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ABSTRACT

This paper developed and analyzed a mathematical model of Mpox
infection, incorporating early screening with therapy of the exposed
and isolation with treatment of the infected individuals. The
existence and uniqueness of the model solution, positivity, and the
feasible region of the model solution were shown. Two equilibrium
states of the model, namely disease-free equilibrium (DFE) state
and endemic equilibrium (EE), were determined, and the basic
reproduction number R, was calculated using the next generation
matrix method. It was shown that the DFE state is locally and
globally asymptotically stable when Ry = max(Rgp, Ron) < 1.
Similarly, the EE state was shown to be locally and globally
asymptotically stable when R, = max(Rgp, Ro) > 1, where
Ron and Ry, is the basic reproduction number for human and
animal populations, respectively. Furthermore, the results of the
sensitivity analysis of the basic reproduction number with respect
to the model parameters show that screening with therapy of
exposed, progression from exposed class to infected class and
isolation with treatment of infected individuals, are the most
sensitive parameters. These analytical results would be validated
using numerical simulation with real data.

Keywords: Mpox, early screening with exposure therapy, isolation,
existence and uniqueness, basic reproduction number.

INTRODUCTION

In recent times, more than seventy (70) countries have been
affected by the outbreak of Monkeypox(Mpox). This has led to the
suggestion that the Monkeypox Virus (MPXV) should be declared
a public health emergency in endemic regions (WHO, 2022).
Mpox, is a family of Orthopoxvirus, which is a Zoonotic disease that
is caused by Monkeypox Virus (MPXV) (Center for Disease Control
(CDC), 2003; Heskin, et al., 2022; Rahman, et al., 2020). Mpox is
a viral infectious disease, which is commonly found in remote
settlements, mostly in Central and West Africa region, where
human come in contact with an infected non-human which is a
primary channel of transmission (Jezek et al., 1988; Rizk, et al.,
2022; Railian, et al., 2023; Valavan & Meryer, 2022).

MPXV is transmitted through Animal to Human (A2H) transmission,
Human to Human (H2H) transmission and Human to Animal (H2A)
via direct or indirect contact with an infected animal/person,
environment, surface, respiratory droplet, body fluid (Alkunle et al.,
2020; CNBC,2023; WOAH, 2023; CDC, 2022; Murphy & Ly, 2022;
Titaniji, etal., 2022; Beeson, et al.,2023). The latent period of MPXV
is usually 4-21 days, after which the signs and symptoms of MPXV
begin to manifest in the victim’'s body, such as lymph node
enlargement, fever, myalgia, back pain, severe headache,

sweating, etc. (Esshauer et al., 2010; CDC-Africa, 2022; Hraib, et
al.,2022; Luo & Han, 2022; Shaheen, et al.,2022).

The prevention and management of MPXV, to reduce or mitigate
the spread of the outbreak is a global concern, particularly in Africa,
with Sub-Saharan Africa being the most endemic region. Currently
there are several efforts that are ongoing, both locally and globally
to reduce or eradicate MPXV, from causing further damage to lives
and livelihood. Government agencies, individuals and researchers
have committed funds and resources, in creating awareness, on
the existence and potential of the disease spread. Several scholars
have employed different approaches in understanding the
dynamics of the disease spread.

For instance, mathematical model approaches have been utilized
by different scholars, to study the dynamics of MPXV with some
control measures aimed at lowering the disease progression.

A base for mathematical model for transmission dynamics of Pox-
Like disease was presented. In the work all baseline parameters
where assume from other pox-like virus. Results reveals
malnutrition of individuals, unhealthy living of individuals and
immune of individuals varies in recovery rate from Mpox due to
warning immune (Bhunu & Mushayabasa, 2011).

Mathematical model of Mpox infection was formulated,
incorporating the exposed, vaccination susceptible individuals,
unvaccinated individuals and treatment of infected individuals, to
study the dynamics of the spread of Mpox with control
interventions. Numerical simulations were directed towards
assessing the combine impacts of vaccination for prevention of
susceptible individuals and treatment of symptomatic individuals
(Usman & Adamu, 2017; Emeka et al., 2018; Bolaji, et al., 2024).
Mathematical model of Mpox transmission dynamics was
constructed, incorporating education awareness of the susceptible,
public enlightenment campaign, quarantine, detection, and
undetected infected individuals compartment. Simulation results
were directed towards the impacts of prevention and
enlightenments of susceptible and effectiveness of getting the
infected individuals quarantined (Somma et al., (2019; Peter, et
al.,2021; Idisi, et al 2023; Soni & Sinah, 2024;0lapade et al., 2024;
Sefiu, et al., 2024)

A deterministic model on the spread of Mpox was formulated,
incorporating prodromal and differential in stages of infected
individuals and hospitalization to assess the impact of control
interventions with real data. The work focused on cumulative
reported cases of infected and death from September 2017 when
the virus re-emerged to January 2023 in Nigeria and the
Democratic Republic of Congo (DRC) (Al-Shomrani, et al., 2023;
Peter, et al., 2024).

A mathematical model for the transmission of Mpox, was
constructed with a view to analyzed and evaluate the effectiveness
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of optimal control strategies. The optimal control functions were
focused towards control intervention to reduce the rate infection on

high and low risk infected individuals, deceased individuals and o 8no ap r\ 6, Sno
vaccinated individuals (susceptible) (Singo, et al., 2024; Ikhsani, et T T / ~

al., 2025). m, 1, a(1-p) 0,

We observed that none of the research has considered > Sn(8)|—> En(D) S| In(D——5| H®
incorporating early screening with therapy and Isolation with NS

treatment. N l l
The present study extends the work of (Bhunu & Mushayabasa, RN 8o 8ho+ e
2011;Usman & Adamu 2017; Peter, et al.,2021), to incorporate 8.0 N -

early screening with therapy and isolation with treatment, with an b

aim of performing analysis on the model to assess the impact of T .

combing both control measures in the fight to mitigate or eradicate L s ® A g ol Y @

MPXV. > =" B e )

MATERIALS AND METHODS
Construction of Mpox Model
We formulate a deterministic model of Mpox, by dividing the
population into two namely: Human and Animal (Rodents, rats
etc.). The human population is divided into five sub-compartments
by adopting the general SEIHR-type (S-Susceptible, E-Exposed, |-

l Snl)

Figure 1: Schematic Description of Mpox Disease Model

Note that the force of infection due to interaction between both
populations is given as:-

Infectious H-Isolation and R-Recover) model and the SEI (S- Ay = Bnln |
Susceptible, E-Exposed, I-Infectious) for Animal population. B Nn
Nh:Sh+Eh+1h+H+ N_n (3)
Rp @® Ay =
Np =S, +E, + Bnln
In 2 Nn

The description of the model state variables and parameters are
presented in Table 1.

