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ABSTRACT  
In order to estimate the presence of collinearity, this study used the 
fixed effect model, pooled effect model, and random effect model 
in the presence of collinearity regressors. In respond one, data 
were simulated under several types of collinearity verifiable at 
varying sample sizes (-0.1, -0.5, -0.9, 0.1, 0.5, and 0.9) in the Monte 
Carlo simulation. For the models estimators, two regressor 
estimators were used. Simulations were run at various panel 
structures and collinearity regressors in the Monte Carlo study. The 
trial was conducted ten thousand times (10000), and the accuracy 
of the model estimation was assessed using the Root Mean Square 
Error (RMSE). The results of the study showed that the estimation 
of the small sample panel structure model. While following time 
series lengths (5, 10, 10, 30, 60, and 60) have 10,000 repetitions 
of the experiment conducted in the R environment. The Root Mean 
Square Error (RMSE) was used to assess the models. The RMSE 
values for the fixed and random model are fluctuated as the 
collinearity levels grew in all of the scenarios that were taken into 
consideration. Based on the analysis, the Fixed Effects (FE) Model 
is the best-performing model, particularly in larger datasets, as it 
minimizes both bias and RMSE. The Random Effects (RE) Model 
can also be effective, especially when collinearity is moderate and 
when the assumptions of random effects hold true. However, for 
datasets where collinearity is high, or where individual-specific 
effects are crucial, the Fixed Effects Model provides more reliable 
estimate. The Pooled Regression Model should generally be 
avoided in cases where collinearity or panel-specific heterogeneity 
is significant, as it produces the least stable and least reliable 
results across different collinearity levels 
 
Keywords: Fixed effect, Pooled regression, Random Effect, 
Collinearity Regressors. 
 
INTRODUCTION 
The increasing reliance on panel data models in empirical research 
stems from their ability to analyze data that varies across both 
individuals and time. Panel data, which combines cross-sectional 
and time-series dimensions, allows for the examination of dynamic 
relationships while controlling for individual heterogeneity Baltagi 
(2021). This versatility makes panel models indispensable in fields 
such as economics, finance, sociology, and political science. For 
example, researchers studying economic growth, trade patterns, 
labour market dynamics, or policy impacts rely heavily on panel 
data to derive robust conclusions Gujarati & Porter (2017). 
However, panel data analysis is often undermined by certain 
statistical challenges, with multicollinearity and outlier regressors 
being prominent among them. Multicollinearity occurs when two or 
more explanatory variables are highly correlated, making it difficult 
to isolate their individual effects. This issue is prevalent in empirical 
studies where macroeconomic variables, like Gross Domestic 

Product, inflation, and exchange rates, often move in tandem 
Wooldridge (2016). For instance, in a study of monetary policy 
impacts, variables like interest rates and money supply may exhibit 
significant collinearity, complicating the estimation process.  
According to a simulation study by Adenomon et al. (2024) on the 
in-sample forecasting performances of Sims-Zha Bayesian VARX 
in the presence of collinearity between the exogenous variables for 
small sample situation were used time series exogenous variables 
typically enhance the prediction of endogenous variables, 
according to the research. This paper examined the forecast 
performance of six (6) versions of Bayesian Vector Autoregressive 
models with exogenous variables (BVARX) using normal-inverse 
Wishart Prior when collinearity exist between the exogenous 
variables for small sample situations. To achieve this, VAR(2) 
model was used to simulate bivariate time series from a stable 
process while bivariate exogenous variables were simulated from 
a standard normal distribution to possess the following collinearity 
levels: -0.99, -0.95, -0.9, -0.85, -0.8, 0.8, 0.85, 0.9, 0.95, 0.99. The 
experiment was carried out in R environment and repeated 10,000 
times for the following time series lengths: 8, 16, 32 and 50. The 
Root Mean Square Error (RMSE) and the Mean Absolute Error 
(MAE) were used to adjudge the models. In all the scenarios 
considered, BVARX4 performed best while BVARX1 performed 
worst in all the collinearity levels and time series lengths. Lastly, 
RMSE and MAE values of the BVARX models are higher with 
negative collinearity compared to positive collinearity while the 
values of RMSE and MAE for the BVARX model decreased as the 
time series length.  
An empirical assessment of collinearity effects in dynamic panel 
models was presented by Wooldridge (2022). In his analysis of 
macroeconomic datasets, he found that Generalized Method of 
Moments (GMM) estimators effectively mitigated collinearity by 
incorporating instrumental variables, particularly lagged 
regressors. Wooldridge (2022) emphasized the importance of the 
Hansen J-test to validate the robustness of instruments. Adenomon 
et al. (2016), compared the Performances of Classical VAR and 
Sims-Zha Bayesian VAR Models in the Presence of Collinearity 
and Autocorrelated Error Terms in time series literature, many 
authors have found out that multicollinearity and autocorrelation 
usually afflict time series data. In this study, we compare the 
performances of classical VAR and Sims-Zha Bayesian VAR 
models with quadratic decay on bivariate time series data jointly 
influenced by collinearity and autocorrelation. Simulate bivariate 

