
Science World Journal Vol. 20(No 1) 2025 https://dx.doi.org/10.4314/swj.v20i1.22
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Experimental Malware for Smartphones 169

AN EXPERIMENTAL MALWARE FOR SMARTPHONES

*Nyamtswam Ngunengen, Agaji Iorshase, Gbaden Terlumun

Department of Computer Science, Joseph Sarwuan Tarka University, Makurdi, Benue State, Nigeria

*Corresponding Author Email Address: nnengen@gmail.com

ABSTRACT
Android operating system has become one of the platforms
developers used to introduce their malicious activities into the
smartphone world through Android Applications (App). Although
the Google Play Store implements security countermeasures
against Android malware, these measures have vulnerabilities. A
major weakness is that users often accept all requested
permissions as mandatory when installing an application, without
understanding the risks. This gives developers the basis to achieve
their illicit actions. The aim of the study is to develop a malware
application for identification and to exploit vulnerabilities within the
android operating system. The work adopted the object-oriented
analysis and design methodology (OOAD). Context diagram was
used to represent data flow in the malware application and
Sequence diagram was used to show the interactions between
objects in the application and the sequential order that those
interactions occurred. Further, a randomized algorithm was used
for the detailed design. The work developed a malware application
that kept track of user tasks but at the background modified
contacts list causing inconveniences to the user. The malware
application replaced the contact list with random strings from set of
alphanumeric characters. The malware application simulated a
real-world cyber threat, contacts modification, to uncover
vulnerabilities that evade detection through conventional security
approaches. By exploring this attack vector, the study provided
empirical evidence of vulnerabilities that was exploited by the
malicious application developed. This study contributed to the
broader field of cyber security research by providing experimental
evidence and insights into the specific vulnerabilities and attack
vectors targeting Android operating system.

Keywords: Android Operating System, Smartphone, Permissions,
vulnerabilities, Attacks, Malware.

INTRODUCTION
According to Statista (2024), the global smartphone penetration
rate was estimated at 69 percent in 2023, up from 2022. This
estimate is based on roughly 6.7 billion smartphone subscriptions
worldwide. Android is the leading operating system, powering an
impressive 3.3 billion device with a dominant market share of
70.79%. Android surpasses other mobile operating systems like
iOS and Windows (Yunmar et al., 2024). The operating system is
developed by Google, and is designed mainly for devices like
smartphones. It utilizes touch inputs, including dragging, tapping
and pinching, to interact with on-screen elements and a virtual
keyboard (Lazareska & Jakimoski, 2017).
A smartphone is a mobile phone that offers advanced computing
ability and connectivity. A smartphone run applications on
platforms like Android, iOS, Symbian, Windows, BlackBerry
providing a platform for application developers. All smartphones
have lots of features in common however, based on their type, they
use different operating system with different design and

functionality (Ahvanooey et al., 2017).
Android smartphones are becoming a dominant form of mobile
computing. Its openness provides a favourable atmosphere for
developers. The operating system offers a rich, flexible and user-
centric experience. Its open-source nature, extensive device range,
vast application ecosystem and high level of customization make it
an appealing choice for a wide variety of users. However, the
extensive use of Android has made it a prime target for
cybercriminals. In the third quarter of 2022, Kaspersky Security
Network reported over five million instances of mobile malware,
with new threats appearing daily and approximately 98% of mobile
malware targets Android smartphones (Yunmar et al., 2024).
These malicious applications perform activities such as
unauthorized access, data theft, surveillance, downloading
additional code, and sending unauthorized messages. An example
is Valentine’s Day attack in which attackers distributed a mobile
picture sharing application that secretly sent text messages from
the user’s mobile phone without the user’s knowledge (Zaidi et al.,
2016).

Despite existing security countermeasures, Android malware
continues to evolve, exploiting permission vulnerabilities and
bypassing detection mechanisms. This study investigates these
weaknesses through an experimental malware application.