Table 1: Description of Variable and Parameter

where the parameter(s) By, B, and By, is the transmission rate
for human and Animal population.

The susceptible Human population is increased through constant
recruitment rate by birth or immigration rate at IT;, and reduced by
natural death rate at &,,. Hence the susceptible human population

Variable/Parameter Description X . R .
at given time ¢, is given as
dsp(t)
Ny(t) The total Human Population at time ¢ # = 1-[h - (Ah + 6}10)5}1 (t)
Na(£) The total Animal Population at time ¢ The population of the exposed human (i.e. E(t) is achieved
Sp(t) The total number of Spsceptible humans at time ¢ th h . t t th tbl h | t d .
Bit) The total aumber of Exposed humans 2t time ¢ rough interaction with susceptible human population and is
Lit) The total number of infected humans at time ¢ reduced by natural death rate at §},, and a screened with thera
ho
Hy (D) The total number of isclated humans at time ¢ . .
By(t) The total number of Recovered humans at time t proportion rate at ap progressing to recovery class and at the
5.(t) The total number of Susceptible Animals at time t irat ] H H _
i The sotal b of B Aamtnats 5 e £ expiration of Iatfancy perloq, the infected is generated at a(l p)
L(t) The total number of Infected Animals at time ¢ undetected during screening. Hence the exposed population at a
/Ty Recruitment rate for Humans/Animals giVen timet iS giVen as
P Proportion of exposed class Screened with therapy
1-p) Pr_oportion e_fexposed progressing to infected class on expiration of dEh (t)
it i 1 = 2nSa(®) = (ap + a1 = p) + 1) En(©)
(<4 rogression rate
gt ;Sr‘jﬂ‘““ with treatment zate of Infected Humans An Infected human population is yielded as a result of interaction
- gression rate from isolation class to recovery class . A o N
¥ Progression rate of Exposed Animal to infected Compartment with exposed individuals who at the expiration of latency period
P atural Geaty/Beaths rate dve 10 Mpox of Human progress at a rate (1 — p) and reduced by isolation with

treatment rate 6,, a natural death rate at 8, and death rate due
to MPXV at rate 65,;.Hence infected population at a given time t is
given as

di
IO = (1 = P)En(t) — (61 + Bno + 8111 ()
The Isolated class is yielded as a result of isolation with treatment
rate 6;0f an infected individual and reduced by progression rate

6, a natural death rate at 8, and death rate due to MPXV &p,;.

Hence the Isolated class at given time ¢ is given as

D = 6, 14(6) — (8 + o + SH(D)

The recovered individual is yielded as a result of progression of
screen with treated rate ap of exposed individuals and a
progression from Isolated class at a rate 6, and reduced by a
natural death rate at &5,,. Hence the recovered human population
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ata given time t is given as

dR
;t(t) = apEp(t) + O2Hp () — SpoRn (1)

The susceptible animal population is increased through constant
recruitment rate by birth or immigration rate at IT,, and reduced by
natural death rate at §,,5. Hence the susceptible animal population
at given time ¢, is given as

dsn(t)

T =11, - (An + 6n0)5n(t)
The population of the exposed animal is achieved through
interaction with susceptible non-human population and is reduced
by natural death rate at §,,¢ and the progression ratey. Hence the
exposed animal population at a given timet is given as

LD = M) = (7 + 80 En ()
The infected animal population, is yielded as a result of interaction
with susceptible animal population and reduced by death rate at
Sno - Hence the infected animal population at given timet, is given

as

dI;_Et) = yEn(t) - 5n01n(t)

We make the following basic assumptions for the formulation of our
model as -

i. The model assumes homogeneous mixing of
population, i.e. individuals have an equal chance
of contacting each other.

i. The transmission of the virus occurs through
direct or indirect contact with infectious individual
or Animals or contaminated surface.

ii. The rate of transmission is proportional to contact
rate between individuals and animals.

With the description, flow diagram and assumptions above, the
model is presented as

L0 = 1y - (A +

Ono)Sr(t) )
dEst(t) = ApSp(t) — (o +

Ono) En(t) 5)
dl;_t(t) = a(l = p)Ep(t) — (61 + Spo +

221)1h(t) (6)
2 = O1In (@) = (62 + Bpo +

Sp)H(t) Q)
LD = apEy(£) + 0Hy () —

SnoRp(t) (8

Lol 1, = (A +

Ono)Sn(t) C))
LD = 2nSa®) = (v +

Ono) En(t) (10)
T = YEn (D) -

Onoln(t) 11)

With model initial condition as

S, (0) = 0,E,(0) =0,1,(0) = 0,H,(0) =0, R,(0) =
0,5,(0) = 0,E,(0) =0,L,(0) =

0, (12)

RESULTS AND DISCUSSION
Existence and Uniqueness of Solution for the Model
Consider the initial value problem (IVP)

https://dx.doi.org/10.4314/swj.v20i1.19

x'=f(t,x),y(t) =
Whose solution exists and is unique. So that our model in (4) to
(11) can be written as

I In
[, x) =T — By —Nh Sh = Brny-Sn =
h n

8noSh ) ) (14)
f2(t,x) = By N_’;Sh + Bun N_r;Sh —(a+
Sno) En(t) (15)
f3(t,x) = a(l = p)E, — (6 + Spo +
Sn)ln (16)
fa(t,x) = 011, — (82 + Spo +
Sp)H 17
fs(t,x) = apEy + 6,Hy, —
SnoRn (18)
f6(t,x) =1, - ﬁn;,_r;sn -
8noSn (19)
fr(60) = BuySu = (r +
810)En (20)
fS(trx) = }/En -
Snoln (1) (21)

Theorem 1: (Lipschitz condition), (Boyce & Diprima,2001; Khali,
2002)

Consider the initial value problem (IVP)

x' = f(t, %1, X2, X3, e, X ), X1 (E0) = %1, %2(t0) =

X2, %3(to) = X3, e, Xn (o) =

Xn (22)
Defined on a region R as

[t —tol < a, ||x - x0|| < b,(x = x4, %2, X3, e, X)), (Xo =
X10, X205 X305 +++» Xno) (23)

And suppose f (¢, x) satisfies the Lipschitz condition

”f(trxn) _f(trxn—l)ll < kllxn —

Xn-1ll (24)
Whenever the pair (t,x,) and (t,x,_4) are in R and k is a
positive number, then f(t,x) has one solution (Uniqueness).