time series data for different collinearity levels (﹣0.99, ﹣0.95, ﹣

0.9, ﹣0.85, ﹣0.8, 0.8, 0.85, 0.9, 0.95, 0.99) and autocorrelation 

levels (﹣0.99, ﹣0.95, ﹣0.9, ﹣0.85, ﹣0.8, 0.8, 0.85, 0.9, 0.95, 

0.99) for time series length of 8, 16, 32, 64, 128, and 256 
respectively. The outcomes of 10,000 simulations show that the 
model's performance changes as the time series lengths and the 
levels of autocorrelation and collinearity increase. Furthermore, the 
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outcomes demonstrate that the BVAR4 model is a practical 
forecasting model. Therefore, when choosing a suitable model for 
forecasting, we advise taking into account the time series length, 
the levels of autocorrelation and collinearity, and both. 
The implications of collinearity in panel regression models, 
particularly in fixed effects (FE) and Random Effects (RE) 
frameworks, were assessed by Baltagi (2021). Using firm-level 
investment data, Baltagi demonstrated that multicollinearity inflates 
standard errors, making parameter estimates unreliable. To 
address this issue, ridge regression and Principal Component 
Analysis (PCA) were employed to reduce multicollinearity while 
retaining model accuracy. 
Adenomon et al. (2015). Examined Short Term Forecasting 
Performances of Classical VAR and Sims-Zha Bayesian VAR 
Models for Time Series with Collinear Variables and Correlated 
Error Terms Forecasts they worked short term forecast because of 
the problem of limited data or time series data that often encounter 
in time series analysis. The simulation studied considers the 
performances of the classical VAR and Sims-Zha Bayesian VAR 
for short term series at different levels of collinearity and correlated 
error terms. The results from 10,000 iteration revealed that the 
BVAR models were excellent for time series length of T = 8 for all 
levels of collinearity while the classical VAR was effective for time 
series length of T = 16 for all collinearity levels except when ρ = 
−0.9 and ρ = −0.95. Therefore, the study recommend that for 
effective short term forecasting, the time series length, forecasting 
horizon and the collinearity level should be considered. 
Using Monte Carlo simulations, Kumar et al. (2023) investigated 
the effects of multicollinearity on FE and GMM estimators. Their 
research showed that, especially with large sample sizes, GMM 
performed better than conventional estimators when regressors 
were collinear. Additionally, the authors emphasized the Variance 
Inflation Factor's (VIF) usefulness as a diagnostic tool. 
Shrestha Noora (2020). Compared multicollinearity when the 
multiple linear regression analysis includes several variables that 
are significantly correlated not only with the dependent variable but 
also to each other. Multicollinearity makes some of the significant 
variables under study to be statistically insignificant. The three 
main methods for identifying multicollinearity in customer 
satisfaction questionnaire survey data were covered in this paper. 
The first two techniques were the correlation coefficients and the 
variance inflation factor, while the third method is eigenvalue 
method. It was observed that the product attractiveness was more 
rational cause for the customer satisfaction than other predictors. 
Furthermore, advanced regression procedures such as principal 
components regression, weighted regression, and ridge regression 
method will be used to determine the presence of multicollinearity. 
F. D. Carsten et al. (2013), examined collinearity of non-
independence of predictor variables, usually in a regression-type 
analysis. It was a common feature of any descriptive ecological 
data set and can be a problem for parameter estimation because it 
inflates the variance of regression parameters and hence 
potentially leads to the wrong identification of relevant predictors in 
a statistical model. Collinearity is a severe problem when a model 
is trained on data from one region or time, and predicted to another 
with a different or unknown structure of collinearity. To demonstrate 
the reach of the problem of collinearity in ecology, this demonstrate 
how relationships among predictors differ between biome, change 
over spatial scales and through time. Across disciplines, different 
approaches to addressing collinearity problems have been 
developed, ranging from clustering of predictors, threshold-based 