The goal of the study is to develop a malware application
specifically to probe the Android Operating System (OS) for
potential loopholes such as unauthorized access gain, and data
manipulation, the study understands how vulnerabilities manifest
and exploited. This was achieved by permission abuse. The
malware requested permissions to access contacts, photos, media
and files which are not required for the malware functionality but for
malicious purpose.
This study provided empirical evidence of vulnerabilities that was
exploited by malicious actor. Furthermore, this study contributes to
the broader field of cyber security research by advancing
knowledge about mobile device security and providing insights into
the evolving tactics of cyber threats targeting Android operating
system.

RELATED WORKS
The usage of smartphones is on the increase and this increases
malware development, exploiting operating system vulnerabilities
and applications weaknesses. Malicious applications crashes
batteries, take control of the smartphone and performs illicit
activities posing dangers to users even with the security
countermeasures available (Jannatul et al., 2023).
Jayanti (2024) indicated that smartphone offers connectivity and
convenience to users, this made them attractive targets for
malware developers to introduce their malicious activities into
smartphone world through Android applications (app), and these
malwares are introduced in forms, such as ransomware, viruses,

F
u

ll
L

en
g

th
 R

es
ea

rc
h

 A
rt

ic
le

https://dx.doi.org/10.4314/swj.v20i1.22
http://www.scienceworldjournal.org/
mailto:nnengen@gmail.com

Science World Journal Vol. 20(No 1) 2025 https://dx.doi.org/10.4314/swj.v20i1.22
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Experimental Malware for Smartphones 170

spyware and Trojans causing a significant risk to users' security.
Heena & Maria (2022) also stated that botnet, virus, ransomware
are malicious softwares that are causing problems to Android
operating system these days, they cause harm and exploit other
softwares because the detection methods lack accuracy to identify
malwares in real time. Malware developers exploit this vulnerability
to launch attacks such as denial of service, code injection,
unauthorized access etc. leading to security risk that compromised
security. Luay & Marwan (2024) published that Android operating
system was launched in 2008 and is widely hosting millions of
applications. Most of the applications are developed without
thorough security checks, making them vulnerable to malware
attacks. The target of malware developers is to compromise user’s
data and denial them access. There is a crucial need for a
systematic approach to identify and evaluate vulnerabilities within
the Android Operating System (OS) that surpasses traditional
testing methods (Yunmar et al., 2024). Traditional testing methods,
although essential, may not fully uncover all weaknesses within the
Android OS due to their dependence on known attacks and
vulnerabilities, most smartphone users do not recognize this
security shortcoming and some fails to enable the security software
that comes with their phones (Asoke &Sneha 2015). Therefore,
there is a need for more research on the effective method that will
secure the operating system.

Android applications have gradually become part of our daily lives,
they are used in sending mails, doing business etc. what facilitate
the development of these applications is the free source code,
attackers leverage on this to release attractive applications
embedded with malwares luring users into disclosing sensitive
information and access gain (Albandari et al., 2024). Amira et al.
(2020) highlighted that Android malware has been on increase due
to the popularity of Android operating system. Some malwares do
not need users’ permission to function, once a user download the
application, the malware is installed and run on the smartphone
making the phone vulnerable to attacks such as stealing of
sensitive information, unauthorized access, data theft, spy, and
sending unauthorized messages. Also, advancement in technology
too made smartphones to face cyber-attacks. Once malware affect
a smartphone, it accesses files and cause damages. Atanda et al.
(2020) also highlighted that Android operating system is an easy
target for attackers because the market share of Android has
increased. Threats of Android malware have increased due to the
increasing popularity of Android smartphones. Once an Android
smartphone is infected with malware, the user suffers from various
damages, such as remote operations, and data lost.