Note that if f(t, x)has partial derivative Ui qych that |%| <

ax;
oo,Vi = 1,2,3, ..., n satisfying equation (23), then the solution of
f(t, x) exist and bounded in region R.

From equation (14), we have

%_i( g g g g
35, — a5, \In = By -Sn = Ban - Sh

I In
5h05h) =—bn N—}; = By~ Sno.s

Oh| _|_p I _ I 9h _
25,1 = | Bn Ny Brn N, 5h0| <o 9B,
a I In .
a(nh - BhN_’;Sh - .BnhN_nsh - 5h05h) implying
0f1

9ha| _ %_i( _p e _
| =0<o, a1, ~ oI, Iy ﬂhNhSh
= |—p. 3n
_| 'BhNh|<oo’

OEy
of
af; 9 I In
-2 = a_H(nh = Bn N_:Sh = Bnn N_nSh - ShOSh):

ITL
Bun =S = 8o ), then |2
oH

implying %4

OH

fi(t,Sp) is continuous and bounded in bounded, in the

interval 0 < R < 1, satisfying Lipschitz condition in equation (24).

Clearly, f;'s and their partial derivative, with respect to each of

the state variables, follow from above. Hence there exist unique
solutions of equation (4) to (11) in the region R.

=O<00,and|ﬁ =0< oo.
Ry,
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Positivity of Solution

Theorem 2: Given the initial
condition{S; (0), £ (0), I,(0), H(0), R,(0) = 0} € ¢p;, and
{5,(0),E,(0),1,(0) = 0} € ¢, in equation (12), then the

solution {Sh(®), En(t), I,(t),, H(t), Ry (t)} and
{5, (1), E, (1), I,(t)} of equation (4)-(11) is nonnegative for all
t>0

Proof

Here, we prove that for all t > 0, the solution of
equation (4)-(11) are always positive.
From equation (4)

dsy(t) I

C = T = By Sn = Bun y-Sn = noSn = — (Bn 1
In

Bun s~ aho) Sh (25)

Integrating equation (25) by separation of variables
as I
I5r=l- (ﬁh - ["nh - 5ho) dt =
In
InSp = - (ﬁhN_h—ﬁnhN_n— 5h0) t+a
Using initial condition at t = 0, gives
_<Bh,{,_};_ﬁnh,f,_1:l_6ho)t

= Sh(t) > Sh(O)e >

0 (26)
From equation of (5)

dEh(t) = AhSh (0.’ + 6h0)Eh > —(a +

dt
Sno)En 27)
Integrating equation (27), by separation of variables, i.e. gives
f"E—i’l > [ —(ct + Spo)dt = InEp, = —(a + Spo)t + ¢,
UsingE,(0) = 0 at t = 0, we obtain,
Ep(t) = Ep(0)e~(@*dnodt >
0 (28)
Similarly, equation (6) to (11) follows from the method used in
equation (26) and equation (28), we can show the solutions for
other equations are nonnegative for t > 0.

The Feasible Region
Theorem 3: Let ¢, = {(Sh,Eh,Ih, H,Rp) € RE:Ny(t) <

Sho} and
®n _{(Sn;En;I)ER3'N (t)sﬂ} S0

{¢>h X ¢n|Nh(t) <Tho N, (L) < ””} then the region ¢ is

positively invariant W|th respect to equation (4) -(11).
Proof

Adding equation (4) to (8), we have
ANn(®) _ dSn 4 dEn | dln \ dH \ dRy _ dNa()) T —

dt dt dt dt dt dt dt
SholNn (29)
We use integrating factor (IF) method as IF = e/ nodt = ¢(8nolt
and Multiply both sides of equation (29), by e(®r0)t | and simplify

thatgp =

we have
%(Nh(t)e(sho)t ) = mpeBnolt
Integrating both sides
f%(Nh(t)e(sho)t) = [ mpe@nt dt, = Ny (H)e@rot =

;T_he(5ho)f +c

ho
Using, N,(0) = 0 at t = 0 we have
N, () < Nj,(0)e~@rolt +;r_h(1 3
ho

https://dx.doi.org/10.4314/swj.v20i1.19

e~ (Brolt) (30)
In equation (9) to (11), we follow same method in equation (30), we
obtain
Np(t) < N, (0)e~Gnodt 4 ;’—7:'0 (1-
e~ (Bn)t) (31)
From equation (30) and equation (31), in particular, if N;, (0) < g—}:lo
then
Np()) < -
hO

andif N,(0) < thenN ® <

Hence, = {¢>h X ¢>n|Nh(t) <In s N (t) < } is posmvely

invariant,so that the solution pathway remains in the region ¢.

Equilibrium States
We set the right-side of the model in equation (4) — (11) to zero i.e.

I In
— BnSn N—}; = BunSh N, SnoSp(t) =

0 (32)
BrSh ;,_’; + BunSh ;,_1; — M{Ey(t) =

0 (33)
MyEp(t) — M3I,(t) =

0 (34)
011, (t) — MyH(t) =

0 (35)
apEp(t) + 0,Hp(t) — SpoRp(t) =

0 (36)
I, — BnSn ;,_n - 6n05n(t) =

0 (37)
ﬁnsn;,_z - (V + 6n0)En(t) =

0 (38)
)’En(t) - Snoln(t) =

0 (39)

Where My = (@ + 8po), My = a(1 —p), M3 = (6, +
Sno + 6p1)s My = (05 + Spo +
Sn1) (40)

Disease-Free Equilibrium (DFE) State
At the disease free-equilibrium (DFE) state(i.e. absence of an
infected individual from the community), in particular E,(t) =
I,(t) = L,(t) = 0, in equation(32)-(39), i.e.
Since I, = I, = 0 then E;, = H = R, = E,, = 0, So that the
DFE state of equation (9) -(11) can be written as

Bo = (Sn', En' ", H' R, S, By ") =

h n
(5= 000,03 00) (41)

Endemic Equilibrium (EE) State
For endemic equilibrium state i.e. I, # 0 and I,, # 0 of equation
(4)-(11), we solve equation (32)-(39) simultaneously to obtain
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Np**MiM3
BnM2
M3 [Bth Bnhdno[__ ¥Bn 1]
BpM2z|IM1M3 Bndho L6no+8no)

ﬂ[ﬁth 1 Bnnéno[__ vBn 1]
Bp|IM1M3 Bndno L6no(r+8n0)

017p [ﬁth Bnhdno[__ vBn 1] (42)
MyBp[lM1M3 Bndho L8no+8no)

[EnMz_;]_EnhOno[__ ¥Bn 1] L[aﬂ"hM3,9192"h]
IM1M3 Bndho L6no+8n0) Snol BrMz ~ MaBp
Snor+8no)Nn™"

Bny
5nol'ln[ vBn _1]
vBn Léno(r+6no)

n vBn _1]

Bnléno(y+éno)

Basic Reproduction Number(R,)

The basic reproduction number(R,) is the average number of
secondary cases that arise as a result of an index case in an
interactive community,(Diekmann, et al.,1990; Van Den Driessche
& Watmough, 2002).

