiplier 𝜆 given as 

           𝜆𝑛(𝑠) =
(−1)𝑛(𝑠−𝑡)𝑛−1

(𝑛−1)!
                             (10)             

The successive approximations 𝑢𝑘(𝑡, 𝑟), 𝑛 ≥ 0 of the solution 

𝑢(𝑡, 𝑟) are obtained on using the computed Lagrange multiplier 
and any selective function 𝑢0. The exact solution may be obtained 
by  

          𝑢(𝑡, 𝑟) =
lim
𝑛→∞

𝑢(𝑡, 𝑟)                                                       (11)             

And the error formulation for the problem is defined as 
  Absolute error = |𝑢(𝑡) − 𝑢𝑛(𝑡)|                     (12)             
 

The Modified Laplace-Variational Iteration Method 
Consider the Volterra integro-differential equation of the form 

  𝑢(𝑛)(𝑡) = 𝑓(𝑡) + ∫ 𝑘(𝑡, 𝑟)𝑢(𝑟)𝑑𝑟
𝑡

0
  

                         (13) 

where  𝑢(𝑛)(𝑡) =
𝑑𝑛𝑡

𝑑𝑡𝑛
, 𝑘(𝑡, 𝑟) is the kernel, 𝑓(𝑡) is a given real-

valued function and 𝑢(0), 𝑢′(0), 𝑢′′(0), … ,  𝑢𝑖−1(0) are the 
initial conditions.  
 Take Laplace transform of both sides of (13) to obtain 

  ℒ{𝑢(𝑛)(𝑡)} = ℒ{𝑓(𝑡)} + ℒ {∫ 𝑘(𝑡, 𝑟)𝑢(𝑟)𝑑𝑟
𝑡

0
}  

          (14) 

𝑠𝑛ℒ[𝑢(𝑡)] − 𝑠𝑛−1𝑢(0) − 𝑠𝑛−2𝑢′(0) −⋯− 𝑠𝑢(𝑛−2)(0)
− 𝑢𝑛−1(0)
= ℒ{𝑓(𝑡)}

+ ℒ {∫𝑘(𝑡, 𝑟)𝑢(𝑟)𝑑𝑟

𝑡

0

}                                         (15) 

         𝑠𝑛𝑢(𝑠) − ∑ 𝑠𝑛−𝑘−1𝑢𝑘(0)∞
𝑖=0 = ℒ{𝑓(𝑡)} +

ℒ {∫ 𝑘(𝑡, 𝑟)𝑢(𝑟)𝑑𝑟
𝑡

0
}                                         (16)                                      

𝑢(𝑠) =
1

𝑠𝑛
 ∑ 𝑠𝑛−𝑘−1𝑢𝑘(0)∞

𝑖=0 +
1

𝑠𝑛
ℒ{𝑓(𝑡)} +

1

𝑠𝑛
ℒ {∫ 𝑘(𝑡, 𝑟)𝑢(𝑟)𝑑𝑟

𝑡

0
}                                           (17)               

  By taking the inverse Laplace transform of both sides, 
we have 
                             𝑢(𝑡) = 𝑔(𝑡) +

 ℒ−1 {
1

𝑠𝑛
ℒ {∫ 𝑘(𝑡, 𝑟)𝑢(𝑟)𝑑𝑟

𝑡

0
}}                            (18)                                                                            

where  

𝑔(𝑡) = ℒ−1 {
1

𝑠𝑛
 ∑ 𝑠𝑛−𝑘−1𝑢𝑘(0)∞

𝑖=0 +
1

𝑠𝑛
ℒ{𝑓(𝑡)}}, 

represents the terms arising from the source term and the 
prescribed initial conditions. Using the approach of Tarig et al 
(2013); we have that the first derivative of equation (18) is given by 

         
𝑑𝑢(𝑡)

𝑑𝑡
=

𝑑𝑔(𝑡)

𝑑𝑡
+

𝑑

𝑑𝑡
ℒ−1 {

1

𝑠𝑛
ℒ {∫ 𝑘(𝑡, 𝑟)𝑢(𝑟)𝑑𝑟

𝑡

0
}}                                  (19)             