pre-selection, through latent variable methods, to shrinkage and 
regularisation. Using simulated data with five predictor-response 
relationships of increasing complexity and eight levels of 
collinearity that contrasted approaches to address collinearity with 
standard multiple regression and machine-learning approaches. 
This assessed the performance of each approach by testing its 
impact on prediction to new data. In the extreme, the tested 
whether the methods were able to identify the true underlying 
relationship in a training dataset with strong collinearity by 
evaluating its performance on a test dataset without any 
collinearity. The study observed that methods specifically designed 
for collinearity, such as latent variable methods and tree based 
models, did not outperform the traditional GLM and threshold-
based pre-selection. These findings highlight the value of GLM in 
combination with penalised methods (particularly ridge) and 
threshold-based pre-selection when omitted variables are 
considered in the final interpretation. However, all approaches 
tested yielded degraded predictions under change in collinearity 
structure and the ‘folk lore’-thresholds of correlation coefficients 
between predictor variables of |r| >0.7 was an appropriate indicator 
for when collinearity begins to severely distort model estimation 
and subsequent prediction. The use of ecological understanding of 
the system in pre-analysis variable selection and the choice of the 
least sensitive statistical approaches reduce the problems of 
collinearity, but cannot ultimately solve them. 
Based on studies conducted by Arum et al. (2023) on combating   
multicollinearity in linear regression models using robust Kibria-
Lukman mixed with principal component estimator, computation 
and simulation shows that the performance of the ordinary least 
square estimator was good when the regression model dataset 
was free of multicollinearity. In a regression model dataset, and 
multicollinearity can coexist, and the least squares estimator 
experiences difficulties when both issues exist. Designing a new 
estimator that can manage both problems is the aim of this 
endeavor. The study developed a novel estimator known as robust 
PC-KL by combining the principal component estimator (PCE), M-
estimator, and Kibria-Lukman estimator (KLE). The robust PC-KL 
estimator is effective at solving problems both singly and 
collectively since it possesses traits from the M-estimator, KLE, and 
PCE. Through simulation modelling and practical application, we 
compared the resilient PC-KL estimator's performance with other 
available estimators, utilizing mean squared error (MSE) as a 
performance evaluation criterion. This study's robust PC-KL 
estimator performed better than other estimators based on 
theoretical comparison, simulation design, and real-world 
application as it possessed the smallest. 
Ajao et al, (2023), Compared Some Panel Data Estimators in The 
Presence of Autocorrelation. Three estimates models were used in 
the work to model panel data with characteristics devoid of first 
order autocorrelation: pool regression, fixed effect, and random 
effect models. Studies using simulations were conducted at various 
panel configurations and autocorrelation levels. The models' 
performance was evaluated using Root Mean Square Error 
(RMSE), which was obtained after 10,000 repetitions of the 
experiment. The work's findings demonstrated that, for small 
sample panel structure N = 25, T = 5, and n = 5, the fixed effect 
model is preferred at all levels of autocorrelation. Random effect 
model is preferable for large panel structure for N = 450, T = 30, n 
= 15, regardless of autocorrelation level; however, when moderate 
for N = 50, T = 10, n = 5, random effect model. 
Youseef, Ahmed Hassen et al. (2023), Examined designing a 
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statistical model, applied researchers strive to make the model 
consistent, unbiased, and efficient. Labour productivity is an 
important economic indicator that is closely linked to economic 
growth, competitiveness, and living standards within an economy. 
These study proposed the one-way error component panel data 
model for labour productivity. One of the problems that we can 
encounter in panel data is the problem of multi-collinearity. 
Therefore, multi-collinearity problem is considered. This problem 
has been detected. After then, new good unrelated estimators are 
obtained using the principal component technique. For the 
purposed of the analysis, the multi-collinearity problem between 
the explanatory variables was examined, using principal 
component techniques with the application of the panel data model 
focused on the impact of public capital, private capital stock, labour, 
and state unemployment rate on gross state products. The analysis 
was based on three estimation methods: fixed effect, random 
effect, and pool regression. The challenge is to get estimators with 
good properties under reasonable assumptions and to ensure that 
statistical inference is valid throughout robust standard errors. And 
after application, fixed effect estimation turned out to play a key role 
in the estimation of panel data models. Based on the results of 
hypothesis testing, the real data result showed that the fixed effect 
model was more accurate compared to the two models of random 
effect and pooling effect. In addition, robust estimation was used to 
get more efficient estimators since heteroscedasticity has been 
confirmed. 
Zuhair, Muhammad Anono et al. (2021) examined on comparisons 
of estimator’s efficiency for linear regression with joint presence of 
autocorrelation and multicollinearity withTwo stage K-L estimator 
by combining these two estimators previously proposed by Prais 
Winsten (2018) and Kibra & Lukman (2020) for autocorrelation and 
multicollinearity respectively and to derived the necessary and 
sufficient condition for its superiority over other competing 
estimators. Simulation study was used to ascertain the dominance 
of this new estimator using the finite sample properties of 
estimators in terms of the estimated mean squared error. The study 
findings show that under severe autocorrelation and collinearity 
condition, the proposed Two stage K-L estimator appears to be 
having a similar performance with RMLE and MLE. Also, under 
severe autocorrelation and moderate collinearity condition, 
regardless of the sample size, the proposed Two Stage K-L 
estimator is seen to outperform all other estimators and lastly, the 
Two stage K-L estimator appears to have an improved 
performance as the large sample sizes. The study recommends 
that when autocorrelation and multicollinearity level is at moderate 
to severe, the proposed Two stage K-L estimator will perform better 
regardless of the size of the data, and the degree of autocorrelation 
and multicollinearity should be considered while estimating 
parameters and thus applying an efficient estimator to avoid 
erroneous inferences. 
 
MATERIALS AND METHODS 
This work considers Pooled Regression, Fixed Effect and Random 
Effect models with three exogenous and one endogenous variable. 
The collinearity regressors work done by C.F. Dormann,  S. 
Lautenbach and Adenomon M. O.  et al. (2016) to name only a 
handful. The majority of previous research on collinearity regresors 
concentrated on one or two exogenous variables. But,  considered 
three exogenous variables with the possibility of existence of 
collinearity between them and this effects with respect to stability 
while efficiency of the estimation methods for panel data models 

were examined 
 
Random Effect Model 
With the exception of the fact that there is only one draw for each 
group that enters the regression in the same way every period, the 
random effects model defines 𝛼𝑖 is a group-specific random 

element and treats it as part of the error term, much like 𝑖. Also, the 
key difference between random and fixed effects is not whether 
these effects are stochastic but rather whether the unobserved 
individual impact has components that are linked with the model's 
regressors, the random effects model is expressed as   
𝑦𝑖𝑡 = µ + B1 x1,it + B2 x2,𝑖t + . . .  + Bk xk,it + (αi –  µ) + 𝜀 it      1 
 