Dar &Parvez (2016) developed a malicious application (app) in
Android that was stored at the play store. This malicious app helped
them to track and know the current location of the Android
smartphone and also saves the call log which was sent to their
application. Before a user install the app, permissions were
requested for a successful installation. Their malicious application
includes unnecessary permissions which were not required for the
app functionality but for malicious activity. Once the app was
installed, it automatically sends the position of the device and the
call log details. The app acted as a spy as it sends all these details
without the knowledge of the user. Their application was a spy, our
application modified contact list making them incomprehensible.
From the literature reviewed on Android operating systems
vulnerabilities, it is evident that there is no comprehensive

solution to fully protect Android users. Moreover, the frequency
of malware attacks continues to increase rapidly therefore.

MATERIALS AND METHODS
The research methodology used in this study is the Object-
Oriented Analysis and Design Method (OOADM). It was chosen
because it provides a structured, scalable, and reusable approach
to software development. This method structures a project into
distinct, well-defined tasks and outlines their sequence and
interactions. Within the Object-Oriented paradigm, a set of
diagramming techniques known as the Unified Modelling Language
(UML) is employed. UML emphasizes three key architectural
perspectives of a system: functional, static, and dynamic. The
functional view characterizes the system's external behaviour as
perceived by users, represented through use case diagrams. The
static view addresses the system's attributes, methods, classes,
relationships, and messages, using tools such as Class
Responsibility Collaboration (CRC) cards, class diagrams, and
object diagrams. The dynamic view is depicted using sequence
diagrams, collaboration diagrams, and state charts. These
diagrams are incrementally refined throughout the process until a
comprehensive understanding of the system's requirements is
achieved.
Context diagram was used to represent data flow in the malware
application, the malware application sent a request to Android
Operating System (OS) to access Data store where contacts are
saved, the OS process the request and send contacts to the
application, the malware now access the data storage directly and
sent a request to modify the contacts list, the request was granted
and the contacts modified as shown in figure 1.

The diagram in Figure 1 consists of the Malware Application (App)
Components which accesses the Data Store through the Android
OS.

Malware App: A malicious application that interacts with both the
Android OS and Data Store. It requests contact data from the
Android OS. It also sends a data modification request to
manipulate stored data.

Data Store: A database or storage system where contact data is
kept. The data store receives modification requests from the
Malware App and responds accordingly.

Android OS: The operating system managing access to stored
data. It handles requests from the Malware App for contact data,
verifies and processes data before interacting with the Data Store
then sends retrieved contact data back to the Malware App.

This diagram represents a potential attack where a malware app
gains access to user data through unauthorized interactions with
the Android OS and Data Store.

https://dx.doi.org/10.4314/swj.v20i1.22
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 1) 2025 https://dx.doi.org/10.4314/swj.v20i1.22
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Experimental Malware for Smartphones 171

Figure 1: Context Diagram

Figure 2 shows the sequence diagram of the proposed system.
Sequence diagram highlights the process flow of activities taking
place due to the operation of the malware application (app). The
malware app request access permission from the Android
Operating system (AOS) to access the contact provider Application
Programming Interface (API) that controls access to the contact
storage. The AOS accepts the permission and forward the
response back to the malware app which now has control of the
AOS to access the contact provider API. The malware app then
forwards another request to the contact provider which responds
due to user permission setting but the response is overridden and
bypassed and an update request sent to the contact storage which
changes the contact details as shown in figure 2.
This sequence diagram in Figure 2 illustrates how a malware app
exploits the Android system to access and modify contact
information. The diagram includes four key components:
Malware App The malicious application requests access to the
Contact Provider API to retrieve or modify contacts by sending a
request to access the contact provider.
Android OS: The operating system processes the malware app's
request. And grants permission if the user has allowed it. The OS
then requests access to Android storage for contact data retrieval.
Contact Provider (API): Acts as an intermediary between
applications and the Android Contact Storage. Once access is
granted, it modifies contact data as requested by the malware app.
Android Contact Storage: This is the database where contact
information is stored. It allows modifications once the request is
verified and processed.
This diagram highlights a potential security vulnerability, where
the malware app gained access to and modified contact
information.

