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ABSTRACT 
This paper developed and analyzed a mathematical model of Mpox 
infection, incorporating early screening with therapy of the exposed 
and isolation with treatment of the infected individuals. The 
existence and uniqueness of the model solution, positivity, and the 
feasible region of the model solution were shown. Two equilibrium 
states of the model, namely disease-free equilibrium (DFE) state 
and endemic equilibrium (EE), were determined, and the basic 
reproduction number 𝑅0, was calculated using the next generation 
matrix method. It was shown that the DFE state is locally and 
globally asymptotically stable when 𝑅0 = max(𝑅0ℎ, 𝑅0𝑛) < 1. 
Similarly, the EE state was shown to be locally and globally 
asymptotically stable when 𝑅0 = max(𝑅0ℎ, 𝑅0𝑛) > 1, where 

𝑅0ℎ 𝑎𝑛𝑑 𝑅0𝑛 is the basic reproduction number for human and 
animal populations, respectively. Furthermore, the results of the 
sensitivity analysis of the basic reproduction number with respect 
to the model parameters show that screening with therapy of 
exposed, progression from exposed class to infected class and 
isolation with treatment of infected individuals, are the most 
sensitive parameters. These analytical results would be validated 
using numerical simulation with real data. 
  
Keywords: Mpox, early screening with exposure therapy, isolation, 
existence and uniqueness, basic reproduction number. 

 
INTRODUCTION 
In recent times, more than seventy (70) countries have been 
affected by the outbreak of Monkeypox(Mpox). This has led to the 
suggestion that the Monkeypox Virus (MPXV) should be declared 
a public health emergency in endemic regions (WHO, 2022).  
Mpox, is a family of Orthopoxvirus, which is a Zoonotic disease that 
is caused by Monkeypox Virus (MPXV) (Center for Disease Control 
(CDC), 2003; Heskin, et al., 2022; Rahman, et al., 2020). Mpox is 
a viral infectious disease, which is commonly found in remote 
settlements, mostly in Central and West Africa region, where 
human come in contact with an infected non-human which is a 
primary channel of transmission (Jezek et al., 1988; Rizk, et al., 
2022; Railian, et al., 2023; Valavan & Meryer, 2022).  
MPXV is transmitted through Animal to Human (A2H) transmission, 
Human to Human (H2H) transmission and Human to Animal (H2A) 
via direct or indirect contact with an infected animal/person, 
environment, surface, respiratory droplet, body fluid (Alkunle et al., 
2020; CNBC,2023; WOAH, 2023; CDC, 2022; Murphy & Ly, 2022; 
Titanji, et al., 2022; Beeson, et al.,2023). The latent period of MPXV 
is usually 4-21 days, after which the signs and symptoms of MPXV 
begin to manifest in the victim’s body, such as lymph node 
enlargement, fever, myalgia, back pain, severe headache, 

sweating, etc. (Esshauer et al., 2010; CDC-Africa, 2022; Hraib, et 
al.,2022; Luo & Han, 2022; Shaheen, et al.,2022). 
The prevention and management of MPXV, to reduce or mitigate 
the spread of the outbreak is a global concern, particularly in Africa, 
with Sub-Saharan Africa being the most endemic region. Currently 
there are several efforts that are ongoing, both locally and globally 
to reduce or eradicate MPXV, from causing further damage to lives 
and livelihood.  Government agencies, individuals and researchers 
have committed funds and resources, in creating awareness, on 
the existence and potential of the disease spread. Several scholars 
have employed different approaches in understanding the 
dynamics of the disease spread. 
For instance, mathematical model approaches have been utilized 
by different scholars, to study the dynamics of MPXV with some 
control measures aimed at lowering the disease progression. 
A base for mathematical model for transmission dynamics of Pox-
Like disease was presented. In the work all baseline parameters 
where assume from other pox-like virus. Results reveals 
malnutrition of individuals, unhealthy living of individuals and 
immune of individuals varies in recovery rate from Mpox due to 
warning immune (Bhunu & Mushayabasa, 2011). 
Mathematical model of Mpox infection was formulated, 
incorporating the exposed, vaccination susceptible individuals, 
unvaccinated individuals and treatment of infected individuals, to 
study the dynamics of the spread of Mpox with control 
interventions. Numerical simulations were directed towards 
assessing the combine impacts of vaccination for prevention of 
susceptible individuals and treatment of symptomatic individuals 
(Usman & Adamu, 2017; Emeka et al., 2018; Bolaji, et al., 2024). 
Mathematical model of Mpox transmission dynamics was 
constructed, incorporating education awareness of the susceptible, 
public enlightenment campaign, quarantine, detection, and 
undetected infected individuals compartment. Simulation results 
were directed towards the impacts of prevention and 
enlightenments of susceptible and effectiveness of getting the 
infected individuals quarantined (Somma et al., (2019; Peter, et 
al.,2021; Idisi, et al 2023; Soni & Sinah, 2024;Olapade et al., 2024; 
Sefiu, et al., 2024) 
A deterministic model on the spread of Mpox was formulated, 
incorporating prodromal and differential in stages of infected 
individuals and hospitalization to assess the impact of control 
interventions with real data. The work focused on cumulative 
reported cases of infected and death from September 2017 when 
the virus re-emerged to January 2023 in Nigeria and the 
Democratic Republic of Congo (DRC) (Al-Shomrani, et al., 2023; 
Peter, et al., 2024). 
A mathematical model for the transmission of Mpox, was 
constructed with a view to analyzed and evaluate the effectiveness 
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of optimal control strategies. The optimal control functions were 
focused towards control intervention to reduce the rate infection on 
high and low risk infected individuals, deceased individuals and 
vaccinated individuals (susceptible) (Singo, et al., 2024; Ikhsani, et 
al., 2025). 
We observed that none of the research has considered 
incorporating early screening with therapy and Isolation with 
treatment. 
The present study extends the work of (Bhunu & Mushayabasa, 
2011;Usman & Adamu 2017; Peter, et al.,2021), to incorporate 
early screening with therapy and isolation with treatment, with an 
aim of performing analysis on the model to assess the impact of 
combing both control measures in the fight to mitigate or eradicate 
MPXV. 
 

MATERIALS AND METHODS 

Construction of Mpox Model 
We formulate a deterministic model of Mpox, by dividing the 
population into two namely: Human and Animal (Rodents, rats 
etc.). The human population is divided into five sub-compartments 
by adopting the general SEIHR-type (S-Susceptible, E-Exposed, I-
Infectious H-Isolation and R-Recover) model and the SEI (S-
Susceptible, E-Exposed, I-Infectious) for Animal population. 

 𝑁ℎ = 𝑆ℎ+𝐸ℎ + 𝐼ℎ + 𝐻 +
𝑅ℎ                                                                 (1)    

 𝑁𝑛 = 𝑆𝑛 + 𝐸𝑛 +
𝐼𝑛                                                                  (2) 

The description of the model state variables and parameters are 
presented in Table 1.  

 
Table 1: Description of Variable and Parameter 

  
  
 

 
Figure 1: Schematic Description of Mpox Disease Model 
 
Note that the force of infection due to interaction between both 
populations is given as:-  

𝜆ℎ =
𝛽ℎ𝐼ℎ

𝑁ℎ
+

𝛽𝑛ℎ𝐼𝑛

𝑁𝑛
                                                                    (3)  

𝜆𝑛 =
𝛽𝑛𝐼𝑛

𝑁𝑛
                                                                                                                                  (4)  

where the parameter(s) 𝛽ℎ , 𝛽𝑛, and 𝛽𝑛ℎ  is the transmission rate 
for human and Animal population. 
The susceptible Human population is increased through constant 
recruitment rate by birth or immigration rate at Πℎ and reduced by 

natural death rate at 𝛿ℎ0. Hence the susceptible human population 

at given time 𝑡, is given as  
𝑑𝑆ℎ(𝑡)

𝑑𝑡
= Πℎ − (𝜆ℎ + 𝛿ℎ0)𝑆ℎ(𝑡)  

The population of the exposed human (i.e. 𝐸ℎ(𝑡) is achieved 
through interaction with susceptible human population and is 
reduced by natural death rate at 𝛿ℎ0 and a screened with therapy 
proportion rate at α𝜌 progressing to recovery class and at the 

expiration of latency period, the infected is generated at α(1 − 𝜌) 
undetected during screening. Hence the exposed population at a 
given time𝑡 is given as 
𝑑𝐸ℎ(𝑡)

𝑑𝑡
= 𝜆ℎ𝑆ℎ(𝑡) − ( α𝜌 + α(1 − 𝜌) + 𝛿ℎ0)𝐸ℎ(𝑡) 

An Infected human population is yielded as a result of interaction 
with exposed individuals who  at the expiration of latency period 
progress at a rate  α(1 − 𝜌) and reduced by isolation with 

treatment rate 𝜃1, a natural death rate at 𝛿ℎ0 and death rate due 

to MPXV at rate 𝛿ℎ1.Hence infected population at a given time 𝑡 is 
given as 

𝑑𝐼ℎ(𝑡)

𝑑𝑡
= α(1 − 𝜌)𝐸ℎ(𝑡) − (𝜃1 + 𝛿ℎ0 + 𝛿ℎ1)𝐼ℎ(𝑡)  

The Isolated class is yielded as a result of isolation with treatment 
rate 𝜃1of an infected individual and reduced by progression rate 

𝜃2, a natural death rate at 𝛿ℎ0 and death rate due to MPXV 𝛿ℎ1. 