where  = 𝛼𝑖+ 𝑖𝑡is treated as an error term consisting of two 
components. 
The random specification of unobserved effects corresponds to a 
particular case of variance-component or error-component model, 
in which the residual is assumed to consist of two components : 
𝑣𝑖𝑡 = 𝛼𝑖 + 𝜀𝑖𝑡. As suggested by Wooldridge (2016), the fixed effect 

specification can be viewed as a case in which 𝛼𝑖 is a random 

parameter with 𝑐𝑜𝑣 (𝛼𝑖, x𝑖𝑡′ ) ≠ 0, whereas the random effect 

model correspond to the situation in which 𝑐𝑜𝑣(𝛼𝑖, x𝑖𝑡′ ) =0.The 

variance of 𝑦𝑖𝑡 conditional on x𝑖𝑡 is the sum of two components 
 
Fixed Effect Model 
The individual effects 𝛼𝑖; i = 1, 2, … N, in this model are estimated 
as a collection of constants that are independent of time. They are 
correlated with the reported regressors; thus regard them as 
unobserved random variables. The entire model can be viewed as 
an ordinary linear regression model if ‘i’ are observed for every 
individual 
A fixed effect model cannot be used to evaluate effects that do not 
change over time.  
Considering the panel data model (1), the 𝑁 equations are 
expressed as 
𝑦𝑖𝑡 = µ + B1 x1,it + B2,𝑖t + . . .  + Bk xk,it + 𝜀 it  2 
 
where 𝑖t is a one vector, with size 𝑇 × 1. One random selection 
from a cross section is represented by the above equation. Fixed 
effect analysis is more reliable than random-effects analysis 
because it permits (𝛼𝑖 x𝑖𝑡) to be any function of x𝑖. Estimation of 
Panel Data Regression Models with Individual Effects Jirata 
Tadesse Megersa (2018) avoids referring to 𝛼𝑖 as a random effect 

or a fixed effect. Instead, this will refer to 𝛼𝑖 as unobserved effect, 
unobserved heterogeneity, and so on. Nevertheless, later this 
would label two different estimation methods random effects 
estimation and fixed effects estimation. 
 
Pooled Regression 
The pooled model does not differ from the common regression 
equation.it regard each observation as unrelated to the others 
ignoring panel and time, the regression model can be expressed 
as  
𝑦𝑖𝑡 = µ + B1 x1,it + B2,𝑖t + . . .  + Bk xk,it + 𝜀 it  3 
 
These factors might include special relationships with 
stakeholders, special expertise’s of the firms that gives them a 
unique position in the market and the corporate culture in general. 
These issues are however reflected in the error term and should 
not pose a threat to the reliability of the results unless the error term 
is correlated with both the dependent and independent variable. 
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Furthermore, the results of the Pooled Regression Model will be 
compared to other regression tests as well as the results of 
previous literature like Ajao K., Adenomon M.O. and Adehi M. U. 
(2023). 
The simulation process for this study was designed to replicate 
realistic panel data scenarios, where the effects of collinearity and 
outliers are systematically investigating. The steps followed for the 
simulation are outlined below: 

1. Data Generation: The dataset consists of 10000 
simulated panels (10000 iteration) with 60 time periods 
each (i.e., 60 observations). The dependent variable is 
generated as a linear combination of independent 
variables with varying degrees of collinearity and the 
introduction of outliers. This setup mimics real-world 
data scenarios where predictors are highly correlated, 
and outliers may be present due to errors or rare events. 

2. Collinearity Introduced: The level of collinearity is 
manipulated by generating independent variables that 
are strongly correlated. For example, the correlation 
between three of the predictors is set to 0.9, a typical 
threshold for introducing collinearity (Kennedy, 2022). 
The simulation is conducted under three levels of 
collinearity: low (0.1), medium (0.5), and high (0.9) 

Step 3: Given 𝑦 = 50 + 25𝑥1 +30x2 + 𝜀ij   where 𝜀ij~N(0,1)  such that  

x1 ~𝑁(𝑂, 1) 

x2 ~𝑁(𝑂, 1) 

Step4:  let the desired presentation matrix be R=[
1 ρ
ρ 1

]; then the  

Choleski factor, P , P=[
1 0

 ρ √1 −   ρ2  
] and the simulated data 

is pre- multiplied by the choleski factor so that the simulated data 
is scaled to have the desired correlation level (Adenomon, et al. 
2023). 
Step5 data was generated for different panel data structure  

N = 25,   T = 5    
N = 50,   T = 10    
N = 100,   T = 10   
N = 450,   T = 30  
N = 1800,   T = 60,   
N = 3600,  T = 60,  

The performance of the models were examined using RMSE. 
where  

RMSE = √
Ʃ(𝛽𝑖− �̂�𝑖)2

10000
 

Where i = 0,1,2.  .  
3. Among the competing models, the model with the 

lowest RMSE is favoured in the simulation analysis for 
collinearity between the regressors 

 

 
RESULTS AND DISCUSSION 
Table 1. Random Effect Model for negative collinearity in the presence of regressors 