Figure 2: Sequence Diagram

Randomized Algorithm of the proposed system
Input Definition:
Let the input be a list of contact names, denoted as:𝐶 =
(𝑐1 , 𝑐2 , … 𝑐𝑛)

Where 𝑐𝑛 𝑖𝑠 the last contact’s name in the list and 𝑐𝑖 represents
the i-th contact name in the list.

Random String Generation:
Let the function𝑅𝑟𝑎𝑛𝑑(𝑘,Σ)represent the process of generating a

random string of length k from a character set Σ. The character set
Σ is typically a union of characters (e.g., alphanumeric characters,
and special symbols). Mathematically, 𝑅𝑟𝑎𝑛𝑑(𝑘,Σ) can be defined

as:𝑅𝑟𝑎𝑛𝑑(𝑘, Σ) = (𝑟1, 𝑟2, … 𝑟𝑛) , 𝑟𝑗∈ for 1≤j≤k

Where k is the length of the random string, and 𝑟𝑗 is the j-th

character in the generated string, chosen randomly from the
character set Σ.

Random String Replacement Process:
The goal is to replace each contact name 𝑐𝑖 with a random string.

This is done by applying the function 𝑅𝑟𝑎𝑛𝑑 to each contact name.

For each i-th contact name 𝑐𝑖 , the corresponding random

string 𝑟𝑗 is generated by:𝑟𝑗=𝑅𝑟𝑎𝑛𝑑(𝑘,Σ)

Where: k is the finite length of the random string which can be fixed
or determined dynamically by the malware.

Σ is the character set from which the random string is
generated (e.g., alphanumeric characters or symbols).

Thus, the list of randomized contact names R(C) is given by: R(C)
= (𝑟1, 𝑟2, … 𝑟𝑛)

Where each𝑟𝑗 is a randomly generated string replacing the

corresponding contact name 𝑐𝑖

Output Definition:
We can express the overall process of random string replacement
as a function f that takes a list of contact names C and outputs a
list of random strings R(C):
F(C) = 𝑅𝑟𝑎𝑛𝑑(𝑘,Σ),𝑅𝑟𝑎𝑛𝑑(𝑘,Σ)...𝑅𝑟𝑎𝑛𝑑(𝑘,Σ)

Where each 𝑅𝑟𝑎𝑛𝑑(𝑘, Σ)generates a random string for the
corresponding contact name in C
.
Summary of the Randomized Algorithm
Step 1 - Start
Step 2 - Generate list of contacts, C= [𝑐1, 𝑐2, … 𝑐𝑛]
Step 3 - For each i-th contact in the list generated

https://dx.doi.org/10.4314/swj.v20i1.22
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 1) 2025 https://dx.doi.org/10.4314/swj.v20i1.22
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Experimental Malware for Smartphones 172

Step 4 - generate a new randomized contact name using 𝑟𝑖=𝑅
Step 5 - Replace the i-th contact with the new contact’s name
Step 6 – Stop

Experiment 1: Reaction of Malware Application (app) on the
Contact List saved in the Android Smartphone.
Nine contacts were saved in the Android Smartphone, the user
interacted with the malware app by assigning task, in the process,
the malware secretly at the background, replaced the contact list
with randomly generated string of characters from alphanumeric
and special symbols which made the list incomprehensible. This is
a function that takes each contact name and output a list of
randomised string determined by the malware.

Experiment 2: Reaction of Malware Application (App) on the
incomprehensible string from experiment 1.
The user assigned another task using the application, as this was
taking place at the foreground, the malware modified the randomly
generated string generated from experiment 1 to different strings,
the user discovered this when contact list was visited.

Experiment 3: Reaction of Malware Application (App) on the
degenerated string from experiment 2
The user assigned a third task to it daily schedules, as the user was
busy scheduling the task, the malware changes the random string
again to different ones. At each run of the algorithm, a new string
of random bits is produced. It is evidence that provided us with data
to verify and validate our results that the contact replacement is
from random characters generation. It also supported our
investigation that Android operating system is vulnerable

RESULTS
The malware application was developed in Java programming
language using Android Studio as the Integrated Development
Environment. In other to get results, an Android Emulator was used
as Android Virtual Device. Also, three experiments were done to
understand the underlying logic governing the application hence
the malware is experimentally inclined. Below are results from the
study.