Hence the Isolated class at given time 𝑡 is given as 
𝑑𝐻ℎ(𝑡)

𝑑𝑡
= 𝜃1𝐼ℎ(𝑡) − (𝜃2 + 𝛿ℎ0 + 𝛿ℎ)𝐻(𝑡)  

The recovered individual is yielded as a result of progression of 
screen with treated rate α𝜌 of exposed individuals and a 

progression from Isolated class at a rate 𝜃2 and reduced by a 

natural death rate at 𝛿ℎ0. Hence the recovered human population 
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at a given time 𝑡 is given as  
𝑑𝑅ℎ(𝑡)

𝑑𝑡
= α𝜌𝐸ℎ(𝑡) + 𝜃2𝐻ℎ(𝑡) − 𝛿ℎ0𝑅ℎ(𝑡) 

The susceptible animal population is increased through constant 
recruitment rate by birth or immigration rate at Π𝑛 and reduced by 

natural death rate at 𝛿𝑛0. Hence the susceptible animal population 

at given time 𝑡, is given as  
𝑑𝑆𝑛(𝑡)

𝑑𝑡
= Π𝑛 − (𝜆𝑛 + 𝛿𝑛0)𝑆𝑛(𝑡)  

The population of the exposed animal is achieved through 
interaction with susceptible non-human population and is reduced 
by natural death rate at 𝛿𝑛0 and the progression rate𝛾.  Hence the 

exposed animal population at a given time𝑡 is given as 
𝑑𝐸𝑛(𝑡)

𝑑𝑡
= 𝜆ℎ𝑆𝑛(𝑡) − (𝛾 + 𝛿𝑛0)𝐸𝑛(𝑡)  

The infected animal population, is yielded as a result of interaction 
with susceptible animal population and reduced by death rate at 
𝛿𝑛0 . Hence the infected animal population at given time𝑡, is given 
as  

𝑑𝐼𝑛(𝑡)

𝑑𝑡
= 𝛾𝐸𝑛(𝑡) − 𝛿𝑛0𝐼𝑛(𝑡)  

We make the following basic assumptions for the formulation of our 
model as - 

i. The model assumes homogeneous mixing of 
population, i.e. individuals have an equal chance 
of contacting each other. 

ii. The transmission of the virus occurs through 
direct or indirect contact with infectious individual 
or Animals or contaminated surface. 

iii. The rate of transmission is proportional to contact 
rate between individuals and animals. 

With the description, flow diagram and assumptions above, the 
model is presented as   
𝑑𝑆ℎ(𝑡)

𝑑𝑡
= Πℎ − (𝜆ℎ +

𝛿ℎ0)𝑆ℎ(𝑡)                                                                              (4)  
𝑑𝐸ℎ(𝑡)

𝑑𝑡
= 𝜆ℎ𝑆ℎ(𝑡) − ( α +

𝛿ℎ0)𝐸ℎ(𝑡)                                                                    (5)  
𝑑𝐼ℎ(𝑡)

𝑑𝑡
= α(1 − 𝜌)𝐸ℎ(𝑡) − (𝜃1 + 𝛿ℎ0 +

𝛿ℎ1)𝐼ℎ(𝑡)                                                                 (6)  
𝑑𝐻

𝑑𝑡
= 𝜃1𝐼ℎ(𝑡) − (𝜃2 + 𝛿ℎ0 +

𝛿ℎ)𝐻(𝑡)                                                                 (7)  
𝑑𝑅ℎ(𝑡)

𝑑𝑡
= α𝜌𝐸ℎ(𝑡) + 𝜃2𝐻ℎ(𝑡) −

𝛿ℎ0𝑅ℎ(𝑡)                                                         (8)  
𝑑𝑆𝑛(𝑡)

𝑑𝑡
= Π𝑛 − (𝜆𝑛 +

𝛿𝑛0)𝑆𝑛(𝑡)                                                            (9)  
𝑑𝐸𝑛(𝑡)

𝑑𝑡
= 𝜆ℎ𝑆𝑛(𝑡) − (𝛾 +

𝛿𝑛0)𝐸𝑛(𝑡)                                                         (10)  
𝑑𝐼𝑛(𝑡)

𝑑𝑡
= 𝛾𝐸𝑛(𝑡) −

𝛿𝑛0𝐼𝑛(𝑡)                                                          (11)   
With model initial condition as  
𝑆ℎ(0) ≥ 0, 𝐸ℎ(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝐻ℎ(0) ≥ 0, 𝑅ℎ(0) ≥
0, 𝑆𝑛(0) ≥ 0, 𝐸ℎ(0) ≥ 0, 𝐼𝑛(0) ≥
0,                                                                                                   (12)  
 
RESULTS AND DISCUSSION 
Existence and Uniqueness of Solution for the Model 
Consider the initial value problem (IVP)  

𝑥′ = 𝑓(𝑡, 𝑥), 𝑦(𝑡0) =
𝑥0                                                                           (13)  
Whose solution exists and is unique. So that our model in (4) to 
(11) can be written as 

𝑓1(𝑡, 𝑥) = Πℎ − 𝛽ℎ
𝐼ℎ

𝑁ℎ
𝑆ℎ − 𝛽𝑛ℎ

𝐼𝑛

𝑁𝑛
𝑆ℎ −

𝛿ℎ0𝑆ℎ                                                                       (14)  

𝑓2(𝑡, 𝑥) = 𝛽ℎ
𝐼ℎ

𝑁ℎ
𝑆ℎ + 𝛽𝑛ℎ

𝐼𝑛

𝑁𝑛
𝑆ℎ − (𝛼 +

𝛿ℎ0)𝐸ℎ(𝑡)                                                              (15)  
𝑓3(𝑡, 𝑥) = 𝛼(1 − 𝜌)𝐸ℎ − (𝜃1 + 𝛿ℎ0 +
𝛿ℎ1)𝐼ℎ                                                                       (16)  

𝑓4(𝑡, 𝑥) = 𝜃1𝐼ℎ − (𝜃2 + 𝛿ℎ0 +
𝛿ℎ1)𝐻                                                                      (17)  

𝑓5(𝑡, 𝑥) = 𝛼𝜌𝐸ℎ + 𝜃2𝐻ℎ −
𝛿ℎ0𝑅ℎ                                                                           (18)  

𝑓6(𝑡, 𝑥) = Π𝑛 − 𝛽𝑛
𝐼𝑛

𝑁𝑛
𝑆𝑛 −

𝛿𝑛0𝑆𝑛                                                                            (19)  

𝑓7(𝑡, 𝑥) = 𝛽𝑛
𝐼𝑛

𝑁𝑛
𝑆𝑛 − (𝛾 +

𝛿𝑛0)𝐸𝑛                                                                           (20)  
𝑓8(𝑡, 𝑥) = 𝛾𝐸𝑛 −
𝛿𝑛0𝐼𝑛(𝑡)                                                       (21)  

 
Theorem 1: (Lipschitz condition), (Boyce & Diprima,2001; Khalil, 
2002) 
Consider the initial value problem (IVP)  
𝑥′ = 𝑓(𝑡, 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), 𝑥1(𝑡0) = 𝑥1, 𝑥2(𝑡0) =
𝑥2, 𝑥3(𝑡0) = 𝑥3, … , 𝑥𝑛(𝑡0) =
𝑥𝑛                                                                                              (22)  
 Defined on a region ℜ as 

|𝑡 − 𝑡0| ≤ 𝑎, ||𝑥 − 𝑥0|| ≤ 𝑏, (𝑥 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), (𝑥0 =

𝑥10, 𝑥20, 𝑥30, … , 𝑥𝑛0)                                              (23)  
And suppose 𝑓(𝑡, 𝑥) satisfies the Lipschitz condition 

 ||𝑓(𝑡, 𝑥𝑛) − 𝑓(𝑡, 𝑥𝑛−1)|| ≤ 𝑘||𝑥𝑛 −
𝑥𝑛−1||                                                                      (24)  
Whenever the pair (𝑡, 𝑥𝑛) and (𝑡, 𝑥𝑛−1) are in ℜ and 𝑘 is a 

positive number, then 𝑓(𝑡, 𝑥)  has one solution (Uniqueness). 

Note that if 𝑓(𝑡, 𝑥)has partial derivative 
𝜕𝑓𝑖

𝜕𝑥𝑖
  such that  |

𝜕𝑓𝑖

𝜕𝑥𝑖
| <

∞, ∀𝑖 = 1,2,3,… , 𝑛 satisfying equation (23), then the solution of 

𝑓(𝑡, 𝑥) exist and bounded in region ℜ. 
From equation (14), we have  

𝜕𝑓1

𝜕𝑆ℎ
=

𝜕

𝜕𝑆ℎ
(Πℎ − 𝛽ℎ

𝐼ℎ

𝑁ℎ
𝑆ℎ − 𝛽𝑛ℎ

𝐼𝑛

𝑁𝑛
𝑆ℎ −

𝛿ℎ0𝑆ℎ) = −𝛽ℎ
𝐼ℎ

𝑁ℎ
− 𝛽𝑛ℎ

𝐼𝑛

𝑁𝑛
− 𝛿ℎ0 ,  

|
𝜕𝑓1

𝜕𝑆ℎ
| = |−𝛽ℎ

𝐼ℎ

𝑁ℎ
− 𝛽𝑛ℎ

𝐼𝑛

𝑁𝑛
− 𝛿ℎ0| < ∞ , 

𝜕𝑓1

𝜕𝐸ℎ
=

𝜕

𝜕𝐸ℎ
(Πℎ − 𝛽ℎ

𝐼ℎ

𝑁ℎ
𝑆ℎ − 𝛽𝑛ℎ

𝐼𝑛

𝑁𝑛
𝑆ℎ − 𝛿ℎ0𝑆ℎ) implying 

|
𝜕𝑓1

𝜕𝐸ℎ
| = 0 < ∞, 

𝜕𝑓1

𝜕𝐼ℎ
=

𝜕

𝜕𝐼ℎ
(Πℎ − 𝛽ℎ

𝐼ℎ

𝑁ℎ
𝑆ℎ −

𝛽𝑛ℎ
𝐼𝑛

𝑁𝑛
𝑆ℎ − 𝛿ℎ0𝑆ℎ), then  |

𝜕𝑓1

𝜕𝐼ℎ
| = |−𝛽ℎ

𝑆ℎ

𝑁ℎ
| < ∞, 

𝜕𝑓1

𝜕𝐻
=

𝜕

𝜕𝐻
(Πℎ − 𝛽ℎ

𝐼ℎ

𝑁ℎ
𝑆ℎ − 𝛽𝑛ℎ

𝐼𝑛

𝑁𝑛
𝑆ℎ − 𝛿ℎ0𝑆ℎ), 

implying |
𝜕𝑓1

𝜕𝐻
| = 0 < ∞, and |

𝜕𝑓1

𝜕𝑅ℎ
| = 0 < ∞.  