By taking the correction functional of (19), we have 

𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) + ∫ 𝜆 {(
𝑑

𝑑𝜌
𝑢𝑛(𝜌) −

𝑑

𝑑𝜌
𝑔(𝜌) −

𝑡

0

𝑑

𝑑𝜌
ℒ−1 {

1

𝑠𝑛
ℒ{∫ 𝑘(𝜌, 𝑟)𝑢𝑛(𝑟)𝑑𝑡

𝜌

0
}} 𝑑𝑟}  𝑑𝜌                      

                            (20) 
From (20), we determine the Lagrange multiplier as 

𝜆(𝑠) = −1 
Hence we have 
𝑢𝑛+1(𝑡)
= 𝑢𝑛(𝑡)

− ∫{(
𝑑

𝑑𝜌
𝑢𝑛(𝜌) −

𝑑

𝑑𝜌
𝑔(𝜌)

𝑡

0

−
𝑑

𝑑𝜌
ℒ−1 {

1

𝑠𝑛
ℒ {∫𝑘(𝜌, 𝑟)𝑢𝑛(𝑟)𝑑𝑡

𝜌

0

}}𝑑𝑟}  𝑑𝜌                  (21) 

From (21), we have 

          𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) − {𝑢𝑛(𝑡) − 𝑔(𝑡) −

ℒ−1 {
1

𝑠𝑛
ℒ {∫ 𝑘(𝑡, 𝑟)𝑢𝑛(𝑟)𝑑𝑟

𝑡

0
}}}              

                                                     (22)  
Then the correction functional for the modified VIM is given by  

                             𝑢𝑛+1(𝑡) = 𝑔(𝑡) +

ℒ−1 {
1

𝑠𝑛
ℒ {∫ 𝑘(𝑡, 𝑟)𝑢𝑛(𝑟)𝑑𝑟

𝑡

0
}}, 𝑛 ≥ 0                       

                               (23) 
Making 𝑔(𝑡) the initial guess, we have that the initial conditions 

𝑢0 = 𝑔(𝑡) 
The recurrence relation is given as 

𝑢0 = 𝑔(𝑡) 
When 𝑛 = 0 

         𝑢1(𝑡)

= 𝑔(𝑡) + ℒ−1 {
1

𝑠𝑛
ℒ {∫𝑘(𝑡, 𝑟)𝑢0(𝑟)𝑑𝑟

𝑡

0

}} 

When 𝑛 = 1 
 

https://dx.doi.org/10.4314/swj.v19i4.34
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         𝑢2(𝑡)

= 𝑔(𝑡) + ℒ−1 {
1

𝑠𝑛
ℒ {∫𝑘(𝑡, 𝑟)𝑢1(𝑟)𝑑𝑟

𝑡

0

}} 

When 𝑛 = 2 
 

         𝑢3(𝑡)

= 𝑔(𝑡) + ℒ−1 {
1

𝑠𝑛
ℒ {∫𝑘(𝑡, 𝑟)𝑢2(𝑟)𝑑𝑟

𝑡

0

}} 

Generally, 
         𝑢𝑛(𝑡)

= 𝑔(𝑡) + ℒ−1 {
1

𝑠𝛼
ℒ {∫𝑘(𝑡, 𝑟)𝑢𝑛−1(𝑟)𝑑𝑟

𝑡

0

}} 

 
Solving iteratively, we obtain the solution in the form  
 

  𝑢(𝑡) = lim
𝑛→∞

𝑢𝑛(𝑡)                                    (24) 

 
RESULTS 
In this section, we implement the MLVIM in solving Volterra integro-
differential equations. The method is compared with Adomian 
decomposition method (ADM) and Runge-Kutta4 algorithm for 
efficiency and convergence. We consider problems that have 
analytic solutions in order to be able to obtain the error estimates 
and rates of convergence for each method.  
 