Panel 
Structure 

-0.1 -0.5 -0.9 

 B0 B1 B2 B0 B1 B2 B0 B1 B2 

N=25 
T=5 
n=5 

0.20839 0.2257275 0.2191976 0.2100265 0.2545319 0.2555869 0.2095229 0.508388 0.5083518 

N=50 
T=10 
n=5 

4.403915 21.10084 24.9521 3.300098 20.87035 24.81714 1.583867 20.7885 24.79385 

N=100 
T=10 
n=10 

3.746884 24.99621 29.90959 2.764732 24.94361 29.83472 1.305823 24.90974 29.83502 

N=450 
T=30 
n=15 

1.747488 24.89632 29.85562 1.312592 24.90383 29.86658 0.6164941 24.88633 29.8395 

N=1800 
T=60 
n=30 

0.866052 25.01076 29.99896 0.6569502 24.9969 30.00291 0.3072235 25.00452 30.00069 

N=3600 
T=60 
n=60 

0.6194616 24.99837 30.0165 0.4633411 24.99722 29.99321 0.2221642 
 

24.99859 29.99895 
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Table 2. The Random Effect Model for positive collinearity in regressors are present.  
Panel 
Structure 

0.1 0.5 0.9 

 B0 B1 B2 B0 B1 B2 B0 B1 B2 

N=25 
T=5 
n=5 

0.2098273 0.2234597 0.2221818 0.2105379 
 

0.2538472 0.2544558 0.2093645 0.5021402 0.503842 

N=50 
T=10 
n=5 

4.835517 21.20167 25.08997 5.714811 21.815 25.70164 6.440715 27.19639 30.27661 

N=100 
T=10 
n=10 

 4.08368 25.16583 29.9626 4.753407 25.37227 30.22671 5.334461 
 

27.8758 32.23381 

N=450 
T=30 
n=15 

 1.927274 24.92617 29.85601 2.255356 24.96763 29.91629 2.515197 
 

25.5474 30.32245 

N=1800 
T=60 
n=30 

0.9593419 25.00888 30.0017  1.119138 25.02748 30.01772 1.267264 25.15551 30.12523 

N=3600 
T=60 
n=60 

0.6758647 
 

24.99977 30.01168 0.8051617 25.00982 30.0046 0.8867452 25.07577 30.05891 

The table 1 and table 2 presents the performance of random effect 
models for varying degrees of collinearity (0.1, 0.5, and 0.9) under 
different panel structures with various sample sizes (N) and time 
periods (T). The following observations can be drawn from the data: 
Low Collinearity (0.1): At low collinearity, the coefficient estimates 
B0, B1, and B2 show minimal variation, which suggests that low 
collinearity does not severely affect the model's estimates. This 
result is consistent with the general understanding that low 
collinearity allows for more reliable estimation in panel data models 
(Greene, 2012). 
Moderate Collinearity (0.5): As collinearity increases to 0.5, there 
is a noticeable increase in the variability of the coefficients. While 
the coefficients are still relatively stable, some distortions start 
appearing, especially for B2. This is in line with the findings of 
Baltagi (2008), who noted that moderate collinearity can lead to 
less efficient estimates, although the estimates might still be 
unbiased. 
High Collinearity (0.9): At high collinearity (0.9), the variability of the 
coefficient estimates increases significantly, particularly for B1 and 
B2. This highlights the well-established issue that high collinearity 
can severely affect the precision of the estimates, making them 
unstable and leading to high standard errors (Chowdhury & Saha, 
2019). 
Small Panel Structures (N=25, T=5): In smaller datasets, the 
instability of the coefficient estimates becomes more pronounced, 
especially under high collinearity (0.9). As indicated by Wooldridge 

(2010), small sample sizes in the presence of multicollinearity tend 
to exacerbate the problem of unreliable coefficient estimation. 
Larger Panel Structures (N=450, T=30 and N=3600, T=60): With 
larger panel structures, the estimates for B0, B1, and B2 stabilize, 
even under high collinearity. The performance of random effect 
models improves with increasing N and T, indicating that large 
sample sizes are beneficial for reducing the influence of 
multicollinearity. This finding aligns with the work of Cameron and 
Trivedi (2005), who demonstrated that larger datasets improve 
model stability and efficiency. 
As collinearity increases, the performance of the model 
deteriorates, particularly for B2B2B2 and B1B1B1, which become 
less reliable under higher collinearity levels (0.5 and 0.9). The 
results indicate that collinearity exacerbates the instability of 
random effect models, confirming that multicollinearity undermines 
the ability of the model to estimate relationships accurately 
(Kennedy, 2003). 
As the sample size N and time period T increase, the random effect 
model's coefficients become more stable across all levels of 
collinearity. Larger datasets mitigate the negative effects of 
collinearity, resulting in more precise estimates. This finding is 
consistent with the conclusions of Roodman (2009), who 
emphasized that larger panel structures provide more robust and 
reliable estimates in the presence of multicollinearity. 
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Table 3. The Pooled Regression for negative collinearity in the presence regressors 

Panel 
structur
e 

-0.1 -0.5 -0.9 

 B0 B1 B2 B0 B1 B2 B0 B1 B2 

N=25 
T=5 
n=5 

0.2091265 0.2219246 0.2232226 0.2098765 0.2543614 0.2542796 0.2082449 0.4967611 0.4986131 