 𝑓1(𝑡, 𝑆ℎ) is continuous and bounded in bounded, in the 

interval 0 < ℜ < 1, satisfying Lipschitz condition in equation (24). 

 Clearly,  𝑓𝑖′𝑠 and their partial derivative, with respect to each of 
the state variables, follow from above. Hence there exist unique 
solutions of equation (4) to (11) in the region ℜ. 
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Positivity of Solution 
Theorem 2: Given the initial 
condition{𝑆ℎ(0), 𝐸ℎ(0), 𝐼ℎ(0), 𝐻(0), 𝑅ℎ(0) ≥ 0} ∈ 𝜙ℎ and 

{𝑆𝑛(0), 𝐸𝑛(0), 𝐼𝑛(0) ≥ 0} ∈ 𝜙𝑛 in equation (12), then the 

solution {𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝐼ℎ(𝑡), , 𝐻(𝑡), 𝑅ℎ(𝑡)} and 

{𝑆𝑛(𝑡), 𝐸𝑛(𝑡), 𝐼𝑛(𝑡)} of equation (4)-(11) is nonnegative for all 
𝑡 > 0 

Proof 
Here, we prove that for all 𝑡 > 0, the solution of 
equation (4)-(11) are always positive. 

From equation (4) 
𝑑𝑆ℎ(𝑡)

𝑑𝑡
= Πℎ − 𝛽ℎ

𝐼ℎ

𝑁ℎ
𝑆ℎ − 𝛽𝑛ℎ

𝐼𝑛

𝑁𝑛
𝑆ℎ − 𝛿ℎ0𝑆ℎ ≥ −(𝛽ℎ

𝐼ℎ

𝑁ℎ
−

𝛽𝑛ℎ
𝐼𝑛

𝑁𝑛
− 𝛿ℎ0) 𝑆ℎ                   (25)  

Integrating equation (25) by separation of variables 

∫
𝑑𝑆ℎ

𝑆ℎ
≥ ∫−(𝛽ℎ

𝐼ℎ

𝑁ℎ
− 𝛽𝑛ℎ

𝐼𝑛

𝑁𝑛
− 𝛿ℎ0) 𝑑𝑡 =

ln 𝑆ℎ ≥ −(𝛽ℎ
𝐼ℎ

𝑁ℎ
− 𝛽𝑛ℎ

𝐼𝑛

𝑁𝑛
− 𝛿ℎ0) 𝑡 + 𝑐1  

Using initial condition at 𝑡 = 0, gives 

⟹ 𝑆ℎ(𝑡) ≥ 𝑆ℎ(0)𝑒
−(𝛽ℎ

𝐼ℎ
𝑁ℎ
−𝛽𝑛ℎ

𝐼𝑛
𝑁𝑛
−𝛿ℎ0)𝑡

>
0                                                                        (26)  
From equation of (5) 
𝑑𝐸ℎ(𝑡)

𝑑𝑡
= 𝜆ℎ𝑆ℎ − (𝛼 + 𝛿ℎ0)𝐸ℎ ≥ −(𝛼 +

𝛿ℎ0)𝐸ℎ                                                                (27)   
Integrating equation (27), by separation of variables, i.e. gives 

∫
𝑑𝐸ℎ

𝐸ℎ
 ≥ ∫−(𝛼 + 𝛿ℎ0)𝑑𝑡 = ln 𝐸ℎ = −(𝛼 + 𝛿ℎ0)𝑡 + 𝑐2   

Using𝐸ℎ(0) = 0 𝑎𝑡 𝑡 = 0, we obtain,  

𝐸ℎ(𝑡) ≥ 𝐸ℎ(0)𝑒
−(𝛼+𝛿ℎ0)𝑡 >

0                                                                               (28)  
Similarly, equation (6) to (11) follows from the method used in 
equation (26) and equation (28), we can show the solutions for 
other equations are nonnegative for 𝑡 ≥ 0. 
 
The Feasible Region 

Theorem 3: Let 𝜙ℎ = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ , 𝐻, 𝑅ℎ) ∈ ℝ+
5 : 𝑁ℎ(𝑡) ≤

𝜋ℎ

𝛿ℎ0
} and 

𝜙𝑛 = {(𝑆𝑛, 𝐸𝑛, 𝐼𝑛) ∈ ℝ+
3 : 𝑁𝑛(𝑡) ≤

𝜋𝑛

𝛿𝑛0
}, so that𝜙 =

{𝜙ℎ × 𝜙𝑛|𝑁ℎ(𝑡) ≤
𝜋ℎ

𝛿ℎ0
; 𝑁𝑛(𝑡) ≤

𝜋𝑛

𝛿𝑛0
} then the region 𝜙 is 

positively invariant with respect to equation (4) -(11). 
Proof  

Adding equation (4) to (8), we have 
𝑑𝑁ℎ(𝑡)

𝑑𝑡
=
𝑑𝑆ℎ

𝑑𝑡
+
𝑑𝐸ℎ

𝑑𝑡
+
𝑑𝐼ℎ

𝑑𝑡
+
𝑑𝐻

𝑑𝑡
+
𝑑𝑅ℎ

𝑑𝑡
⇒ 

𝑑𝑁ℎ(𝑡)

𝑑𝑡
≤ 𝜋ℎ −

𝛿ℎ0𝑁ℎ                                                (29)    

We use integrating factor (IF) method as 𝐼𝐹 = 𝑒∫𝛿ℎ0𝑑𝑡 = 𝑒(𝛿ℎ0)𝑡   

and Multiply both sides of equation (29), by 𝑒(𝛿ℎ0)𝑡  ,  and simplify 

we have    
𝑑

𝑑𝑡
(𝑁ℎ(t)𝑒

(𝛿ℎ0)𝑡  ) = 𝜋ℎ𝑒
(𝛿ℎ0)𝑡    

Integrating both sides 

∫
𝑑

𝑑𝑡
(𝑁ℎ(t)𝑒

(𝛿ℎ0)𝑡 ) = ∫𝜋ℎ𝑒
(𝛿ℎ0)𝑡  𝑑𝑡 ,⇒ 𝑁ℎ(t)𝑒

(𝛿ℎ0)𝑡  =
𝜋ℎ

𝛿ℎ0
𝑒(𝛿ℎ0)𝑡  + 𝑐   

Using,  𝑁ℎ(0) = 0 𝑎𝑡 𝑡 = 0 we have 

𝑁ℎ(t) ≤ 𝑁ℎ(0)𝑒
−(𝛿ℎ0)𝑡 +

𝜋ℎ

𝛿ℎ0
(1 −

𝑒−(𝛿ℎ0)𝑡)                                                           (30)  

In equation (9) to (11), we follow same method in equation (30), we 
obtain 

𝑁𝑛(t) ≤ 𝑁𝑛(0)𝑒
−(𝛿𝑛0)𝑡 +

𝜋𝑛

𝛿𝑛0
(1 −

𝑒−(𝛿𝑛0)𝑡)                                                           (31)  

From equation (30) and equation (31), in particular, if 𝑁ℎ(0) ≤
𝜋ℎ

𝛿ℎ0
   

then 

𝑁ℎ(t) ≤
𝜋ℎ

𝛿ℎ0
    and if   𝑁𝑛(0) ≤

𝜋𝑛

𝛿𝑛0
 then 𝑁𝑛(t) ≤

𝜋𝑛

𝛿𝑛0
. 

Hence, = {𝜙ℎ × 𝜙𝑛|𝑁ℎ(𝑡) ≤
𝜋ℎ

𝛿ℎ0
; 𝑁𝑛(𝑡) ≤

𝜋𝑛

𝛿𝑛0
} , is positively 

invariant,so that the solution pathway remains in the region 𝜙. 
 
Equilibrium States 
We set the right-side of the model in equation (4) – (11) to zero i.e. 