Example 4.1: (Kekena et al., 2015) 
Consider the following initial value problem for the third order linear 
Volterra integro-differential equation 

{
 

 
 𝑢′′′(𝑡) = 1 + 𝑡 +

𝑡3

6
+ ∫(𝑡 − 𝑟)𝑢(𝑟)𝑑𝑟      (25) 

𝑡

0

𝑢(0) = 𝑢′′(0) = 1, 𝑢′(0) = 2                                                                                           

 

The exact solution of (25) is 

                    𝑢(𝑡) = 𝑒𝑡 −
𝑡.                                                                                       
By the LVIM, we take the Laplace transform of both sides of the 
equation in (25) to get 

                                   ℒ{𝑢′′′(𝑡)} = ℒ{1} + ℒ{𝑡} + ℒ {
𝑡3

6
} +

ℒ {∫ (𝑡 −
𝑡

0

𝑟)𝑢(𝑟)𝑑𝑟}                                                             (26)     

This gives                             

            𝑠3𝑢(𝑠) − 𝑠2𝑢(0) − 𝑠𝑢′(0) − 𝑢′′(0)

=
1

𝑠
+
1

𝑠2
+
1

𝑠4

+ ℒ {∫(𝑡 − 𝑟)𝑢(𝑟)𝑑𝑟 

𝑡

0

}                                                 (27) 

At  𝑢(0) = 𝑢′′(0) = 1, and 𝑢′(0) = 0, we have 

𝑠3𝑢(𝑠) − 𝑠2 − 1 =
1

𝑠
+

1

𝑠2
+

1

𝑠4
+ ℒ {∫ (𝑡 − 𝑟)𝑢(𝑟)𝑑𝑟 

𝑡

0
}                                                      

                                         (28) 
 

𝑢3(𝑠) = 1 + 𝑠2 +
1

𝑠
+

1

𝑠2
+

1

𝑠4
+ ℒ {∫ (𝑡 − 𝑟)𝑢(𝑟)𝑑𝑟 

𝑡

0
}                                                                                            

(29) 

𝑢(𝑠) =
1

𝑠
+

1

𝑠3
+

1

𝑠4
+

1

𝑠5
+

1

𝑠7
+

1

𝑠3
ℒ {∫ (𝑡 − 𝑟)𝑢(𝑟)𝑑𝑟 

𝑡

0
}                                                                                          

(30) 
Taking the inverse Laplace we have  

𝑢(𝑡) = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡6

6!
+ ℒ−1 {

1

𝑠3
ℒ {∫ (𝑡 −

𝑡

0

𝑟)𝑢(𝑟)𝑑𝑟}}                                                           

                    (31) 
By differentiating equation (31) above, we have  

 
𝑑𝑢(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
(1) +

𝑑

𝑑𝑡
(
𝑡2

2!
) +

𝑑

𝑑𝑡
(
𝑡3

3!
) +

𝑑

𝑑𝑡
(
𝑡4

4!
) +

𝑑

𝑑𝑡
(
𝑡6

6!
) +

𝑑

𝑑𝑡
{ℒ−1 {

1

𝑠3
ℒ {∫ (𝑡 − 𝑟)𝑢(𝑟)𝑑𝑟

𝑡

0
}}}                    

                      (32)                                                 
Next, we define the correction functional of equation (32) 

𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) + ∫ 𝜆 {(
𝑑

𝑑𝜌
𝑢𝑛(𝜌) −

𝑑

𝑑𝑡
(1) −

𝑡

0

𝑑

𝑑𝑡
(
𝜌2

2!
) −

𝑑

𝑑𝑡
(
𝜌3

3!
) −

𝑑

𝑑𝑡
(
𝜌4

4!
) −

𝑑

𝑑𝑡
(
𝜌6

6!
) −

𝑑

𝑑𝑡
{ℒ−1 {

1

𝑠3
ℒ{∫ (𝑡 −

𝜌

0

𝑟)𝑢𝑛(𝑟)𝑑𝑟}}} 𝑑𝑟}  𝑑𝜌                                                                                 

                          (33) 
From equation (33) we determine the Lagrange multiplier as 

𝜆(𝑠) = −1 
Hence we have 

                     𝑢𝑛+1(𝑡)

= 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡6

6!