To compute the basic reproduction number(R,) of the disease, we
split our model in (4)-(11) into new infection terms as F and
transition terms as V, represented by the following compartments
as Ep(Exposed Human), I,(Infected Human), E,(Exposed),
I,(Infected Animal) and we employed the next generation matrix
method, and subsequently obtain the largest eigenvalue of FV~1
to be the basic reproduction number of the model and hence R, =
pFV~1

Applying partial derivative on F and V
Ep, Iy, E, &I, yields the Jacobian matrix as

(0 BnSn 0 ﬁnhsh\
Np Np
F= 0 0 0 SV =

with respect to

(=]

\0 0 o B /
Np
0 0 0 0
My I\EI) g 0
-M, 0
0 03 (Y+6n0) O (43)
0 0 4 Sno

For DFE of F and taking of V' in equation (43), becomes
BnnbnoTn
0 pf, 0 —/—/——

Tnbho
0 0 O Bn
0 0 0 0
= 0 0 0
My
v w00
1M3 3 1 (44)
0 0 (¥ +6n0) 0
v
0 0 Sno(¥+6n0)  Sno
For FV~1, we obtain
BnMz  Br ¥YBnn Bnn
MsM; M3 8po(y + 8no)  Gno
Fv—l — 0 0 0 0 (45)
0 0 YBn .B_n
Ono(y + 0no) o
0 0 0 0

For the eigenvalues of equation (45), we have

https://dx.doi.org/10.4314/swj.v20i1.19

BaMs _ vBn }z

Ry, = max(Ry,, R = max{ _—
0 ( O On) M3M,’ 8o (¥ +6n0)

max { ,
(@+8r0)(81+8n0+8h1) " (¥ +810)8no

Where Rypand Ry, in equation (46) are the basic reproduction
number for both the human and animal population respectively.

Local Stability of the Disease-Free Equilibrium State
We compute the Jacobian of the model in (4)-(11), to establish the
local stability of the disease free-equilibrium (DFE) state.
Theorem4: The DFE State of the Model in (4)-(11), is locally
Asymptotically Stable, if Ry = {Ron, Ron) <1, otherwise
unstable.
Proof
We take the partial derivative of equation (14)-(21) with
respect to each of Sy, Ep, In, H, R, Sp, En, I, at the
DFE state in equation (41), i.e.

(=]
(=}

0 0

| 0 M, B ThBrnsn,
0 M, -M,
0 0o 6 -
0 ap 0
0
0
0

Tn 5}10
0
0
0
0 0 —Bn
= + o) Bn
Y —6no

TnBuns,
G O By )
n
[
[
[
[

EOO

4

>
~N
|
oo o
coo o

0 0
0 0
0 0

=
=)
003570000

o o o
o o o

From equation (47), the eigenvalues of the matrix J(E,) are
V1= V3= =80, V3= —8po, V4= —M, =—(6, +
Ono + On1)

Which are negative and we expand the remaining matrix to give
V4 + a1V3 + azvz + a3V + a, =

Bra(1-p) VBn (46)

7)

0 (48)

where

a; = (My + Mg + (¥ + 8p0) + 6no), az = (M{M5(1 —
Ron) + My (¥ + Ono) + M18no + M3(y + o) + M38p0 +
(¥ + 610)8n0), az = (M{M3((y + 8p0) + 8p0)(1 —

Ron) + (¥ + 8n0)8no(My + M3)), ay = (M M3(y +
810)0n0(1 — Rop) + BrBryMz)

M.
where Ry, = f/thZ
13

Following Routh-Hurwitz stability criterion in (Hurwitz,1964), all
the eigenvalues of equation (47), have negative real part if a; >
0,fori =1,2,3,4and a;a,a; > a2 + aa,.

Now,

a1a,a3 — a3 — afa, = az(a;a; — az) — ajay
Anda; > 0, fori =1,2,3,4since Ry, < 1, we show that
az(aia; —az) —a?a, >0
(IM;*M5*(1 = Rop)?(My + M3)((v +
8n0)+6n0) + 2My M3((y + 8no)+8n0) (1 —
Rop) [MyM5((y + 8po) + Gno) + (¥ +
On0)8no(My + M3)] + M{M3((y + 6ro) +
8n0)(1 — Rop)[ (¥ + 8n0)? (M1 + M3 + 8,9) +
6n02(M1 +M;+(y+ 5n0))] + 2M1M3((V +
Ono) + 5no)[M1M3((V + 8po) + 6po) +
(¥ + 0n0)8no(My + M3)] + (¥ + 6ro)Ono (M7 +
M) + 8,0)?(My + M3 + 8) + 8no” (M +
Mz + (y +8n0))]) > ((My* + M3% + (y +
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8n0)? + 8o ) MyM3(¥ + 810)8n0(1 — Rop) +
BrBryMy] + 2(M{ M3 + My (y + 659) + M8y +
M3(y + 8po) + M30p0 + (v +

810)8n0) [ MiM3(y + 81,0)8n0(1 — Rop) +
BrBryMs,]), since Rop < 1

Hence, equation (52) is globally asymptotically stable for % =
F(X,0)
Now, taking partial derivation of equation (51), we have A4, but
GX,Y) =AY —-G(X,Y),= G(X,Y) = AY — G(X,Y), and
we have

ThuskE, of the model in (4)-(11) is locally asymptotically stable, GX,Y) =
since all eigenvalues have negative real part whenR, = _ Sn Sh
(Rops Ron) < 1. (& + 8ro) Bn n 0 Bun Nn\ E,
a(l=p)  —=(01+ 8po + 6p1) 0 0 | In | _
Global Stability of the Disease-Free Equilibrium State 0 0 = +6no) ﬁn;—:/ ?"
To establish the disease is not dependent on the initial population 0 0 4 —8no "
size, we show that the disease free equilibrium state of the model BySh ;’_h + BunSn A’]_n — (@ + 840)En
in (4)-(11) is Globally Asymptotically Stable (GAS). on i
Lemmat: (Castilo-Chavez et al, 2002), let the partition of (1= P)Ey = Bat o + Ordln |
equation (4)-(11), into BuSny- = (v + Ono) En /
ﬂ = ﬂ = = yEn - Sn In
— =F(X,V)and — = G(X,Y),G(X,Y) 0 5 (1_S_h) 8 b (1—ﬁ)
0 (49) h'h Nn nhin Nn
Where € R™ , denote the population of the uninfected class and 0 0 0 0 o=z
Y € R™ denote the population of the infected class in equation (4)- 0 0 0 Buly (1 - N—';) /
(11) and P(1) and P(2) are assumed as 0 0 0 0
0 (53)

P(1) Z—f = F(X,0),X* is Globally Asymptotically Stable
P(2) G(X,Y) =AY —G(X,Y),G(X,Y) = 0,for (X,Y) € ¢
Where ZTG/’ at X, is a Metzler Matrix (m-matrix).