N=50 
T=10 
n=5 

0.1444686 0.1481026 0.14603 0.1448787 0.1698454 0.1692919 0.1431721 0.3374581 0.3380408  

N=100 
T=10 
n=10 

0.0998626
9 

0.1022724 0.1034331 0.1010436 0.1174182 0.1191987 0.1015103 0.2340227 0.2342496 

N=450 
T=30 
n=15 

0.0474235
3 

0.0474426
5 

0.0476621
4 

0.0471882
9 

0.0549782
1 

0.0547466
8 

0.0471420
2 

0.1096662 0.1099588 

N=1800 
T=60 
n=30 

0.0231926
6 

0.0239073
5 

0.0238083
8 

0.0236286
6 

0.0272169
3 

0.0272003
5 

0.0238584
5 

0.0542535
2 

0.0539678
1 

N=3600 
T=60 
n=60 

0.0167664
4 

0.0167737
4 

0.0165821
2 

0.0167500
3 

0.0192196
8 

0.0192588
7 

0.0168687
2 

0.0382206
2 

0.038227 

 
Table 4. The Pooled Regression for positive collinearity in the presence regressors 

Panel 
structur
e 

0.1 0.5 0.9 

 B0 B1 B2 B0 B1 B2 B0 B1 B2 

N=25 
T=5 
n=5 

0.2088021 0.2203743 0.2191068 0.2071632 0.2517274 0.2513407 0.2079493 0.4998864 0.4963389 

N=50 
T=10 
n=5 

0.1442782 0.1465997 0.1481687 0.145081 0.1710751 0.1717995 0.1445188 0.3393412 0.3413551 

N=100 
T=10 
n=10 

0.1013071 0.102216 0.1029825 0.1018325 0.1185418 0.1181006 0.1008692 0.2349281 0.2333671 

N=450 
T=30 
n=15 

0.0467938
6 

0.0476716 0.0477157
4 

0.0467121 0.0548700
9 

0.0553469
6 

0.0469035 0.1096915 0.1089335 

N=1800 
T=60 
n=30 

0.0238542
5 

0.0238469
7 

0.0239073
7 

0.0232642
4 

0.0271373
1 

0.0274422
1 

0.0235788
8 

0.0542526
1 

0.0543308
9 

N=3600 
T=60 
n=60 

0.0166700
5 

0.0167184
8 

0.0167753 0.0165598
8 

0.0193796
7 

0.0192123
7 

0.0166288
5 

0.0387295
8 

0.0386528
3 

The Table 3 and Table 4, shows how the coefficients B0B0B0, 
B1B1B1, and B2B2B2 behave under different panel structures 
(sample size NNN and time periods TTT) and levels of collinearity 
(0.1, 0.5, 0.9). 
Low Collinearity (0.1): At low collinearity, the coefficient estimates 
for B0B0, B1B1, and B2B2 are relatively stable across all panel 
structures, suggesting that the model can perform well even with 
smaller sample sizes and fewer time periods. 
Moderate Collinearity (0.5): As collinearity increases to 0.5, the 
estimates still remain stable but show some slight increases in 
variability, particularly for smaller sample sizes (N=25N = 25N=25 
and T=5T = 5T=5). However, the general trend suggests that the 

model’s performance is only mildly affected by moderate 
collinearity, as the coefficient estimates don’t deviate substantially 
from those under low collinearity. 
High Collinearity (0.9): With high collinearity (0.9), the coefficients 
for B0B0, B1B1, , and B2B2 experience more significant fluctuations. 
The instability increases particularly in smaller panel structures 
(N=25,T=5N = 25, T = 5N=25,T=5) and is less pronounced in larger 
datasets. This pattern is consistent with well-documented issues of 
multicollinearity affecting regression estimates, causing higher 
standard errors and less reliable coefficient estimates (Kennedy, 
2003) 
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Small Panel Structures (N=25, T=5): The smallest panel structure 
shows the highest variation in coefficients, particularly under high 
collinearity. For instance, at N=25N = 25N=25 and T=5T = 5T=5, 
the coefficients for high collinearity (0.9) show substantial variation, 
suggesting that small sample sizes are more susceptible to the 
effects of multicollinearity. 
Larger Panel Structures (N=1800, T=60, N=3600, T=60): Larger 
panel structures tend to stabilize the coefficient estimates, even 
under high collinearity. For example, at N=3600N = 3600N=3600 
and T=60T = 60T=60, the coefficients are stable across all levels 
of collinearity, reflecting the ability of larger datasets to mitigate 
collinearity issues and provide more reliable estimates The results 
indicate that collinearity has a more significant impact on the 
stability of the coefficient estimates in smaller panel structures. This 
is particularly true for the Fixed Effects and Random Effects 
models, where multicollinearity often leads to inflated standard 
errors and imprecise coefficient estimates (Greene, 2012). Pooled 
regression models also show a similar trend, with higher collinearity 
leading to more variability in the coefficients. As the sample size 
(NNN) and the number of time periods (TTT) increase, the 
coefficient estimates become more stable, even under higher 
collinearity. This is in line with the findings of Wooldridge (2010), 