+ ℒ−1 {
1

𝑠3
ℒ {∫(𝑡

𝑡

0

− 𝑟)𝑢𝑛(𝑟)𝑑𝑟}}                                          (34) 

where 

𝑢0(𝑡) = 𝑔(𝑡) = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡6

6!
 

𝑢1(𝑡) = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡6

6!
+ ℒ−1 {

1

𝑠3
ℒ {∫(𝑡 − 𝑟)𝑢0(𝑟)𝑑𝑟

𝑡

0

}}                   

https://dx.doi.org/10.4314/swj.v19i4.34
http://www.scienceworldjournal.org/
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   = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡6

6!
+ ℒ−1 {

1

𝑠3
ℒ {∫(𝑡 − 𝑟) (1 +

𝑟2

2!
+
𝑟3

3!
+
𝑟4

4!
+
𝑟6

6!
) 𝑑𝑟

𝑡

0

}} 

𝑢1(𝑡) = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡5

5!
+
𝑡6

6!
+
𝑡7

7!
+
𝑡8

8!
+
𝑡9

9!
+
𝑡11

11!
 

𝑢2(𝑡) = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡6

6!
+ ℒ−1 {

1

𝑠3
ℒ {∫(𝑡 − 𝑟)𝑢1(𝑟)𝑑𝑟

𝑡

0

}} 

             = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡6

6!
+ ℒ−1 {

1

𝑠3
ℒ {∫(𝑡 − 𝑟) (1 +

𝑟2

2!
+
𝑟3

3!
+
𝑟4

4!
+
𝑟5

5!
+
𝑟6

6!
+
𝑟7

7!
+
𝑟8

8!
+
𝑟9

9!
+
𝑟11

11!
)𝑑𝑟

𝑡

0

}} 

𝑢2(𝑡) = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡5

5!
+
𝑡6

6!
+
𝑡7

7!
+
𝑡8

8!
+
𝑡9

9!
+
𝑡10

10!
+
𝑡11

11!
+
𝑡12

12!
+
𝑡13

13!
+
𝑡14

14!
+
𝑡16

16!
 

 

𝑢3(𝑡) = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡6

6!
+ ℒ−1 {

1

𝑠3
ℒ {∫(𝑡 − 𝑟)𝑢2(𝑟)𝑑𝑟

𝑡

0

}} 

               = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡6

6!

+ ℒ−1 {
1

𝑠2
ℒ {∫(𝑡 − 𝑟) (1 +

𝑟2

2!
+
𝑟3

3!
+
𝑟4

4!
+
𝑟5

5!
+
𝑟6

6!
+
𝑟7

7!
+
𝑟8

8!
+
𝑟9

9!
+
𝑟10

10!
+
𝑟11

11!
+
𝑟12

12!
+
𝑟13

13!
+
𝑟14

14!

𝑡

0

+
𝑟16

16!
)𝑑𝑟}} 

𝑢3(𝑡) = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡5

5!
+
𝑡6

6!
+
𝑡7

7!
+
𝑡8

8!
+
𝑡9

9!
+
𝑡10

10!
+
𝑡11

11!
+
𝑡12

12!
+
𝑡13

13!
+
𝑡14

14!
+
𝑡15

15!
+
𝑡16

16!
+
𝑡17

17!
+
𝑡18

18!
+
𝑡19

19!
+
𝑡21

21!
 

 

𝑢4(𝑡) = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡6

6!
+ ℒ−1 {

1

𝑠3
ℒ {∫(𝑡 − 𝑟)𝑢3(𝑟)𝑑𝑟

𝑡

0

}} 

               = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡6

6!

+ ℒ−1 {
1

𝑠2
ℒ {∫(𝑡 − 𝑟) (1 +

𝑟2

2!
+
𝑟3

3!
+
𝑟4

4!
+
𝑟5

5!
+
𝑟6

6!
+
𝑟7

7!
+
𝑟8

8!
+
𝑟9

9!
+
𝑟10

10!
+
𝑟11

11!
+
𝑟12

12!
+
𝑟13

13!
+
𝑟14

14!
+
𝑟15

15!