Πℎ − 𝛽ℎ𝑆ℎ
𝐼ℎ

𝑁ℎ
− 𝛽𝑛ℎ𝑆ℎ

𝐼𝑛

𝑁𝑛
− 𝛿ℎ0𝑆ℎ(𝑡) =

0                                                                    (32)   

𝛽ℎ𝑆ℎ
𝐼ℎ

𝑁ℎ
+ 𝛽𝑛ℎ𝑆ℎ

𝐼𝑛

𝑁𝑛
−𝑀1𝐸ℎ(𝑡) =

0                                                                      (33)  
𝑀2𝐸ℎ(𝑡) − 𝑀3𝐼ℎ(𝑡) =
0                                                                        (34)  
𝜃1𝐼ℎ(𝑡) − 𝑀4𝐻(𝑡) =
0                                                                       (35)  
𝛼𝜌𝐸ℎ(𝑡) + 𝜃2𝐻ℎ(𝑡) − 𝛿ℎ0𝑅ℎ(𝑡) =
0                                                                              (36)  

Π𝑛 − 𝛽𝑛𝑆𝑛
𝐼𝑛

𝑁𝑛
− 𝛿𝑛0𝑆𝑛(𝑡) =

0                                                                         (37)  

𝛽𝑛𝑆𝑛
𝐼𝑛

𝑁𝑛
− (𝛾 + 𝛿𝑛0)𝐸𝑛(𝑡) =

0                                                                          (38)   
𝛾𝐸𝑛(𝑡) − 𝛿𝑛0𝐼𝑛(𝑡) =
0                                                                           (39)  

Where 𝑀1 = (𝛼 + 𝛿ℎ0),𝑀2 = 𝛼(1 − 𝜌), 𝑀3 = (𝜃1 +
𝛿ℎ0 + 𝛿ℎ1),𝑀4 = (𝜃2 + 𝛿ℎ0 +
𝛿ℎ1)                                                                              (40)   
 
Disease-Free Equilibrium (DFE) State 
At the disease free-equilibrium (DFE) state(i.e. absence of an 
infected individual from the community), in particular 𝐸ℎ(𝑡) =
𝐼ℎ(𝑡) = 𝐼𝑛(𝑡) = 0, in equation(32)-(39), i.e. 

Since 𝐼ℎ = 𝐼𝑛 = 0 then 𝐸ℎ = 𝐻 = 𝑅ℎ = 𝐸𝑛 = 0, So that the 
DFE state of equation (9) -(11) can be written as  

 𝐸0 = (𝑆ℎ
∗, 𝐸ℎ

∗, 𝐼ℎ
∗, 𝐻∗, 𝑅ℎ

∗, 𝑆𝑛
∗, 𝐸𝑛

∗, 𝐼𝑛
∗) =

(
Πℎ

𝛿ℎ0
 ,0,0,0,0,

Π𝑛

𝛿𝑛0
 ,0,0)                    (41) 

 
Endemic Equilibrium (EE) State  
For endemic equilibrium state i.e. 𝐼ℎ ≠ 0 and 𝐼𝑛 ≠ 0 of equation 
(4)-(11), we solve equation (32)-(39) simultaneously to obtain 

 

  𝐸1 =

(

 
 
 
 
𝑆ℎ
∗∗

𝐸ℎ
∗∗

𝐼ℎ
∗∗

𝐻∗∗

𝑅ℎ
∗∗

𝑆𝑛
∗∗

𝐸𝑛
∗∗

𝐼𝑛
∗∗)

 
 
 
 

=
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(

 
 
 
 
 
 
 
 
 
 

𝑁ℎ
∗∗𝑀1𝑀3

𝛽ℎ𝑀2

𝜋ℎ𝑀3

𝛽ℎ𝑀2
[[
𝛽ℎ𝑀2

𝑀1𝑀3
−1]−

𝛽𝑛ℎ𝛿𝑛0

𝛽𝑛𝛿ℎ0
[

𝛾β𝑛
𝛿𝑛0(𝛾+𝛿𝑛0)

−1]]

𝜋ℎ
𝛽ℎ
[[
𝛽ℎ𝑀2

𝑀1𝑀3
−1]−

𝛽𝑛ℎ𝛿𝑛0

𝛽𝑛𝛿ℎ0
[

𝛾β𝑛
𝛿𝑛0(𝛾+𝛿𝑛0)

−1]] 

𝜃1𝜋ℎ
𝑀4𝛽ℎ

[[
𝛽ℎ𝑀2

𝑀1𝑀3
−1]−

𝛽𝑛ℎ𝛿𝑛0

𝛽𝑛𝛿ℎ0
[

𝛾β𝑛
𝛿𝑛0(𝛾+𝛿𝑛0)

−1]]

[[
𝛽ℎ𝑀2

𝑀1𝑀3
−1]−

𝛽𝑛ℎ𝛿𝑛0

𝛽𝑛𝛿ℎ0
[

𝛾β𝑛
𝛿𝑛0(𝛾+𝛿𝑛0)

−1]]
1

𝛿ℎ0
[
𝛼𝜌𝜋ℎ𝑀3

𝛽ℎ𝑀2
+
𝜃1𝜃2𝜋ℎ
𝑀4𝛽ℎ

] 

𝛿𝑛0(𝛾+𝛿𝑛0)𝑁𝑛
∗∗

𝛽𝑛𝛾

𝛿𝑛0Π𝑛
𝛾𝛽𝑛

[
𝛾β𝑛

𝛿𝑛0(𝛾+𝛿𝑛0)
−1]

Π𝑛
𝛽𝑛
[

𝛾β𝑛
𝛿𝑛0(𝛾+𝛿𝑛0)

−1] )

 
 
 
 
 
 
 
 
 
 

       (42) 

 
 
Basic Reproduction Number(𝑹𝟎) 
The basic reproduction number(𝑅0) is the average number of 
secondary cases that arise as a result of an index case in an 
interactive community,(Diekmann, et al.,1990; Van Den Driessche 
& Watmough, 2002). 
To compute the basic reproduction number(𝑅0) of the disease, we 

split our model in (4)-(11) into new infection terms as 𝐹 and 

transition terms as 𝑉, represented by the following compartments 

as 𝐸ℎ(Exposed Human), 𝐼ℎ(Infected Human), 𝐸𝑛(Exposed), 

𝐼𝑛(Infected Animal) and we employed the next generation matrix 

method, and subsequently obtain the largest eigenvalue of  𝐹𝑉−1 

to be the basic reproduction number of the model and hence 𝑅0 =
𝜌𝐹𝑉−1. 

Applying partial derivative on 𝐹 and 𝑉  with respect to 

𝐸ℎ, 𝐼ℎ, 𝐸𝑛&𝐼𝑛, yields the Jacobian matrix as 

𝐹 =

(

 
 

0
𝛽ℎ𝑆ℎ

𝑁ℎ
0

𝛽𝑛ℎ𝑆ℎ

𝑁𝑛

0 0 0 0

0 0 0
𝛽𝑛𝑆𝑛

𝑁𝑛

0 0 0 0 )

 
 
;  𝑉 =

(
𝑀1
−𝑀2
0
0

  
0
𝑀3
0
0

  
0
0

(𝛾+𝛿𝑛0)
−𝛾

  
0
0
0
𝛿𝑛0

)                               (43)  

For DFE of 𝐹  and taking of 𝑉  in equation (43), becomes 

𝐹 =

(

 
 
0 𝛽ℎ 0

𝛽𝑛ℎ𝛿𝑛0𝜋ℎ

𝜋𝑛𝛿ℎ0

0 0 0 0
0 0 0 𝛽𝑛
0 0 0 0 )

 
 
;  𝑉−1 =

(

 
 
 
 

1

𝑀1
0 0 0

𝑀2

𝑀1𝑀3

1

𝑀3
0 0

0 0
1

(𝛾+𝛿𝑛0)
0

0 0
𝛾

𝛿𝑛0(𝛾+𝛿𝑛0)

1

𝛿𝑛0)

 
 
 
 

          (44)    

For  𝐹𝑉−1,  we obtain  

𝐹𝑉−1 =

(

 
 
 

𝛽ℎ𝑀2
𝑀3𝑀1

𝛽ℎ
𝑀3

𝛾𝛽𝑛ℎ
𝛿𝑛0(𝛾 + 𝛿𝑛0)

𝛽𝑛ℎ
𝛿𝑛0

0 0 0 0

0 0
𝛾𝛽𝑛

𝛿𝑛0(𝛾 + 𝛿𝑛0)

𝛽𝑛
𝛿𝑛0

0 0 0 0 )

 
 
 

      (45) 

 
For the eigenvalues of equation (45), we have  

𝑅0 = max(𝑅0ℎ, 𝑅0𝑛) = max {
𝛽ℎ𝑀2

𝑀3𝑀1
,

𝛾𝛽𝑛

𝛿𝑛0(𝛾+𝛿𝑛0)
} =

max {
𝛽ℎ𝛼(1−𝜌)

(𝛼+𝛿ℎ0)(𝜃1+𝛿ℎ0+𝛿ℎ1)
,

𝛾𝛽𝑛

(𝛾+𝛿𝑛0)𝛿𝑛0
 }                                      (46)  

Where 𝑅0ℎ𝑎𝑛𝑑 𝑅0𝑛 in equation (46) are the basic reproduction 
number for both the human and animal population respectively. 
 
Local Stability of the Disease-Free Equilibrium State 
We compute the Jacobian of the model in (4)-(11), to establish the 
local stability of the disease free-equilibrium (DFE) state. 
Theorem4: The DFE State of the Model in (4)-(11), is locally 
Asymptotically Stable, if 𝑅0 = {𝑅0ℎ , 𝑅0𝑛) < 1, otherwise 
unstable. 

Proof 
We take the partial derivative of equation (14)-(21) with 
respect to each of 𝑆ℎ, 𝐸ℎ, 𝐼ℎ , 𝐻, 𝑅ℎ, 𝑆𝑛, 𝐸𝑛, 𝐼𝑛  at the 
DFE state in equation (41), i.e. 