Note that if the equilibrium pointX, = (X*, 0), is GAS whenever

Ry = {Ron, Ron) < 1 and the conditions P(1) and P(2) are

met.

Theorem5: The disease-free equilibrium state of equation (4)-(11)

is globally asymptotically stable when Ry = {Rop, Ron) < 1
Proof

By Lemma1 and the assumption in H(1) and H(2)

Let the uninfected class and infected class of equation (4)-(11) be

X = (Sp,H,Ryp, Sp)T and Y = (Ep,, I, En, 1,)" respectively,

Since G(X,Y) = 0 and 4, is M-matrix(i.e. all element of the off-
diagonal entries are nonnegative), then E, is globally
asymptotically stable.

Local Stability of Endemic Equilibrium State
Theorem 6: The endemic equilibrium E; state of the model in
equation (4)-(11) is locally Asymptotically Stable when R, =
{Ron, Ron) > 1

Proof
We generate the Jacobian Matrix of equation (4)-(11), at the

endemic equilibrium point as
J(Er)

I Sy s
so that _ﬂnNL}:t - ﬂnh# —0 0 —lb;':lTil 0 0 0 0 _ﬂ’[‘\’/‘i“"
S, Iy I BuSi” BunSn”
w4 1_;1 bagetboys M 00 0 0 e
—=— =F= 0 M, -M; 0 0 0 0 0
at  dt| Ry B 0 0 6, -M, 0 0 0 0 54
Sn - 0 a0 8 =5y 0 0 o | ©¥
- In _ I _ 0 o o o o -Bi_g 0 _AS
Iy — BuSh Ny BunSn N, SnoSn B N
Buls BuSi
011p — (82 + Spo + Sp)H (50) 0 0 0 0 0 SR AL
(Zth + 921‘1 - 6hORh 0 o 0 ) 0 0 ) 0 . 0 y —80
M, = S, 2 — 6, Now the characteristic equation of equation (54) gives
n~ Pn nN_n — Ono“n
Bn T Brnsng
A%dh bo=8p—-V 0 e 0 0 0 0 e
Bn ”hﬁnham,
av _afly\_ . T MV Rl 0 0 0 0 Rontaro
at  dcl E =G6= 0 M,  —M;-V 0 0 0 0 0
1" 0 0 0, -M,—-V 0 0 0 0
n 0 ap 0 6, Spo =V 0 0 0
BrSh L + BunSn - — (& + Sro) En 0 0 0 0 0 bi=8,-V 0 L
Np Nn Ron
a(1—p)E, — (01 + Opo + On1)ln (51) 0 0 0 0 0 —b, —(y +800) =V —Rﬁ—"
BnSn If,_n — (¥ + 6no)En —0 0 0 0 0 0 0 ¥ o =V
]/En — 6noln G5
Since E, =1, =E,=1,=0 (i.e. in the absence of the . o ,
disease), then the solution of equation (51), gives Wher?*f\/li for L 1 — 4, is defined in equation (40) ;nﬂ*bo =
X" = _ﬁhNL;;_BnhNL;L*:_(ShO(ROh_l) and by = — ;;? =
m m
oy 005 60 (Ron — 152)
5}10 5n0 . e
The eigenvalues are V= —&y0, V= —M, and remaining
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characteristic equation in (55), gives

VO + A V5 + A,V + AsV3 + AV + AV + Ag =

0 (56)

Where

Al = Ml + M3 + Y + 26110 + 6h0ROh + 5n0Ron

Ay = MiM; + Spo(y + 6no) + (My+M3)(y + 28,0) +
8r06noRonRon + (SroRon + 6noRon) (M1 + M3 +y +
Zano] - MZ }fT};

Az = MiM3(y + 28p0) + Ono(y + Ono) (M1 +M3) +
(M1+M3)(y + 2850) + SpoSnoRonRon[My + M3 +v +
Zano] + (ahORoh + anORon) [M1M3 + 5110(]/ + 5110) +
(M1+M3)(y + 2830)] = M 2 [8p0Ron + SnoRon + ¥ +

28p0] — Mz 5no(Ron - 1) A4 = M;M368n0(y + 8po) +

5n05noRohRon[M1M3 + 8o (¥ + Opno) + (M1 +M3)(y +
26110)] + (5hORoh + 5n0Ron)[M1M3(y + 26n0) + 5n0(y +

6n0)(M1+M3)] - MZ IfTh;, [6h0Roh6n0Ran + (V +
2(s\n())(ahORoh + 6nORan) + 6710()/ + 6n0)] -
M 22 8o (Ron = D [SnoRon + (v + 2630)]

A5 = 6h0§nORohRon[M1M3(y + Zano) + 5n0(y +
8no) (M1 +M3)] + MyM36,0(¥ + 8no)[SnoRon +

SnoRon] + ¥ £ = ¥ 22 o (Ron = 1) =
M 2 [Sh0RonBnoRon( + zano) + Sno(y +

no)(ahoRoh + 8n0Ron) + ¥ 2+ ¥ 280 (Ron = 1] =
MZR_MShO(Roh = D[8po(Ron — DY + 28n0) + Spo(y +
Sno)]
Ag = ¥ £ SnoRonSno(Ron = 1) + SnoRony £+
0n06noRonRonMiMs(y + 26,0) —
M 2 [8n0Ron 0" Ron (¥ + 620) + ShoSnoRon (Ron =
1)]/!;—“ + ¥8onRon Bn] M, — R Ln. Sno(Ron —

1) [6n0R0n6n0  + 6p0) + )/ ~ 4+ (Ron — DSnoy _]
From equation(56), we calculate ihe element of Routh array table

gives
AA,—A A1AL—A _ A146—0
B, = 442743 p o _ 474s p _MAem0 _ 4 p o
0 A P21 Ay y b2 = Ay 6,23
BoA3—B14, B, _ Bods~ B,A; Bs _ B1B3—BoB, B, _ BaB3—0 _
Boy Boy B3 B3
B,Bs—B3By
BZ!B7 - Bs

All the roots of the characteristic equation (55), have negative real,
since the elements in the first column of the Routh array table are
all are all positive and nonzero (Routh-Hurwitz, 1964).