𝑡

0

+
𝑟16

16!
+
𝑡17

17!
+
𝑡18

18!
+
𝑡19

19!
+
𝑡21

21!
)𝑑𝑟}} 

𝑢4(𝑡) = 1 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+
𝑡5

5!
+
𝑡6

6!
+
𝑡7

7!
+
𝑡8

8!
+
𝑡9

9!
+
𝑡10

10!
+
𝑡11

11!
+
𝑡12

12!
+
𝑡13

13!
+
𝑡14

14!
+
𝑡15

15!
+
𝑡16

16!
+
𝑡17

17!
+
𝑡18

18!
+
𝑡19

19!
+
𝑡20

20!
+
𝑡21

21!

+
𝑡22

22!
+
𝑡23

23!
+
𝑡24

24!
+
𝑡26

26!
 

 
Example 4.2: (Kekena et al., 2015) 
Consider the following initial value problem for the first order 
nonlinear Volterra integro-differential equation 

{
𝑢′(𝑡) = 1 + ∫𝑢2(𝑟)𝑑𝑟        (35) 

𝑡

0

𝑢(0) = 0                                                                                                                

 

By the LVIM, we take the Laplace transform of both sides of the 

equation in (35) to get 
    ℒ{𝑢′(𝑡)} = ℒ{1} +

ℒ {∫ 𝑢2(𝑟)𝑑𝑟
𝑡

0
}                                     (36)     

This gives                             
                                     𝑠𝑢(𝑠) − 𝑢(0)

=
1

𝑠
+ ℒ {∫𝑢2(𝑟)𝑑𝑟

𝑡

0

}                                  (37) 

https://dx.doi.org/10.4314/swj.v19i4.34
http://www.scienceworldjournal.org/
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At  𝑢(0) = 0, we have 

𝑠𝑢(𝑠) =
1

𝑠
+ ℒ {∫ 𝑢2(𝑟)𝑑𝑟

𝑡

0
}                                                                                                

          (38) 

𝑢(𝑠) =
1

𝑠2
+
1

𝑠
ℒ {∫ 𝑢2(𝑟)𝑑𝑟

𝑡

0
}                                                                                              

          (39) 
Taking the inverse Laplace we have  

𝑢(𝑡) = 𝑡 + ℒ−1 {
1

𝑠
ℒ {∫ 𝑢2(𝑟)𝑑𝑟

𝑡

0
}}                                                                  

               (40) 
By differentiating equation (40) above, we have  

 
𝑑𝑢(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑡) +

𝑑

𝑑𝑡
{ℒ−1 {

1

𝑠
ℒ {∫ 𝑢2(𝑟)𝑑𝑟

𝑡

0
}}}                         

                                                         (41)                                                 
Next, we define the correction functional of equation (41) 

𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) + ∫ 𝜆 {(
𝑑

𝑑𝜌
𝑢𝑛(𝜌) −

𝑑

𝑑𝑡
(𝜌) −

𝑡

0

𝑑

𝑑𝑡
{ℒ−1 {

1

𝑠
ℒ{∫ 𝑢2(𝑟)𝑑𝑟

𝜌

0
}}} 𝑑𝑟}  𝑑𝜌                       

                            (42) 
From equation (42) we determine the Lagrange multiplier as 

𝜆(𝑠) = −1 
Hence we have 

                   𝑢𝑛+1(𝑡)