𝐽(𝐸0)

=

(

 
 
 
 
 
 
 
 
−𝛿ℎ0 0 −𝛽ℎ 0 0 0 0 −

𝜋ℎ𝛽𝑛ℎ𝛿𝑛0
𝜋𝑛𝛿ℎ0

0 −𝑀1 𝛽ℎ 0 0 0 0
𝜋ℎ𝛽𝑛ℎ𝛿𝑛0
𝜋𝑛𝛿ℎ0

0 𝑀2 −𝑀3 0 0 0 0 0
0 0 𝜃1 −𝑀4 0 0 0 0
0 𝛼𝜌 0 𝜃2 −𝛿ℎ0 0 0 0
0 0 0 0 0 −𝛿𝑛0 0 −𝛽𝑛
0 0 0 0 0 0 −(𝛾 + 𝛿𝑛0) 𝛽𝑛
0 0 0 0 0 0 𝛾 −𝛿𝑛0 )

 
 
 
 
 
 
 
 

        (47)  

From equation (47), the eigenvalues of the matrix 𝐽(𝐸0) are  

∇1= ∇2= −𝛿ℎ0, ∇3= −𝛿𝑛0, ∇4= −𝑀4 = −(𝜃2 +
𝛿ℎ0 + 𝛿ℎ1)  

Which are negative and we expand the remaining matrix to give  

∇4 + 𝑎1∇
3 + 𝑎2∇

2 + 𝑎3∇ + 𝑎4 =
0                                                                                           (48)  

where 
𝑎1 = (𝑀1 +𝑀3 + (𝛾 + 𝛿𝑛0) + 𝛿𝑛0), 𝑎2 = (𝑀1𝑀3(1 −
𝑅0ℎ) +𝑀1(𝛾 + 𝛿𝑛0) + 𝑀1𝛿𝑛0 +𝑀3(𝛾 + 𝛿𝑛0) + 𝑀3𝛿𝑛0 +
(𝛾 + 𝛿𝑛0)𝛿𝑛0), 𝑎3 = (𝑀1𝑀3((𝛾 + 𝛿𝑛0) + 𝛿𝑛0)(1 −
𝑅0ℎ) + (𝛾 + 𝛿𝑛0)𝛿𝑛0(𝑀1 +𝑀3)), 𝑎4 = (𝑀1𝑀3(𝛾 +
𝛿𝑛0)𝛿𝑛0(1 − 𝑅0ℎ) + 𝛽ℎ𝛽𝑟𝛾𝑀2)  

where  𝑅0ℎ =
𝛽ℎ𝑀2

𝑀1𝑀3
 

Following Routh-Hurwitz stability criterion in (Hurwitz,1964), all 
the eigenvalues of equation  (47), have negative real part if 𝑎𝑖 >
0, for 𝑖 = 1,2,3,4 and 𝑎1𝑎2𝑎3 > 𝑎3

2 + 𝑎1
2𝑎4. 

Now, 

𝑎1𝑎2𝑎3 − 𝑎3
2 − 𝑎1

2𝑎4 = 𝑎3(𝑎1𝑎2 − 𝑎3) − 𝑎1
2𝑎4  

And 𝑎𝑖 > 0, 𝑓𝑜𝑟 𝑖 = 1,2,3,4 since  𝑅0ℎ < 1, we show that 

𝑎3(𝑎1𝑎2 − 𝑎3) − 𝑎1
2𝑎4 > 0 

([𝑀1
2𝑀3

2(1 − 𝑅0ℎ)
2(𝑀1 +𝑀3)((𝛾 +

𝛿𝑛0)+𝛿𝑛0) + 2𝑀1𝑀3((𝛾 + 𝛿𝑛0)+𝛿𝑛0)(1 −
𝑅0ℎ)[𝑀1𝑀3((𝛾 + 𝛿𝑛0) + 𝛿𝑛0) + (𝛾 +
𝛿𝑛0)𝛿𝑛0(𝑀1 +𝑀3)] + 𝑀1𝑀3((𝛾 + 𝛿𝑛0) +

𝛿𝑛0)(1 − 𝑅0ℎ)[ (𝛾 + 𝛿𝑛0)
2(𝑀1 +𝑀3 + 𝛿𝑛0) +

𝛿𝑛0
2(𝑀1 +𝑀3 + (𝛾 + 𝛿𝑛0))] + 2𝑀1𝑀3((𝛾 +

𝛿𝑛0) + 𝛿𝑛0)[𝑀1𝑀3((𝛾 + 𝛿𝑛0) + 𝛿𝑛0) +
(𝛾 + 𝛿𝑛0)𝛿𝑛0(𝑀1 +𝑀3)] + (𝛾 + 𝛿𝑛0)𝛿𝑛0(𝑀1 +

𝑀3)[(𝛾 + 𝛿𝑛0)
2(𝑀1 +𝑀3 + 𝛿𝑛0) + 𝛿𝑛0

2(𝑀1 +

𝑀3 + (𝛾 + 𝛿𝑛0))]) > ((𝑀1
2 +𝑀3

2 + (𝛾 +
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𝛿𝑛0)
2 + 𝛿𝑛0

2)[ 𝑀1𝑀3(𝛾 + 𝛿𝑛0)𝛿𝑛0(1 − 𝑅0ℎ) +
𝛽ℎ𝛽𝑟𝛾𝑀2] + 2(𝑀1𝑀3 +𝑀1(𝛾 + 𝛿𝑛0) +𝑀1𝛿𝑛0 +
𝑀3(𝛾 + 𝛿𝑛0) + 𝑀3𝛿𝑛0 + (𝛾 +
𝛿𝑛0)𝛿𝑛0)[ 𝑀1𝑀3(𝛾 + 𝛿𝑛0)𝛿𝑛0(1 − 𝑅0ℎ) +

𝛽ℎ𝛽𝑟𝛾𝑀2]), since  𝑅0ℎ < 1  

Thus𝐸0, of the model in (4)-(11) is locally asymptotically stable, 

since all eigenvalues have negative real part when𝑅0 =
(𝑅0ℎ, 𝑅0𝑛) < 1. 
 
Global Stability of the Disease-Free Equilibrium State 
To establish the disease is not dependent on the initial population 
size, we show that the disease free equilibrium state of the model 
in (4)-(11) is Globally Asymptotically Stable (GAS). 
Lemma1: (Castillo-Chavez et al., 2002), let the partition of 
equation (4)-(11), into 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 𝑌)𝑎𝑛𝑑 

𝑑𝑌

𝑑𝑡
= 𝐺(𝑋, 𝑌), 𝐺(𝑋, 𝑌) =

0                                                                            (49)  
Where ∈ ℝ𝑚 , denote the population of the uninfected class and 

𝑌 ∈ ℝ𝑛 denote the population of the infected class in equation (4)-

(11) and 𝑃(1) and 𝑃(2) are assumed as 

𝑃(1)  
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 0), 𝑋∗ is Globally Asymptotically Stable 

𝑃(2)  𝐺(𝑋, 𝑌) = 𝐴𝑌 − �̂�(𝑋, 𝑌), 𝐺(𝑋, 𝑌) ≥ 0, for (𝑋, 𝑌) ∈ 𝜙  

Where 
𝑑𝐺

𝑑𝑌
, 𝑎𝑡 𝑋0 is a Metzler Matrix (m-matrix). 

Note that if the equilibrium point𝑋0 = (𝑋
∗, 0), is GAS whenever 

𝑅0 = {𝑅0ℎ, 𝑅0𝑛) < 1 and the conditions 𝑃(1) and 𝑃(2) are 
met. 
Theorem5: The disease-free equilibrium state of equation (4)-(11) 
is globally asymptotically stable when 𝑅0 = {𝑅0ℎ, 𝑅0𝑛) < 1 

Proof 
By Lemma1 and the assumption in 𝐻(1) and 𝐻(2) 
Let the uninfected class and infected class of equation (4)-(11) be 

𝑋 = (𝑆ℎ, 𝐻, 𝑅ℎ, 𝑆𝑛)
𝑇 and 𝑌 = (𝐸ℎ , , 𝐼ℎ, 𝐸𝑛, 𝐼𝑛)

𝑇 respectively, 
so that 

𝑑𝑋

𝑑𝑡
=

𝑑

𝑑𝑡
(

𝑆ℎ
𝐻
𝑅ℎ
𝑆𝑛

) = 𝐹 =

(

  
 

Πℎ − 𝛽ℎ𝑆ℎ
𝐼ℎ

𝑁ℎ
− 𝛽𝑛ℎ𝑆ℎ

𝐼𝑛

𝑁𝑛
− 𝛿ℎ0𝑆ℎ

𝜃1𝐼ℎ − (𝜃2 + 𝛿ℎ0 + 𝛿ℎ1)𝐻
𝛼𝜌𝐸ℎ + 𝜃2𝐻 − 𝛿ℎ0𝑅ℎ

Π𝑛 − 𝛽𝑛𝑆𝑛
𝐼𝑛

𝑁𝑛
− 𝛿𝑛0𝑆𝑛 )

  
 
             (50)   

And  

𝑑𝑌

𝑑𝑡
=

𝑑

𝑑𝑡
(

𝐸ℎ
𝐼ℎ
𝐸𝑛
𝐼𝑛

) = 𝐺 =

(

  
 

𝛽ℎ𝑆ℎ
𝐼ℎ

𝑁ℎ
+ 𝛽𝑛ℎ𝑆ℎ

𝐼𝑛

𝑁𝑛
− (𝛼 + 𝛿ℎ0)𝐸ℎ

𝛼(1 − 𝜌)𝐸ℎ − (𝜃1 + 𝛿ℎ0 + 𝛿ℎ1)𝐼ℎ

𝛽𝑛𝑆𝑛
𝐼𝑛

𝑁𝑛
− (𝛾 + 𝛿𝑛0)𝐸𝑛

𝛾E𝑛 − 𝛿𝑛0𝐼𝑛 )

  
 
             (51)  