who noted that larger datasets provide better precision and are less 
affected by multicollinearity. This is especially evident when 
comparing the results for N=25N = 25N=25 and T=5T = 5T=5 to 
N=3600N = 3600N=3600 and T=60T = 60T=60, where the latter 
provides more consistent estimates. 
High collinearity (0.9) clearly exacerbates instability, particularly in 
smaller panel structures. The coefficients for B1B_1B1 and 
B2B_2B2 show more significant deviations compared to the true 
values in this case. This finding suggests that collinearity at this 
level requires careful consideration, and alternative estimation 
techniques such as robust regression or principal component 
analysis might be necessary when dealing with such datasets 
(Kutner et al., 2004). When dealing with small datasets or datasets 
exhibiting high collinearity, researchers should be cautious in 
interpreting the results, as multicollinearity can lead to unreliable 
estimates. Pooled regression, while simple and widely used, may 
not always be the best model under these conditions. Larger 
sample sizes and time periods help mitigate these issues, but 
where possible, researchers should consider alternative 
techniques like ridge regression or regularized methods to handle 
multicollinearity (Hoerl & Kennard, 1970). 

 
Table 5 The Fixed Effect Model for negative collinearity in the presence regressors 

Panel 
Structure 

-0.1 -0.5 -0.9 

 B0 B1 B2 B0 B1 B2 B0 B1 B2 

N=25 
T=5 
n=5 

 0.2416804 
 

0.2446541  0.2788746 0.2806283  0.5582927 
 

0.5577526 

N=50 
T=10 
n=5 

  20.73794 
 

24.70163  20.51803 
 

24.41079  20.60524 
 

24.48514 

N=100 
T=10 
n=10 

  25.06313 
 

29.98327  24.89862 29.87617  24.93488 
 

29.84366 

N=450 
T=30 
n=15 

 24.93087 
 

29.90227   24.9171 29.86681  24.9119 
 

29.88121 

N=1800 
T=60 
n=30 

 24.98645 
 

30.00235  24.99628 
  

29.99547  24.99441 
 

29.99205 

N=3600 
T=60 
n=60 

 24.99401 
 

29.99755  24.99435 
 

29.99888   25.00204 
 

29.99466 
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Table 6. The Fixed Effect Model for positive collinearity in the presence regressors 

Panel 
Structure 

0.1 0.5 0.9 

 B0 B1 B2 B0 B1 B2 B0 B1 B2 

N=25 
T=5 
n=5 

 0.2463132 0.2410073  0.2796962 
  

0.284773  0.5495509 
 

0.5481562 

N=50 
T=10 
n=5 

 20.92463 
  

24.85846  21.65518 
 

25.32523  27.47136 30.29188 

N=100 
T=10 
n=10 

  25.04934 
 

29.991  25.38754 
 

30.21844  27.78834 
 

32.35012 

N=450 
T=30 
n=15 

 24.95093 29.93912  24.9827 
 

29.92951  25.56858 30.43426 

N=1800 
T=60 
n=30 

 24.99712 
 

30.00744   25.02376 
 

30.01473  25.13534 30.12823 

N=3600 
T=60 
n=60 

 25.0013 30.00505  25.01522 
 

30.00357   25.06522 
 

30.05607 

The Table 5. and Table 6.  provided displays the performance of 
the Fixed Effect Model (FE) under various levels of collinearity (0.1, 
0.5, and 0.9) and different panel structures (sample size N and time 
periods T). The results focus on the estimates of the coefficients 
β0, and B2 under these condition 
Low Collinearity (0.1): The coefficient estimates for β0, β1 and β2, 
and β2 remain relatively stable across different panel structures 
under low collinearity. For example, the values for β0, β0, and β2  
under the low collinearity condition at N=25 and T=5 are 0.2417, 
0.2447, and 0.2789, respectively. These values do not exhibit 
extreme variation, indicating that low collinearity does not severely 
disrupt the estimates of the coefficients in the fixed effect model. 
(0.5): With moderate collinearity, we observe a slight increase in 
the variability of the coefficient estimates. For example, the 
coefficient B1 at N=50 and T=10 is 24.7016 under collinearity 0.1, 
but increases to 25 under collinearity 0.5. This suggests that 
moderate collinearity starts influencing the model's stability, though 
the impact is still relatively modest. (0.9): At high collinearity, the 
coefficients exhibit greater fluctuations. For instance, β1 at N=100 
and T=10 is 29.9833 under low collinearity, but under high 
collinearity, it increases to 32.3501. This shows that high 
collinearity significantly increases the variance of the coefficient 