= 𝑡 + ℒ−1 {
1

𝑠
ℒ {∫𝑢𝑛

2(𝑟)𝑑𝑟

𝑡

0

}}                   (43) 

where 
𝑢0(𝑡) = 𝑔(𝑡) = 𝑡 

𝑢1(𝑡) = 𝑡 + ℒ
−1 {

1

𝑠
ℒ {∫𝑢0

2(𝑟)𝑑𝑟

𝑡

0

}}                   

   = 𝑡 + ℒ−1 {
1

𝑠
ℒ {∫𝑟2𝑑𝑟

𝑡

0

}} 

𝑢1(𝑡) = 𝑡 +
𝑡4

12
 

𝑢2(𝑡) = 𝑡 + ℒ
−1 {

1

𝑠
ℒ {∫𝑢1

2(𝑟)𝑑𝑟

𝑡

0

}} 

𝑢2(𝑡) = 𝑡 + ℒ
−1 {

1

𝑠
ℒ {∫(𝑟 +

𝑟4

12
)

2

𝑑𝑟

𝑡

0

}} 

𝑢2(𝑡) = 𝑡 +
𝑡4

12
+
𝑡7

252
+

𝑡10

12960
 

𝑢3(𝑡) = 𝑡 + ℒ
−1 {

1

𝑠
ℒ {∫𝑢2

2(𝑟)𝑑𝑟

𝑡

0

}} 

= 𝑡 + ℒ−1 {
1

𝑠
ℒ {∫(𝑟 +

𝑟4

12
+
𝑡7

252
+

𝑡10

12960
)

2

𝑑𝑟

𝑡

0

}} 

 𝑢3(𝑡) = 𝑡 +
𝑡4

12
+
𝑡7

252
+

𝑡10

6048
+

37𝑡13

7076160

+
109𝑡16

914457600
+

29𝑡19

197990072280

+
𝑡22

77598259200
 

𝑢4(𝑡) = 𝑡 + ℒ
−1 {

1

𝑠
ℒ {∫𝑢3

2(𝑟)𝑑𝑟

𝑡

0

}} 

= 𝑡 + ℒ−1 {
1

𝑠
ℒ {∫(𝑟 +

𝑟4

12
+
𝑡7

252
+

𝑡10

12960
+

37𝑡13

7076160

𝑡

0

+
109𝑡16

914457600
+

29𝑡19

197990072280

+
𝑡22

77598259200
)

2

𝑑𝑟}} 

𝑢4(𝑡) = 𝑡 +
𝑡4

12
+
𝑡7

252
+

𝑡10

6048
+

𝑡13

157248

+
2663𝑡16

11887948800
+

4799𝑡19

677613081600

+
34109𝑡22

170758496563200

+
4507𝑡25

901604861853696

+
24354871𝑡28

221524314557453107200

+
1312457𝑡31

628869391142952960000
-

+
253524431𝑡34

76477009517988426554720000

+
1709𝑡37

4053164656463290368000 

+
241247𝑡40

59943018919370607820800000

+
𝑡43

39132841298576965632000

+
𝑡46

12464483949901696204800000
 

 
 

Table 4.1a: Comparison of Results of example 4.1  

T exact solution MLVIM at 𝑢2 𝑢𝐴𝐷𝑀 𝑢𝑅𝐾4 
 

0 1 1 1 1 
 

0.1 1.005170918 1.005170918 1.005170918 1.005170918 
 

0.2 1.021402758 1.021402758 1.021402758 1.021402758 
 

https://dx.doi.org/10.4314/swj.v19i4.34
http://www.scienceworldjournal.org/


Science World Journal Vol. 19(No 4) 2024   https://dx.doi.org/10.4314/swj.v19i4.34 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Modified Laplace-Variational Iteration Method for Solving Linear and 
Nonlinear Volterra Integro-Differential Equations 

1169 

0.3 1.049858808 1.049858808 1.049858808 1.049858808 
 

0.4 1.091824698 1.091824698 1.091824698 1.091824698 
 

0.5 1.148721271 1.148721271 1.148721271 1.148721271 
 

0.6 1.2221188 1.2221188 1.2221188 1.2221188 
 

0.7 1.313752707 1.313752707 1.313752707 1.313752707 
 

0.8 1.425540928 1.425540928 1.425540928 1.425540928  

0.9 1.559603111 1.559603111 1.559603111 1.559603111 
 

1 1.718281828 1.718281828 1.718281828 1.718281828 
 

 
Table 4.1b: Error analysis of example 4.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.2a: Comparison of Results of example 4.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