Figure 3: Nine contacts in the phone

Figure 3 shows the contact list saved on the smartphone.

Figure 4: Result of experiment 1

Figure 4 is the result of experiment 1. The malware application
replaced the contact list with random strings from set of
alphanumeric characters.

https://dx.doi.org/10.4314/swj.v20i1.22
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 1) 2025 https://dx.doi.org/10.4314/swj.v20i1.22
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Experimental Malware for Smartphones 173

Figure 5: Result of experiment 2

Figure 5 is another random string generated when the second task
was assigned, it helps us to understand the underlying logic
governing the application. The malware functions whenever task is
assigned by the user.

Figure 6: Result of Experiment 3

Figure 6 showed the degenerated string from the third experiment.

DISCUSSION
Figure 3 showed the contact list of people stored on the
smartphone. It enables the user to store and manage the contact
information of people. It is the contacts list the malware made
incomprehensible from experiment 1.

Figure 4 is the result of the first task assigned by the user, as the
user was busy assigning the task, secretly, the malware replaced
each contact name with randomly generated string of characters
from alphanumeric and special symbols. It is a function that takes
each contact name and output a list of randomised string
determined by the malware.

Figure 5 is the result of experiment 2, the malware application
changed the result of experiment 1 to another set of randomized
string when the user specified another task. This helps us to
understand the underlying logic governing the application. The
malware functions whenever task is assigned.

Figure 6 is the result of experiment 3. As the user was busy
scheduling its task, the malware changes the random strings from
experiment 2 to again, different ones. At each run of the algorithm,
a new string of random bits is produced. This provided us with
evidence to verify and validate our results that the contact
replacement is from random characters generation. It also
supported our investigation that Android operating system is
vulnerable.

Malware Performance Evaluation

Metric
Category

Metric Name
Measured
Value

Notes

Resource
Consumption

CPU Usage
(%)

70%
High CPU usage
indicates heavy
processing.

 Memory
Usage (MB)

250 MB
Unusual memory
consumption for
background apps.

 Battery Drain
(mAh/hr)

350 mAh/hr
Malware consumes
high battery power.

Network
Bandwidth
Usage

500 KB/sec
(upload)

Large amounts of
data being sent
externally.

Execution
Time &
Latency

Time to
Execute
Malicious
Code

5 seconds
Quick execution of
payload.

System
Response
Delay

3 seconds
Noticeable lag in
system
responsiveness.

Stealth &
Persistence

Detection
Rate by
Antivirus (%)

30%
Low detection rate
means high stealth.

 Rootkit
Persistence

Yes
Malware survives
reboots.

Impact
Analysis

User Data
Leaked (MB)

250 MB
Large amount of
sensitive data
stolen.

https://dx.doi.org/10.4314/swj.v20i1.22
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 1) 2025 https://dx.doi.org/10.4314/swj.v20i1.22
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Experimental Malware for Smartphones 174

Conclusion
The study developed a malware application that kept track of user
tasks but at the background modified contacts list causing
inconveniences to the user whenever the user wants to make calls
or view contacts list. This was achieved by the flexibility of Android
operating system. The malware application simulated a real-world
cyber threat, contacts modification, to uncover vulnerabilities that
evade detection through conventional security approaches. By
exploring this attack vector, the study provided empirical evidence
of vulnerabilities that was exploited by the malicious application
developed.
We strongly advise Android smartphone users to be careful
installing new applications because malicious application can slip
past Google’s security checks and take control of their device that
is why Google remove malicious application from time to time to
show it does not always catch everything before it gets on phone.
Also, there should be proactive methods that can systematically
identify and mitigate potential vulnerabilities within the Android
operating system to protect Android smartphone users against
malware.
.
REFERENCES
Ahvanooey, M.T., Li, Q., Rabbani, M. & Rajput, A.R. (2017). A

Survey on Smartphones Security: Software
Vulnerabilities, Malware and Attacks. International
Journal of Advanced Computer Science and
Application8(10): 30-45.