Global Stability of Endemic Equilibrium State
Theorem 7: The endemic equilibrium E; state of the model in (4)-
(11) is globally asymptotically stable (GAS) when R, =
{Ron, Ron) > 1

Proof
To prove the global stability of the endemic equilibrium stateE; , we
define the Lyapunov function as

*% s *k
V() = (sh — S = S; S:) + (Eh - By —

Eh I L L1 I_h _ **
E;:) + <1h I — I In 1;;*) +(H-H

Ep

https://dx.doi.org/10.4314/swj.v20i1.19

H** In-0) + (S, = 57— 53" In 557") + (B — B -
)+ (=1 -

I*In I’—) (58)
Differentiating equation (58) and transpose (4)-(11), gives

% = ( )(,Bh Ny Sh+ ﬁnh N Sh™+ SnoSy”

Br ;,_);Sh = Brn N_n Sp— 5h05h) (1 - E—';) ((05 +

Sno)Ei = (@ + r0)En) + (1 =) (61 + 610 +

S = (01 + 6no + 6n)1n) + (1= 20) (02 + 6o +
ShH" = (0 + 6no + Sr)H) + (1 =) (Bu S +
SnoSi = By S = 80Sn) + (1= 5) (0 + 8p0) B —

(V + 5n0)En) + (1 - _) (Snol**

8noln) (59)
Simplifying equation (59) and applying the comparison principle
that the arithmetic mean is greater or equal to the geometric mean
(i.e. Zl 1 =V %, i=12,..,n

Hence from equation (59) we have

O oy B (b
I,)SE™Np Sh Iy"Np ISy Ny Sh

i) <0 (Z_S_i*_s_h) 0 (z_ﬂ_E_ﬁ*) <0 (2_

N, ) — Sn S ! Er Ep) —

I )< 0(2-25-10) <o, (1t Sy
In

I H SNy, Sp
I,Nyy n In
1**N) 0, (2_ sy sn) SO‘(Z_E_ In) <0, (2_
In
Iy 1,,) <0
Therefore, by  lyapunov theorem% <0, for all
Sty Eny In, H, Ry, Sy, Ep, I, > 0 implying that E; is stable.
Now for asymptotic stability of E;, we use Lasalle invariance
T . .
principle i.e. prl 0, if and only if
(1 o S8 M) 0,5 5, = 53, 1y =
I'Si'Np Sp Ii'Np
i I = I
Following similar process we conclude that, E; is asymptotically

stable for Ry = {Ron, Ron} > 1. E.g. (See Lasalle, 1976; EI Hajji
et al. 2015; El Hajji 2019a; Okolo et al. 2024).

IN

Sensitivity Analysis of the Model
We performed sensitivity index on parameters of the basic
reproduction number. These parameters includes contact rate S5,
and B, the screening with therapy rate p, progression rate «,
proportion rate (1 — p) due to latent period, isolation with
treatment rate at 6; and progression to exposed class of the
animal at arate y.
We used normalized forward sensitivity method defined as

R R V (60)

V.V 'R
Where V is the parameter rate and Ry = {Ron, Ron}, is basic
reproduction number for both population (Chitnis et al., 2008).
From equation (46), we have

Ry = {Ron, Ron} =
{ a(1-p)fn ¥Bn }
(@+81n0)(01+8r0+8n1) " (¥ +6n0)8no
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Using equation (72), on equation (46), gives

xRon — 0 a(1-p)Pn Bn _
Br ™ 9Ph (a+6no)(81+6no+8n1) Ron
1 (61)
Ron _ 0 a(1-p)fn P _
Xfp ) ((a+aho)(el+aho+ah1)) "Ron
(1-p) (1) (62)
Rop _ 0 a(1-p)Bn a
X = da ((a+ah0)(el+aho+ah1)) X Ron
- (63)
xRon — i( a(1-p)Bn ) 6 _
61 7 06, \(@+8no)(B1+8no+8r1)/ Ron
[ S
(61+8ho+8r1) (64)
Rop _ _0 ( a(1-p)Bn ) Sno _
8o " 88pg \(a+8n0)(B1+8n0+8n1)/ " Ron
—S8nol(@+810)+(81+8p0+8n1)] (65)
(‘1+5h0)a(91+5h0+5h(1) y s
Ron _ a(1-p)bn On1 _
Xﬁm 5_ 36ho ((a+6ho)(01+6h0+6h1)) "Rop
—Oh1
(61+8ro+8n1) 5 p p (66)
Ron _ yRon _ _9_ Ybn Pn _
XB" - XB" - 0Bn ((y+§n0)§n0) X Ron
1 (67)
Ron _ i Y +8n0) " Bn vy _
X}:s - ay( Sno ) X Ron -
no
¥ +6n0) 5 8 s (68)
Ron __ Ybn Ono _
X5n0 _665110 ((y+5n0)5n0) X Ron -
_ Y+28n0)
((V‘Hsno) ) (69)
DISCUSSION

We constructed and analyzed a mathematical model of Mpox
infection, in the presence of early screening with therapy of the
exposed and isolation with treatment of infected individuals.

The basic properties of the model’s solution, such as existence and
uniqueness, positivity and feasible region were shown.

The basic reproduction number of the disease was determined and
the DFE state and EE state were obtained. The stability analysis
results were shown in Theorems 4 and 5 to be locally and globally
asymptotically stable at the DFE state when R, < 1, indicating
infection will not create an epidemic and it was also shown at EE
state to be locally and globally asymptotically stable when Ry > 1,
in Theorems 6 and 7, indicating infection will continue in the
population and may lead to a pandemic.

The results of the sensitivity analysis of basic reproduction number
with respect to the model parameters such as transmission rate,
screening with therapy of exposed, progression from exposed
class to infected class and isolation with treatment of infected
individuals, negative indicates decrease in disease transmission
with measures in place and positive indicates progression in
transmission.