Since 𝐸ℎ = 𝐼ℎ = 𝐸𝑛 = 𝐼𝑛 = 0 (i.e. in the absence of the 
disease), then the solution of equation (51), gives 

 𝑋∗ =

(
Πℎ

𝛿ℎ0
, 0,0,

Π𝑛

𝛿𝑛0
)                                                                                                               (52)  

Hence, equation (52) is globally asymptotically stable for 
𝑑𝑋

𝑑𝑡
=

𝐹(𝑋, 0) 
Now, taking partial derivation of equation (51), we have 𝐴, but 

𝐺(𝑋, 𝑌) = 𝐴𝑌 − �̂�(𝑋, 𝑌),⇒ �̂�(𝑋, 𝑌) = 𝐴𝑌 − 𝐺(𝑋, 𝑌), and 
we have 
�̂�(𝑋, 𝑌) =

(

  
 

−(𝛼 + 𝛿ℎ0) 𝛽ℎ
𝑆ℎ

𝑁ℎ
0 𝛽𝑛ℎ

𝑆ℎ

𝑁𝑛

𝛼(1 − 𝜌) −(𝜃1 + 𝛿ℎ0 + 𝛿ℎ1) 0 0

0 0 −(𝛾 + 𝛿𝑛0) 𝛽𝑛
𝑆𝑛

𝑁𝑛

0 0 𝛾 −𝛿𝑛0 )

  
 
(

𝐸ℎ
𝐼ℎ
𝐸𝑛
𝐼𝑛

)−

(

  
 

𝛽ℎ𝑆ℎ
𝐼ℎ

𝑁ℎ
+ 𝛽𝑛ℎ𝑆ℎ

𝐼𝑛

𝑁𝑛
− (𝛼 + 𝛿ℎ0)𝐸ℎ

𝛼(1 − 𝜌)𝐸ℎ − (𝜃1 + 𝛿ℎ0 + 𝛿ℎ1)𝐼ℎ

𝛽𝑛𝑆𝑛
𝐼𝑛

𝑁𝑛
− (𝛾 + 𝛿𝑛0)𝐸𝑛

𝛾E𝑛 − 𝛿𝑛0𝐼𝑛 )

  
 
=

(

 
 

0 𝛽ℎ𝐼ℎ (1 −
𝑆ℎ

𝑁ℎ
) 0 𝛽𝑛ℎ𝐼𝑛 (1 −

𝑆ℎ

𝑁𝑛
)

0 0 0 0

0 0 0 𝛽𝑛𝐼𝑛 (1 −
𝑆𝑛

𝑁𝑛
)

0 0 0 0 )

 
 
≥

0                                                                                                            (53)   

Since �̂�(𝑋, 𝑌) ≥ 0 and 𝐴, is M-matrix(i.e. all element of the off-

diagonal entries are nonnegative), then 𝐸0 is globally 
asymptotically stable. 
 
Local Stability of Endemic Equilibrium State 
Theorem 6: The endemic equilibrium 𝐸1 state of the model in 

equation (4)-(11) is locally Asymptotically Stable when 𝑅0 =
{𝑅0ℎ, 𝑅0𝑛) > 1 

Proof  
We generate the Jacobian Matrix of equation (4)-(11), at the 
endemic equilibrium point as  
𝐽(𝐸1)

=

(

 
 
 
 
 
 
 
 
 
 
 
−𝛽ℎ

𝐼ℎ
∗∗

𝑁ℎ
∗∗ − 𝛽𝑛ℎ

𝐼𝑛
∗∗

𝑁𝑛∗∗
− 𝛿ℎ0 0 −

𝛽ℎ𝑆ℎ
∗∗

𝑁ℎ
∗∗ 0 0 0 0 −

𝛽𝑛ℎ𝑆ℎ
∗∗

𝑁𝑛∗∗

𝛽ℎ
𝐼ℎ
∗∗

𝑁ℎ
∗∗ + 𝛽𝑛ℎ

𝐼𝑛
∗∗

𝑁𝑛∗∗
−𝑀1

𝛽ℎ𝑆ℎ
∗∗

𝑁ℎ
∗∗ 0 0 0 0

𝛽𝑛ℎ𝑆ℎ
∗∗

𝑁𝑛∗∗

0 𝑀2 −𝑀3 0 0 0 0 0
0 0 𝜃1 −𝑀4 0 0 0 0
0 𝛼𝜌 0 𝜃2 −𝛿ℎ0 0 0 0

0 0 0 0 0 −
𝛽𝑛𝐼𝑛

∗∗

𝑁𝑛∗∗
− 𝛿𝑛0 0 −

𝛽𝑛𝑆𝑛
∗∗

𝑁𝑛∗∗

0 0 0 0 0
𝛽𝑛𝐼𝑛

∗∗

𝑁𝑛∗∗
−(𝛾 + 𝛿𝑛0)

𝛽𝑛𝑆𝑛
∗∗

𝑁𝑛∗∗

0 0 0 0 0 0 𝛾 −𝛿𝑛0 )

 
 
 
 
 
 
 
 
 
 
 

   (54) 

Now the characteristic equation of equation (54) gives 
 

|

|

|

|
𝑏0 − 𝛿ℎ0 − ∇ 0 −

𝛽ℎ
𝑅𝑜ℎ

0 0 0 0 −
𝜋ℎ𝛽𝑛ℎ𝛿𝑛0
𝑅𝑜ℎ𝜋𝑛𝛿ℎ0

−𝑏0 −𝑀1 − ∇
𝛽ℎ
𝑅𝑜ℎ

0 0 0 0
𝜋ℎ𝛽𝑛ℎ𝛿𝑛0
𝑅𝑜ℎ𝜋𝑛𝛿ℎ0

0 𝑀2 −𝑀3 − ∇ 0 0 0 0 0
0 0 𝜃1 −𝑀4 − ∇ 0 0 0 0
0 𝛼𝜌 0 𝜃2 −𝛿ℎ0 − ∇ 0 0 0

0 0 0 0 0 𝑏1 − 𝛿𝑛0 − ∇ 0 −
𝛽𝑛
𝑅𝑜𝑛

0 0 0 0 0 −𝑏1 −(𝛾 + 𝛿𝑛0) − ∇ −
𝛽𝑛
𝑅𝑜𝑛

0 0 0 0 0 0 𝛾 −𝛿𝑛0 − ∇

|

|

|

|

= 0                                                                                                                                                                                          
            (55)  

 
Where 𝑀𝑖  , 𝑓𝑜𝑟 𝑖 = 1 − 4, is defined in equation (40) and 𝑏0 =

−𝛽ℎ
𝐼ℎ
∗∗

𝑁ℎ
∗∗ − 𝛽𝑛ℎ

𝐼𝑛
∗∗

𝑁𝑛
∗∗ = −𝛿ℎ0(𝑅0ℎ − 1) 𝑎𝑛𝑑  𝑏1 = −

𝛽𝑛𝐼𝑛
∗∗

𝑁𝑛
∗∗ =

−𝛿𝑛0(𝑅0𝑛 − 1). 
The eigenvalues are  ∇= −𝛿ℎ0, ∇= −𝑀4 and remaining 
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characteristic equation in (55), gives 

∇6 + 𝐴1∇
5 + 𝐴2∇

4 + 𝐴3∇
3 + 𝐴4∇

2 + 𝐴5∇ + 𝐴6 =
0                                                               (56)  
Where 
𝐴1 = 𝑀1 +𝑀3 + 𝛾 + 2𝛿𝑛0 + 𝛿ℎ0𝑅𝑜ℎ + 𝛿𝑛0𝑅𝑜𝑛  

𝐴2 = 𝑀1𝑀3 + 𝛿𝑛0(𝛾 + 𝛿𝑛0) + (𝑀1+𝑀3)(𝛾 + 2𝛿𝑛0) +
𝛿ℎ0𝛿𝑛0𝑅𝑜ℎ𝑅𝑜𝑛 + (𝛿ℎ0𝑅𝑜ℎ + 𝛿𝑛0𝑅𝑜𝑛)[𝑀1 +𝑀3 + 𝛾 +

2𝛿𝑛0] − 𝑀2
𝛽ℎ

𝑅𝑜ℎ
  

𝐴3 = 𝑀1𝑀3(𝛾 + 2𝛿𝑛0) + 𝛿𝑛0(𝛾 + 𝛿𝑛0)(𝑀1+𝑀3) +
(𝑀1+𝑀3)(𝛾 + 2𝛿𝑛0) + 𝛿ℎ0𝛿𝑛0𝑅𝑜ℎ𝑅𝑜𝑛[𝑀1 +𝑀3 + 𝛾 +
2𝛿𝑛0] + (𝛿ℎ0𝑅𝑜ℎ + 𝛿𝑛0𝑅𝑜𝑛)[𝑀1𝑀3 + 𝛿𝑛0(𝛾 + 𝛿𝑛0) +

(𝑀1+𝑀3)(𝛾 + 2𝛿𝑛0)] − 𝑀2
𝛽ℎ

𝑅𝑜ℎ
[𝛿ℎ0𝑅𝑜ℎ + 𝛿𝑛0𝑅𝑜𝑛 + 𝛾 +

2𝛿𝑛0] − 𝑀2
𝛽ℎ

𝑅𝑜ℎ
𝛿ℎ0(𝑅𝑜ℎ − 1) 𝐴4 = 𝑀1𝑀3𝛿𝑛0(𝛾 + 𝛿𝑛0) +

𝛿ℎ0𝛿𝑛0𝑅𝑜ℎ𝑅𝑜𝑛[𝑀1𝑀3 + 𝛿𝑛0(𝛾 + 𝛿𝑛0) + (𝑀1+𝑀3)(𝛾 +
2𝛿𝑛0)] + (𝛿ℎ0𝑅𝑜ℎ + 𝛿𝑛0𝑅𝑜𝑛)[𝑀1𝑀3(𝛾 + 2𝛿𝑛0) + 𝛿𝑛0(𝛾 +