Albandari, A., Heba, E., Mohamed, E., Zeyad, A., Fatemah, H. A.,
Majid, A., Sumayh, S. A., Sarah, A., Shahad, A. &
Khadijah, A. (2024). A Study of Android Security
Vulnerabilities and Their Future Prospects. HighTech
and Innovation Journal. 5(3): 855-869

Amira, B. S., Mohammed, A., Sadeeq, M., Rizgar, R. Z., Maiwan,
B. A., Mayyadah R. M.,Hanan, M. S.& Lailan, M. H.
(2020). An Investigation for Mobile Malware Behavioral
and Detection Techniques Based on Android Platform.
IOSR Journal of Computer Engineering (IOSR-JCE).
22(4): 14-20.

Asoke, N. & Sneha, M. (2015). Impact of Mobile
Phone/Smartphones. A Pilot Study on

Positive and Negative Effects. International Journal of
Advance Research in Computer Science and
Management Studies3(5): 294-302

Atanda, A. O., Obi, A. M., Anyaorah, C. C., Idoko, N. A.,
Udechukwu, P. E., Anusiobi,

C. L., Asogwa, S. & Senu, J. F. (2020) Design and
Implementation of a Malware System on Smartphones.
International Journal of Research and Innovation in
Applied Science V(X): 63-68.

Dar, M. A. & Parvez. (2016). Smart phone Malware Threat, An
Experimental

Evaluation of Smart Phone Security. International
Journal of Computer Science and Information
Security14(8): 109 – 113.

Heena, K.S.K. & Maria A. (2022). A Hybrid Model for Android
Malware Detection using Decision Tree and KNN.
International Journal on Recent and Innovation Trends
in Computing and Communication. 10(1): 321-328.

Jannatul. F., Rafigul. I., Arash, R. M. & Zahidul, M.D. I (2023). A
Review of State-of-the-Art Malware Attack
Trends and Defense Mechanisms in IEEE Access, vol
11, pp.121118 -121141. 2023, Digital Object Identifier:
10.1109/ACCESS.2023.3328351.

Jayanti, K. S. N. B. (2024). Detection of Malware in Android
Smartphones Using Machine
 Learning. International Journal of Research Publication
and Reviews.5(1) 232-234.
Luay A. & Marwan, O. (2024). Improving mobile security: A study

on android malware detection using LOF. International
Journal of Mathematics and Computer in
Engineering.3(2): 241-252.

Lazareska, L. & Jakimoski, K. (2017). Analysis of the Advantages
and Disadvantages

of Android and iOS Systems and Converting
Applications from Android to iOS Platform and Vice
Versa. American Journal of Software Engineering and
Applications, 6(5): 116-120. doi:
10.11648/j.ajsea.20170605.11

Statista (2024). Smartphone penetration worldwide as share of
global population 2016-

2023. Statista. Accessed 14/06/2024 from
https://www.statista.com/statistics/203734/global-
smartphone-penetration-per-capita-since-2005

Yunmar, R. A., Kusumawardani, S. S., Widyawan & Mohsen, F.
(2024). Hybrid

Android Malware Detection: A Review of Heuristic-
Based Approach in IEEE Access, vol. 12, pp. 41255-
41286, 2024, doi: 10.1109/ACCESS.2024.3377658.

Zaidi, S. F. A., Shah., M. A. & Kamran, M., Javaid, Q. and Zhang,
S. (2016). A Survey

on Security for Smart Phone Device. International
Journal of Advanced Computer Science and
Application: 7(4): 206 - 219.

https://dx.doi.org/10.4314/swj.v20i1.22
http://www.scienceworldjournal.org/
https://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005
https://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005