Conclusion

We constructed and analyzed a deterministic model of Mpox
infection, for the management and control of the disease spread.
We explore the impact of infection transmission pathways, early
therapy on the exposed and lIsolation of the infected class.
Furthermore, the sensitivity index was performed. This analytical
result has further motivated us to validate the work in this paper
with numerical simulations using real data.

https://dx.doi.org/10.4314/swj.v20i1.19

REFERENCES

Africa CDC, (2022) https:/africacdc.org/disease-
outbreak/outbreak-brief 9monkeypox-in-africa-union-
member-states/

Alakunle, E., Moens, U, Nchina, G, Okeke, M.Il. (2020) MPXV in
Nigeria: Biology, Epidemiology and Evaluation Viruses.
12:1257.

Al-Shomrani,M.M.,Musa,S.S.,Yusuf,A.  (2023). Unfolding the
TransmissionDynamics of Monkeypox Virus: An
Epidemiological Analysis. Mathematics.
11:1121. https://doi.org/10.3390/math 11051121

Beeson,A.,Styczyynski,A.,Hutson,C.L.,Whitehill,F.,Angelo,K.M.,Mi
nhaj,F.S., (2023), Mpox Respiratory Transmission: The
State Evidence.Lancet Microbr. 4:277-283.

Bhunu, C., Muhayabasa,S.,(2011) Modeling the Transmission
Dynamics of Pox-Like Infection. JAENG Int J 41(2):1-12.

Bolaji, B., Ani, F.,Omede, B.,Acheneje, G.,Ibrahim, A, (2024), A
model for the Control of Transmission of Human Mpox
Disease in Sub-Saharan Africa, Journal of the Nigerian
Society of Physical Sciences, 6.1800.

Boyce,E.W., Diprima, C.R. (2001). Elementary Differential
Equations and Boundary Value Problems John Wiley &
Son, Inc

Castillo-chavez, C., Fenz,Z., Huang, W., (2002), On the
Computation of Ry and its Role  on the Mathematical
Approaches for Emerging and Reemerging Infectious
disease an Introduction, 1,229. CDC, (2022). Mpox
Treatment.

https://www.cdc.gov/poxvirus/monkeypox/clinicians/tre
atment,htm/. Accessed in 2025

Center for Disease Control, (2003), Update: Multistate Outbreak of
MPXV in lllinois, Indiana, Kansas, Missouri Ohio and
Wisconsin, retrieved in 2022.

CDC-Africa,(2022). Outbreak Brief 4: Monkeypox in Africa Union
Member States. https://africacdc.org. Accessed in 2025

Chitnis,N.H., Cushing,J.,(2008). Determining Important Parameter
in the Spread of Malaria through Sensitivity Analysis of
Mathematical Model. 7(50).
http://pubmed.ncbi.nlm.nih.qov/1823044/.

CNBC,(2023). A Dog in France has Mpox, worrying Scientists that
we won't be able eradicate the Virus if it spread to more
Animals;

https://www.cnbc.com/2022/08/23/Monkeypox-
Scientists-worry-Virus-could-infect Animals-html,
retrieved in 2024.

Diekmann,0., Heesterbeck,J.A.P., Metz,AJ., (1990) On the
Definition and Computation of Basic
Reproduction Ratio R, in Models for InfectiousDiseases
in Heterogeneous Population, J.Math.Biol. 28:365-382.

EL Hajji,M.,(2019a). Boundedness and Asymptotic Stability of
Nonlinear Volterra Integro-differential Equation using
Lyapunov Function. J King Saudi Univ.Sci.,31(4):1516-

1521.
EL Hajji,M., Chorfi,N.,Jleli,M.,(2015). Mathematical Model for a
Membrane Bioreactor Process. Electron

J.Differ.Equ.315:1-7.
Emeka,P.,Ounorah,M.,Eguda,F.,Babamgida,B.,(2020)
Mathematical Model for the Monkey Pox Virus
Transmission Dynamics. Epidemiol Open Access S
8(3):1000348

Mathematical Analysis of Mpox Model in the Presence of Early Screening with
Therapy and Isolation with Treatment as Control Strategies

149


https://dx.doi.org/10.4314/swj.v20i1.19
http://www.scienceworldjournal.org/
https://africacdc.org/disease-outbreak/outbreak-brief%209monkeypox-in-africa-union-member-states/
https://africacdc.org/disease-outbreak/outbreak-brief%209monkeypox-in-africa-union-member-states/
https://africacdc.org/disease-outbreak/outbreak-brief%209monkeypox-in-africa-union-member-states/
https://doi.org/10.3390/math11051121
https://www.cdc.gov/poxvirus/monkeypox/clinicians/treatment,htm/
https://www.cdc.gov/poxvirus/monkeypox/clinicians/treatment,htm/
https://africacdc.org/
http://pubmed.ncbi.nlm.nih.gov/1823044/
https://www.cnbc.com/2022/08/23/Monkeypox-Scientists-worry-Virus-could-infect%09Animals-html
https://www.cnbc.com/2022/08/23/Monkeypox-Scientists-worry-Virus-could-infect%09Animals-html

Science World Journal Vol. 20(No 1) 2025
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

https://dx.doi.org/10.4314/swj.v20i1.19

Essbauer,S.,Pfeffer,M.,Meyer,H.,(2010)ZoonoticPoxvirues. Vet. mi
crobiol. 140:229-236.

Heskin,J.,Belfield,A.,Milne,C.,Brown,N.,Walters,Y.,Scott,C. Bracc
hi,M.,Moore,L.,Mughal,N.,
ampling,T.,Winston,A.,Nelson,M.,Duncan,S.,Jones,R. ,Pri
ce, D.A.,Mora-Peris,B.,(2022). Transmission of
Monkeypox Virus Through Sexual Contact; A Novel Route
of Infection.J.Infect. 85(3):334-363.

Hraib,M.,Jouni,S.,Albitar,M.M.,Alaidi,S.,Alshehabi,Z.,(2022). The

Peter,0.J., Babasola, O., Ojo, M.M., Omame, A., (2024), Modeling
the Transmission of Mpox with case Study in Nigeria and
Democratic Republic of Congo (DRC), Compuational
Methods of Differential Equations. Pp. 1-19.

Rahman,M.T.,Sobor,M.A.,Islam,M.S.,Levy,S.,Hossain,M.J..El

Zowalaty,M.E.,Ashour,H.M.(2020). Zoonotic Diseases: A

etiology Impact and Control. Microorganisms. 8(9): 1405.

M.,Chumachenko, T.,Zubri,O.,Nechyporuk,|.,(2023).

Assessing the Current Threat of Monkeypox Epidemic

Railian,

Outbreak of Monkeypox2022: An Overview. Ann Med. Emergence. WHO 23(2.1):73-78.
Surgery. 79:104069-104073. DOI:10.31718/20771096.23.2.1.73.
Hurwitz, A.,(1964). On the Condition Under Which an Equation Has Rizk,J.G.,Lippi,G.,Henry.B.M.,Forthal,D.N.,Rizk,Y. (2022).