𝛿𝑛0)(𝑀1+𝑀3)] − 𝑀2
𝛽ℎ

𝑅𝑜ℎ
[𝛿ℎ0𝑅𝑜ℎ𝛿𝑛0𝑅𝑜𝑛 + (𝛾 +

2𝛿𝑛0)(𝛿ℎ0𝑅𝑜ℎ + 𝛿𝑛0𝑅𝑜𝑛) + 𝛿𝑛0(𝛾 + 𝛿𝑛0)] −

𝑀2
𝛽ℎ

𝑅𝑜ℎ
𝛿ℎ0(𝑅𝑜ℎ − 1)[𝛿𝑛0𝑅𝑜𝑛 + (𝛾 + 2𝛿𝑛0)]  

𝐴5 = 𝛿ℎ0𝛿𝑛0𝑅𝑜ℎ𝑅𝑜𝑛[𝑀1𝑀3(𝛾 + 2𝛿𝑛0) + 𝛿𝑛0(𝛾 +
𝛿𝑛0)(𝑀1+𝑀3)] + 𝑀1𝑀3𝛿𝑛0(𝛾 + 𝛿𝑛0)[𝛿ℎ0𝑅𝑜ℎ +

𝛿𝑛0𝑅𝑜𝑛] + 𝛾
𝛽𝑛

𝑅𝑜𝑛
− 𝛾

𝛽𝑛

𝑅𝑜𝑛
𝛿𝑛0(𝑅𝑜𝑛 − 1) −

𝑀2
𝛽ℎ

𝑅𝑜ℎ
[𝛿ℎ0𝑅𝑜ℎ𝛿𝑛0𝑅𝑜𝑛(𝛾 + 2𝛿𝑛0) + 𝛿𝑛0(𝛾 +

𝛿𝑛0)(𝛿ℎ0𝑅𝑜ℎ + 𝛿𝑛0𝑅𝑜𝑛) + 𝛾
𝛽𝑛

𝑅𝑜𝑛
+ 𝛾

𝛽𝑛

𝑅𝑜𝑛
𝛿𝑛0(𝑅𝑜𝑛 − 1)] −

𝑀2
𝛽ℎ

𝑅𝑜ℎ
𝛿ℎ0(𝑅𝑜ℎ − 1)[𝛿𝑛0(𝑅𝑜𝑛 − 1)(𝛾 + 2𝛿𝑛0) + 𝛿𝑛0(𝛾 +

𝛿𝑛0)]  

𝐴6 = 𝛾
𝛽𝑛

𝑅𝑜𝑛
𝛿ℎ0𝑅𝑜ℎ𝛿𝑛0(𝑅𝑜𝑛 − 1) + 𝛿ℎ0𝑅𝑜ℎ𝛾

𝛽𝑛

𝑅𝑜𝑛
+

𝛿ℎ0𝛿𝑛0𝑅𝑜ℎ𝑅𝑜𝑛𝑀1𝑀3(𝛾 + 2𝛿𝑛0) −

𝑀2
𝛽ℎ

𝑅𝑜ℎ
[𝛿ℎ0𝑅𝑜ℎ𝛿𝑛0

2𝑅𝑜𝑛(𝛾 + 𝛿𝑛0) + 𝛿ℎ0𝛿𝑛0𝑅𝑜ℎ(𝑅𝑜𝑛 −

1)𝛾
𝛽𝑛

𝑅𝑜𝑛
+ 𝛾𝛿0ℎ𝑅𝑜ℎ

𝛽𝑛

𝑅𝑜𝑛
] − 𝑀2

𝛽ℎ

𝑅𝑜ℎ
𝛿ℎ0(𝑅𝑜ℎ −

1) [𝛿𝑛0𝑅𝑜𝑛𝛿𝑛0(𝛾 + 𝛿𝑛0) + 𝛾
𝛽𝑛

𝑅𝑜𝑛
+ (𝑅𝑜𝑛 − 1)𝛿𝑛0𝛾

𝛽𝑛

𝑅𝑜𝑛
]  

From equation(56), we calculate the element of Routh array table 
gives 

𝐵0 =
𝐴1𝐴2−𝐴3

𝐴1
, 𝐵1 =

𝐴1𝐴4−𝐴5

𝐴1
, 𝐵2 =

𝐴1𝐴6−0

𝐴1
= 𝐴6, 𝐵3 =

𝐵0𝐴3−𝐵1𝐴1

𝐵0
, 𝐵4 =

𝐵0𝐴3−𝐵2𝐴1

𝐵0
, 𝐵5 =

𝐵1𝐵3−𝐵0𝐵4

𝐵3
, 𝐵6 =

𝐵2𝐵3−0

𝐵3
=

𝐵2, 𝐵7 =
𝐵4𝐵5−𝐵3𝐵6

𝐵5
   

All the roots of the characteristic equation (55), have negative real, 
since the elements in the first column of the Routh array table are 
all are all positive and nonzero (Routh-Hurwitz, 1964). 
 
Global Stability of Endemic Equilibrium State 
Theorem 7: The endemic equilibrium 𝐸1 state of the model in (4)-

(11) is globally asymptotically stable (GAS) when 𝑅0 =
{𝑅0ℎ, 𝑅0𝑛) > 1 

Proof 
To prove the global stability of the endemic equilibrium state𝐸1, we 
define the Lyapunov function as 

𝑉(𝑡) = (𝑆ℎ − 𝑆ℎ
∗∗ − 𝑆ℎ

∗∗ ln
𝑆ℎ

𝑆ℎ
∗∗) + (𝐸ℎ − 𝐸ℎ

∗∗ −

𝐸ℎ
∗∗ ln

𝐸ℎ

𝐸ℎ
∗∗) + (𝐼ℎ − 𝐼ℎ

∗∗ − 𝐼ℎ
∗∗ ln

𝐼ℎ

𝐼ℎ
∗∗) + (𝐻 −𝐻

∗∗ −

𝐻∗∗ ln
𝐻

𝐻∗∗
) + (𝑆𝑛 − 𝑆𝑛

∗∗ − 𝑆𝑛
∗∗ ln

𝑆𝑛

𝑆𝑛
∗∗) + (𝐸𝑛 − 𝐸𝑛

∗∗ −

𝐸𝑛
∗∗ ln

𝐸𝑛

𝐸𝑛
∗∗) + (𝐼𝑛 − 𝐼𝑛

∗∗ −

𝐼𝑛
∗∗ ln

𝐼𝑛

𝐼𝑛
∗∗)                                                                                 (58)  

Differentiating equation (58) and transpose (4)-(11), gives  
𝑑𝑉

𝑑𝑡
= (1 −

𝑆ℎ
∗∗

𝑆ℎ
) (𝛽ℎ

𝐼ℎ
∗∗

𝑁ℎ
∗∗ 𝑆ℎ

∗∗ + 𝛽𝑛ℎ
𝐼𝑛
∗∗

𝑁𝑛
∗∗ 𝑆ℎ

∗∗ + 𝛿ℎ0𝑆ℎ
∗∗ −

𝛽ℎ
𝐼ℎ

𝑁ℎ
𝑆ℎ − 𝛽𝑛ℎ

𝐼𝑛

𝑁𝑛
𝑆ℎ − 𝛿ℎ0𝑆ℎ) + (1 −

𝐸ℎ
∗∗

𝐸ℎ
) ((𝛼 +

𝛿ℎ0)𝐸ℎ
∗∗ − (𝛼 + 𝛿ℎ0)𝐸ℎ) + (1 −

𝐼ℎ
∗∗

𝐼ℎ
) ((𝜃1 + 𝛿ℎ0 +

𝛿ℎ)𝐼ℎ
∗∗ − (𝜃1 + 𝛿ℎ0 + 𝛿ℎ1)𝐼ℎ) + (1 −

𝐻∗∗

𝐻
) ((𝜃2 + 𝛿ℎ0 +

𝛿ℎ1)𝐻
∗∗ − (𝜃2 + 𝛿ℎ0 + 𝛿ℎ1)𝐻) + (1 −

𝑆𝑛
∗∗

𝑆𝑛
) (𝛽𝑛

𝐼𝑛
∗∗

𝑁𝑛
∗∗ 𝑆𝑛

∗∗ +

𝛿𝑛0𝑆𝑛
∗∗ − 𝛽𝑛

𝐼𝑛

𝑁𝑛
𝑆𝑛 − 𝛿𝑛0𝑆𝑛) + (1 −

𝐸𝑛
∗∗

𝐸𝑛
) ((𝛾 + 𝛿𝑛0)𝐸𝑛

∗∗ −

(𝛾 + 𝛿𝑛0)𝐸𝑛) + (1 −
𝐼𝑛
∗∗

𝐼𝑛
) (𝛿𝑛0𝐼𝑛

∗∗ −

𝛿𝑛0𝐼𝑛)                                                             (59)  
Simplifying equation (59) and applying the comparison principle 
that the arithmetic mean is greater or equal to the geometric mean 