MLVIM  Error  𝑢𝐴𝐷𝑀 Error 𝑢𝑅𝐾4Error 

0.00E+00 0.00E+00 0.00E+00 

0.00E+00 8.00E-11 8.00E-11 

0.00E+00 1.60E-10 1.60E-10 

0.00E+00 -4.20E-10 -4.20E-10 

0.00E+00 -3.60E-10 -3.60E-10 

0.00E+00 -3.00E-10 -3.00E-10 

0.00E+00 3.90E-10 3.90E-10 

0.00E+00 4.70E-10 4.70E-10 

0.00E+00 4.90E-10 4.90E-10 

0.00E+00 1.60E-10 1.60E-10 

0.00E+00 4.60E-10 4.60E-10 

 
t exact solution MLVIM at 𝑢3 𝑢𝐴𝐷𝑀 𝑢𝐴𝐷𝑀 

0.1 0.1000083 0.10000834 0.1000083 0.1000083 

0.2 0.2001334 0.20013338 0.2001334 0.2001334 

0.3 0.3006759 0.30067587 0.3006759 0.3006759 

0.4 0.4021399 0.40213985 0.4021399 0.4021399 

0.5 0.5052395 0.5052395 0.5052395 0.5052395 

0.6 0.6109121 0.61091209 0.6109121 0.6109121 

0.7 0.7203399 0.72033987 0.7203399 0.7203399 

0.8 0.8349836 0.83498365 0.8349837 0.8349837 

0.9 0.9566323 0.95663232 0.9566323 0.9566323 

1 1.0874733 1.08747353 1.0874735 1.0874735 

https://dx.doi.org/10.4314/swj.v19i4.34
http://www.scienceworldjournal.org/
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Table 4.3b: Error analysis of example 4.3 

MLVIM Error 𝑢𝐴𝐷𝑀Error 𝑢𝑅𝐾4Error 

-3.730E-08 -3.000E-08 -3.000E-08 

1.586E-08 2.000E-08 2.000E-08 

3.117E-08 3.000E-08 3.000E-08 

4.770E-08 5.000E-08 5.000E-08 

2.430E-09 0.000E+00 0.000E+00 

6.140E-09 1.000E-08 1.000E-08 

3.093E-08 3.000E-08 3.000E-08 

-4.648E-08 -5.000E-08 -5.000E-08 

-1.628E-08 -2.000E-08 -2.000E-08 

-2.323E-07 -2.000E-07 -2.000E-07 

 
 

 

 
 
DISCUSSION OF RESULTS 
The resulting numerical evidences from Examples 1 and 2 show 
that the method is reliable and accurate with excellent convergence 
rate as illustrated in the graphs and tables. The results obtained 
were compared with those available in literature and has proven to 
be very accurate and efficient from its application in the examples.  
In Example 4.1, third order linear VIDE was solved using the 
MLVIM and the result obtained was compared with the exact 
solution, ADM and RK4. The ADM and the RK4 produced some 
error while the MLVIM converges absolutely to the exact solution. 
In Example 4.2, the MLVIM was applied to a first order nonlinear 
VIDE with initial condition. The results obtained from the MLVIM 
when compared with the exact solution, ADM and the RK4 
converges to the exact solution and minimal error was obtained. 
The MLVIM has shown to be accurate, efficient and reliable in all 

the examples considered as it reduces the number of iterations and 
converge faster to the exact solution when compared with results 
in literature. The method can be used to solve any linear or 
nonlinear Volterra integro differential equations. 
 
Conclusion 
This research has provided a comprehensive overview of the 
Modified Laplace variational iteration method and its application in 
solving Volterra integro-differential equations. Some examples 
were considered and presented in tabular and graphical formats in 
order to compare the MLVIM with exact solution and other existing 
methods in literature and the method has shown to be very 
accurate as it reduces the number of iterations and converges 
rapidly to the exact solution. All computational frameworks are 
implemented by MATLAB software. 
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