Only Roots with Negative Real Parts. Selected Papers on
Mathematical Trends in Control Theory.

Idisi,l.O., Yusuf,T.T., Adeniyi,E., Onifade,AA., Oyebo,T.Y.,
Samuel,T.A., Kareem,A.L., (2023). A New
Compartmentalized Epidemic Model to Analytically Study
the Impact of Awareness on the Control and Mitigation of
Monkeypox Disease, Healthcare Analytics. 4:100267.

Ikhsani,P,N.,Usman,T.,Ikhwan,M.(2025). Optimal Control on
Mathematical Model of Mpox Disease Spread. Journal of
Mathematics and its Application. 19(1):477-490.

Jezek,Z.,Sczczeniowski,M.,Paluku,K.,Mutombo,M.,Grab,B.,(1988)
Human Monkeypox Confusion with Chickenpox. Acta
Tropica. 45(4):297-307

Khalil,K.H., (2002) Nonlinear Systems Prentice Hall, New Jersey.

Lasalle,J.P.,(1976). The Stability of Dynamical Systems.
CBMSNSF  Regional Conference Series in Applied
Mathematics. 25,Siam, Philadelphia Lauko I, Pinter G,
TeWinkel RE. (2018). Equilibrium analysis for an epidemic
model with a reservoir for infection. Letters in
Biomathematics

5(1):255_274 http://doi.org/10.30707/LiB5.1Lauko.

Luo,Q.,Han.J., (2022). Preparedness for a Monkeypox Outbreak.
Infect.Med. 124-134. Madubueze, C.E., Onwubuya,
1.0.,Nkem, G.N.,Chazuka, Z., (2022). The Transmission
Dynamics of the Monkeypox Virus in the Presence of
Environmental ~ Transmission.  Front. Appl.  Math.

Stat. 8:1061546
http://.doi.org/10.3389/fams.2022.1061546.

Murphy,H.,Ly,H. (2022). The Potential Risks Posed by Inter-and-
intraspecies Transmission of Monkeypox Virus. Virulence.
13(1):1681-1683.

Olopade,|.A.,Akinwumi, T.O.,Philemon,M.E.,Mohammed,|,T.,Sang
oniyi,S.0.,Adniran,G.A., Ajao,S.0.,
Bello,B.O.,Adesanya,A.O., (2024), Analyzing Global
Stability of M-Pox Disease Dynamics: Mathematical
Insights into Detection and Treatment, Journal of Basic
and Applied Sciences Research (JOBASR).2(1).

Okolo,P.N., Makama,C.G.,Abah,R.T, (2024). Mathematical Model
of Tuberculosis Infectious Transmission Dynamics in the
Presence of Testing and Therapy, Isolation and
Treatment. FUDMA Journal of Sciences(FJS). 7(6).

Peter,0.J.,Kumar,S.,Kumari,N.,Oguntolu,F.A.,Oshinubi,K.,Musa,
R.,(2021) Transmission Dynamics of Monkeypox Virus: A
Mathematical Modeling Approach. Modeling Earth
Systems and Environment http://dio.org/10.1007/s408008.

Peter,0.J.,Madubueze,E.C.,0jo,M.M.,Oguntolu,A.F.,Ayoola,A.T.,(
2022) Modeling and Optimal Control of Monkeypox with
Cost-effective Strategies: Modeling Earth Systems and
Environment http://dio.org/10.1007/s408008-022-01607-z

Prevention and Treatment of
7.

Sefiu,0.,Abiodun,A.,Deborah, D.,Ayobami,H., (2024),
Mathematical Modeling of the Transmission of Monkeypox
with Impact  of  Quarantine  and Public
Enlightenment,Journal  of Innovative  Science and
Engineering(JISE). 8(1):1-17.

Shaheen, N., Diab,
R.A.,Meshref,M.,Shaheen,A.,Ramadan,A.,Shoib,S.(2022)
. Is there a Need to worried About the New Monkeypox
Virus Outbreak. Ann.Med.Surgery.104396.

Singo,S.J.,Chuma,F.M.,Musa,Z.S.(2024). Mathematical Analysis
of Monkeypox Transmission Dynamics with Control
Strategies. Tanzania Journal of Science. 50(5):1077-1098.

Somma,S., Akinwade,N.,Chado,U.,(2019) A Mathematical Model
of Monkey Pox Virus Transmission Dynamics. IFE J Sci
21(1):195-204

Soni,K., Sinha,A.K., (2024). Modeling and Stability Analysis of the
Transmission Dynamics of Monkeypox with Control
Intervention. Partial Differential ~ Equations in Applied

Mathematics, 10:100730.

Titaniji,B.K.,Tegomoh,B.,Nematollahi,S.,Konomos,M. Kulkarni,P.A
.(2022). Monkeypox: A Contemporary Review for
Healthcare ~ Professionals. In Open  Forum
Infect.Diseases.9(7):310.

Usman,S., Adamu,l.,l.,(2017) Modeling the Transmission
Dynamics of the Monkey Pox Virus Infection with
treatment and Vaccination interventions. J Appl Math
Phys. 5(12):2335-2353.

WOAH,(2023). How Mpox could Spread back to Animals from
Humans; https://www.woah.org/en/article/remaining-on-
alert-how-Mpox-could-Spread-Back-to-animals-from-
humans, retrieved in 2024.

Van.den Drissche, P., Watmough,J. (2002) Reproduction Number
and Sub-threshold Endemic Equilibria for Computational
Models of DiseaseTransmission. Math.Biosci. 18: 29-48.

Velavan, T.P.,Meyer,C.G.,(2022). Monkeypox 2022 outbreak: An
update.

Monkeypox. Drugs.1-

Mathematical Analysis of Mpox Model in the Presence of Early Screening with
Therapy and Isolation with Treatment as Control Strategies

150


https://dx.doi.org/10.4314/swj.v20i1.19
http://www.scienceworldjournal.org/
http://doi.org/10.30707/LiB5.1Lauko
http://.doi.org/10.3389/fams.2022.1061546
http://dio.org/10.1007/s408008
http://dio.org/10.1007/s408008-022-01607-z
https://www.woah.org/en/article/remaining-on-alert-how-Mpox-could-Spread-Back-to-animals-from-humans
https://www.woah.org/en/article/remaining-on-alert-how-Mpox-could-Spread-Back-to-animals-from-humans
https://www.woah.org/en/article/remaining-on-alert-how-Mpox-could-Spread-Back-to-animals-from-humans