(i.e. 
1

𝑛
∑ 𝑥𝑖 ≥ √∏ 𝑥𝑖 ,

𝑛
𝑖=1

𝑛   𝑖 = 1,2,… , 𝑛𝑛
𝑖=1   

Hence, from equation (59) we have 

(1 −
𝐼ℎ𝑆ℎ𝑁ℎ

∗∗

𝐼ℎ
∗∗𝑆ℎ

∗∗𝑁ℎ
−
𝑆ℎ
∗∗

𝑆ℎ
+
𝐼ℎ𝑁ℎ

∗∗

𝐼ℎ
∗∗𝑁ℎ

) ≤ 0, (1 −
𝐼𝑛𝑆ℎ𝑁𝑛

∗∗

𝐼𝑛
∗∗𝑆ℎ

∗∗𝑁𝑛
−
𝑆ℎ
∗∗

𝑆ℎ
+

𝐼𝑛𝑁𝑛
∗∗

𝐼𝑛
∗∗𝑁𝑛
) ≤ 0, (2 −

𝑆ℎ
∗∗

𝑆ℎ
−
𝑆ℎ

𝑆ℎ
∗∗) ≤ 0, (2 −

𝐸ℎ

𝐸ℎ
∗∗ −

𝐸ℎ
∗∗

𝐸ℎ
)  ≤ 0, (2 −

𝐼ℎ

𝐼ℎ
∗∗ −

𝐼ℎ
∗∗

𝐼ℎ
) ≤ 0, (2 −

𝐻

𝐻∗∗
−
𝐻∗∗

𝐻
)  ≤ 0, (1 −

𝐼𝑛𝑆𝑛𝑁𝑛
∗∗

𝑆𝑛
∗∗𝐼𝑛

∗∗𝑁𝑛
−
𝑆𝑛
∗∗

𝑆𝑛
+

𝐼𝑛𝑁𝑛
∗∗

𝐼𝑛
∗∗𝑁𝑛
) ≤ 0, (2 −

𝑆𝑛

𝑆𝑛
∗∗ −

𝑆𝑛
∗∗

𝑆𝑛
) ≤ 0 , (2 −

𝐼𝑛

𝐼𝑛
∗∗ −

𝐼𝑛
∗∗

𝐼𝑛
) ≤ 0, (2 −

𝐼𝑛

𝐼𝑛
∗∗ −

𝐼𝑛
∗∗

𝐼𝑛
) ≤ 0   

Therefore, by lyapunov theorem
𝑑𝑉

𝑑𝑡
≤ 0, for all 

𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝐻, 𝑅ℎ, 𝑆𝑛, 𝐸𝑛, 𝐼𝑛 > 0 implying that 𝐸1 is stable.  

Now for asymptotic stability of 𝐸1, we use Lasalle invariance 

principle i.e. 
𝑑𝑉

𝑑𝑡
= 0, if and only if 

 (1 −
𝐼ℎ𝑆ℎ𝑁ℎ

∗∗

𝐼ℎ
∗∗𝑆ℎ

∗∗𝑁ℎ
−
𝑆ℎ
∗∗

𝑆ℎ
+
𝐼ℎ𝑁ℎ

∗∗

𝐼ℎ
∗∗𝑁ℎ

) = 0,⇒ 𝑆ℎ = 𝑆ℎ
∗∗, 𝐼ℎ =

𝐼ℎ
∗∗, 𝐼𝑛 = 𝐼𝑛

∗∗ 

Following similar process we conclude that, 𝐸1 is asymptotically 

stable for 𝑅0 = {𝑅0ℎ, 𝑅0𝑛} > 1. E.g. (See Lasalle, 1976; El Hajji 
et al. 2015; El Hajji 2019a; Okolo et al. 2024).  
 
Sensitivity Analysis of the Model 
We performed sensitivity index on parameters of the basic 
reproduction number. These parameters includes contact rate 𝛽ℎ   

and 𝛽𝑛, the screening with therapy rate 𝜌, progression rate 𝛼, 

proportion rate (1 − 𝜌) due to latent period, isolation with 

treatment rate  at 𝜃1 and progression to exposed class of the 

animal at a rate 𝛾. 
We used normalized forward sensitivity method defined as 

𝑋𝑉
𝑅0 =

𝜕𝑅0
𝜕𝑉

.
𝑉

𝑅0
                                           (60) 

Where  𝑉 is the parameter rate and 𝑅0 = {𝑅0ℎ, 𝑅0𝑛}, is basic 
reproduction number for both population (Chitnis et al., 2008). 
 From equation (46), we have  

 𝑅0 = {𝑅0ℎ, 𝑅0𝑛} =

{
𝛼(1−𝜌)𝛽ℎ

(𝛼+𝛿ℎ0)(𝜃1+𝛿ℎ0+𝛿ℎ1)
,

𝛾𝛽𝑛

(𝛾+𝛿𝑛0)𝛿𝑛0
} 

https://dx.doi.org/10.4314/swj.v20i1.19
http://www.scienceworldjournal.org/
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Using equation (72), on equation (46), gives 

𝑋𝛽ℎ
𝑅0ℎ =

𝜕

𝜕𝛽ℎ 

𝛼(1−𝜌)𝛽ℎ

(𝛼+𝛿ℎ0)(𝜃1+𝛿ℎ0+𝛿ℎ1)
.
𝛽ℎ

𝑅0ℎ
=

1                                                                             (61)  

𝑋𝜌
𝑅0ℎ =

𝜕

𝜕𝜌
(

𝛼(1−𝜌)𝛽ℎ

(𝛼+𝛿ℎ0)(𝜃1+𝛿ℎ0+𝛿ℎ1)
) .

𝜌

𝑅0ℎ
=

−𝜌

(1−𝜌)
                                                                    (62)  

𝑋𝛼
𝑅0ℎ =

𝜕

𝜕𝛼
(

𝛼(1−𝜌)𝛽ℎ

(𝛼+𝛿ℎ0)(𝜃1+𝛿ℎ0+𝛿ℎ1)
) ×

𝛼

𝑅0ℎ 
=

𝛿ℎ0

(𝛼+𝛿ℎ0)
                                                             (63)  

𝑋𝜃1
𝑅0ℎ =

𝜕

𝜕𝜃1
(

𝛼(1−𝜌)𝛽ℎ

(𝛼+𝛿ℎ0)(𝜃1+𝛿ℎ0+𝛿ℎ1)
) .

𝜃1

𝑅0ℎ
=

−𝜃1

(𝜃1+𝛿ℎ0+𝛿ℎ1)
                                                      (64)  

𝑋𝛿ℎ0
𝑅0ℎ =

𝜕

𝜕𝛿ℎ0
(

𝛼(1−𝜌)𝛽ℎ

(𝛼+𝛿ℎ0)(𝜃1+𝛿ℎ0+𝛿ℎ1)
) .
𝛿ℎ0

𝑅0ℎ
=

−𝛿ℎ0[(𝛼+𝛿ℎ0)+(𝜃1+𝛿ℎ0+𝛿ℎ1)]

(𝛼+𝛿ℎ0)(𝜃1+𝛿ℎ0+𝛿ℎ1)
                           (65)     

𝑋𝛿ℎ1
𝑅0ℎ =

𝜕

𝜕𝛿ℎ0
(

𝛼(1−𝜌)𝛽ℎ

(𝛼+𝛿ℎ0)(𝜃1+𝛿ℎ0+𝛿ℎ1)
) .
𝛿ℎ1

𝑅0ℎ
=

−𝛿ℎ1

(𝜃1+𝛿ℎ0+𝛿ℎ1)
                                                    (66)  

𝑋𝛽𝑛
𝑅0𝑛 = 𝑋𝛽𝑛

𝑅0𝑛 =
𝜕

𝜕𝛽𝑛
(

𝛾𝛽𝑛

(𝛾+𝛿𝑛0)𝛿𝑛0
) ×

𝛽𝑛

𝑅0𝑛
=

1                                                                     (67)  

𝑋𝛾
𝑅0𝑛 =

𝜕

𝜕𝛾
(
𝛾(𝛾+𝛿𝑛0)

−1𝛽𝑛

𝛿𝑛0
) ×

𝛾

𝑅0𝑛
=

𝛿𝑛0

(𝛾+𝛿𝑛0)
                                                                         (68)  

𝑋𝛿𝑛0
𝑅0𝑛 =

𝜕

𝜕𝛿𝑛0
(

𝛾𝛽𝑛

(𝛾+𝛿𝑛0)𝛿𝑛0
) ×

𝛿𝑛0

𝑅0𝑛
=

−(
𝛾+2𝛿𝑛0)

(𝛾+𝛿𝑛0)
 )                                                                (69)  

 
DISCUSSION 
We constructed and analyzed a mathematical model of Mpox 
infection, in the presence of early screening with therapy of the 
exposed and isolation with treatment of infected individuals.  
The basic properties of the model’s solution, such as existence and 
uniqueness, positivity and feasible region were shown. 
The basic reproduction number of the disease was determined and 
the DFE state and EE state were obtained. The stability analysis 
results were shown in Theorems 4 and 5 to be locally and globally 
asymptotically stable at the DFE state when 𝑅0 < 1, indicating 
infection will not create an epidemic and it was also shown at EE 
state to be locally and globally asymptotically stable when 𝑅0 > 1, 
in Theorems 6 and 7, indicating infection will continue in the 
population and may lead to a pandemic. 
The results of the sensitivity analysis of basic reproduction number 
with respect to the model parameters such as transmission rate, 
screening with therapy of exposed, progression from exposed 
class to infected class and isolation with treatment of infected 
individuals, negative indicates decrease in disease transmission 
with measures in place and positive indicates progression in 
transmission.  
 
Conclusion 
We constructed and analyzed a deterministic model of Mpox 
infection, for the management and control of the disease spread. 
We explore the impact of infection transmission pathways, early 
therapy on the exposed and Isolation of the infected class. 
Furthermore, the sensitivity index was performed. This analytical 
result has further motivated us to validate the work in this paper 
with numerical simulations using real data. 
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