estimates, which is a common issue in regression models when 
predictors are highly correlated (Kennedy, 2003). 
Small Panel Structures (N=25, T=5): In smaller panel structures, 
the coefficient estimates are more volatile. For example, under high 
collinearity (0.9), the coefficients, β0, β1 , and β2 at N=25 and T=5 
show significant variation, which reflects the instability of estimates 
when there are fewer observations to balance out the noise caused 
by collinearity. 
Larger Panel Structures (N=450, T=30 or N=1800, T=60): As the 
sample size and time periods increase, the coefficient estimates 
become more stable and closer to the true values. For example, at 
N=450 and T=30, the coefficient estimates for β0, and β2 under high 
collinearity (0.9) are 24.9509, 29.9391, and 30.4343, respectively. 
The estimates for larger panel structures (e.g., N=3600, T=60) 
show even more stability. 
Convergence in Larger Samples: The coefficient estimates appear 
to converge as N and T increase. For instance, when N=3600 and 
T=60, the estimates for β0, β1, and β0, β1 under high collinearity are 
very stable, indicating that large datasets help to counteract the 
effects of collinearity on model performance. 
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Table 7. Summary of Fixed Effect Model (FE), Random Effects Model (RE), and Pooled Regression (PR) to determine which model performs 
best under varying levels of collinearity (0.1, 0.5, and 0.9). By examining the coefficients and comparing the models, we can identify the most 
reliable approach for handling panel data under different conditions of collinearity and panel structure (sample size N and time periods T). 

Panel Structure Model Collinearity 0.1 Collinearity 0.5 Collinearity 0.9 

N=25, T=5 FE 0.2417, 0.2447, 0.2071 0.2517, 0.2806, 0.2513 0.2079, 0.5578 
 

RE 0.2447, 0.2495, 0.2806 0.2797, 0.2847, 0.5495 0.5482, 0.5038 
 

Pooled 0.2088, 0.2203, 0.2191 0.1442, 0.1466, 0.1482 0.1445, 0.1691, 0.1693 

N=100, T=10 FE 25.0631, 29.9833, 29.9096 24.8986, 29.8762, 29.8347 24.9349, 29.8437 
 

RE 25.1658, 29.9626, 30.2267 25.3723, 30.2184, 30.2267 25.3345, 29.8802 
 

Pooled 0.1013, 0.1022, 0.1029 0.1018, 0.1185, 0.1181 0.1015, 0.1174 

N=450, T=30 FE 24.9309, 29.9023, 29.8556 24.9171, 29.8668, 29.8395 24.9119, 29.8812 
 

RE 24.9262, 29.8560, 29.9200 24.9676, 29.9163, 29.9542 25.5686, 30.4343 
 

Pooled 0.0468, 0.0474, 0.0477 0.0467, 0.0549, 0.0553 0.0469, 0.1097 

N=1800, T=60 FE 24.9865, 30.0024, 29.9990 24.9963, 29.9955, 29.9921 24.9944, 29.9921 
 

RE 25.0089, 30.0017, 30.0177 25.0275, 30.0177, 30.0177 25.1353, 30.1282 
 

Pooled 0.0239, 0.0239, 0.0238 0.0233, 0.0272, 0.0272 0.0239, 0.0543 

N=3600, T=60 FE 24.9940, 29.9976, 30.0165 24.9944, 29.9989, 29.9947 25.0020, 29.9947 
 

RE 24.9984, 30.0165, 30.0020 25.0098, 30.0050, 30.0046 25.0652, 30.0561 
 

Pooled 0.0167, 0.0168, 0.0166 0.0166, 0.0192, 0.0192 0.0169, 0.0387 

 As expected, the Fixed Effects Model provides stable coefficient 
estimates for large panel structures (e.g., N=1800, T=60, T=60 and 
N=3600, T=60), but it suffers from higher variability at smaller 
sample sizes (N=25, T=5). This model is most effective when 
controlling for unit-specific characteristics, but its performance 
decreases with smaller panels and higher collinearity (Greene, 
2012). The Random Effects Model consistently provides stable 
coefficient estimates across various panel sizes, though it becomes 
less effective in smaller samples (e.g., N=25, T=5) under higher 
collinearity. It generally performs well with larger datasets and 
shows robustness under moderate collinearity (0.5) (Wooldridge, 
2010). The Pooled Regression Model provides relatively consistent 
estimates at smaller sample sizes but becomes less reliable under 
high collinearity. For instance, at N=50 and T=10, the coefficients 
show substantial fluctuations, indicating that pooling without 
accounting for fixed or random effects leads to inefficient and 
biased estimates when collinearity is high (Kennedy, 2003). 
The Fixed Effects (FE) Model tends to produce the lowest RMSE 
in larger panel structures (e.g., N=1800, T=60 and N=3600, T=60), 
indicating that it is the most accurate model when dealing with 
unobserved heterogeneity in large datasets (Greene, 2012). 
The Random Effects (RE) Model performs reasonably well, 
especially under moderate collinearity, but its accuracy diminishes 
when collinearity is high (0.9) in smaller panels. 
The Pooled Regression Model shows the highest RMSE in most 
scenarios, especially when collinearity is high, highlighting its 
limitations when unobserved effects or panel-specific 
heterogeneity is significant (Kennedy, 2003) 
 
Conclusion 
Based on the analysis, the Fixed Effects (FE) Model is the best-
performing model, particularly in larger datasets, as it minimizes 
both bias and RMSE. The Random Effects (RE) Model can also be 
effective, especially when collinearity is moderate and when the 
assumptions of random effects hold true. However, for datasets 
where collinearity is high, or where individual-specific effects are 
crucial, the Fixed Effects Model provides more reliable estimate. 

The Pooled Regression Model should generally be avoided in 
cases where collinearity or panel-specific heterogeneity is 
significant, as it produces the least stable and least reliable results 
across different collinearity levels. 
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