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ABSTRACT: 
Wildfire spread modeling is governed by a complex system of non-
linear partial differential equations (PDEs) that capture the intricate 
dynamics of wildfire behavior, including heat transfer and moisture 
interaction. A comprehensive understanding of these dynamics is 
critical for developing effective management, mitigation, and 
intervention strategies. In this study, temperature-dependent 
diffusion and convection terms are incorporated into the volume 
fraction of moisture, enriching the model framework and improving 
its accuracy in representing wildfire spread. To ensure the 
mathematical robustness of the model, the non-linear PDE system 
is transformed into a dimensionless form using appropriate 
dimensionless variables, facilitating the analysis of the equations. 
The model equations describe the dynamics of combustible forest 
material (CFM) in terms of the volume fractions of dry organic 
matter, moisture, coke, heat, and oxygen. The conditions for the 
existence and uniqueness of solutions to the model equations are 
rigorously established using the Lipschitz continuity criterion. The 
results confirm that unique solutions exist when the Lipschitz 
conditions are satisfied. 
 
Keywords: Combustible forest material, Existence and 
uniqueness, Moisture diffusion and convection, Dimensionless 
variables, Lipschitz continuity 
 
INTRODUCTION 
Wildfires represent an escalating global threat to ecosystems, 
human settlements, and economies worldwide. This danger has 
become increasingly pronounced in recent years, exacerbated by 
climate change impacts. With global temperatures rising and 
drought conditions extending, both the frequency and severity of 
wildfires are projected to increase significantly in coming decades 
(Senande-Rivera et al., 2022). These pressing concerns 
underscore the critical importance of developing accurate 
mathematical models and analytical tools to predict wildfire 
behaviour and mitigate their destructive impacts. 
While wildfire ignition is inevitable occurring through natural causes 
such as lightning strikes or intense solar heat, as well as human-
induced factors, that even a minimal spark can trigger a 
devastating inferno. Once initiated, wildfires can propagate at 
alarming rates, consuming forests at speeds reaching 23 km per 
hour and leaving widespread devastation in their wake (Kahanji et 
al., 2019; Mangiameli et al., 2021). 
The growing scientific focus on wildfires stems from their 
increasingly catastrophic consequences, which are further 
amplified by climate change—a significant factor influencing both 
ignition likelihood and spread dynamics. Recent research has 

made considerable progress in developing sophisticated 
mathematical approaches to model these complex phenomena. 
Morgan (2024) explored a nonlinear reaction-diffusion system for 
wildfire propagation modelling, establishing the global-in-time 
existence and uniqueness of bounded mild solutions to the Cauchy 
problem under bounded initial conditions. Their analysis concluded 
that the model does not permit thermal blow-up scenarios. In 
parallel, Mitra et al. (2024) investigated wildfire spread through an 
advection–diffusion–reaction model incorporating both convective 
and radiative heat loss mechanisms. Their study analysed traveling 
wave (TW) existence in a one-dimensional wildfire spread model, 
employing both PDE solvers and shooting algorithms. Their results 
demonstrated strong alignment between theoretical predictions 
and numerical simulations, revealing critical dependencies of fire 
fronts on various model parameters. 
Building on these approaches, Feckan and Pacuta (2018) 
developed a wildfire spread model utilizing Hamilton-Jacobi theory 
to demonstrate the existence of a classical solution to equation (1):  

( ) ( )1 2, , , ,t tx f x y y f x y   = =
for 

( ) ( ), 0, ,t R T  
   (1) 

where , ,t tx y x  and y denote partial derivatives with respect 

to t  and   respectively, of function ( ),x t  and ( ),y t  

They established the existence of classical solutions under specific 
conditions and applied the method of characteristics to derive 
solutions in explicit form. 
Wildfire dynamics fundamentally encompass two interconnected 
processes: (i) ignition and (ii) propagation (Harrison et al., 2021). 
Despite extensive research efforts, these processes remain only 
partially understood (Crompton et al., 2022). Mathematical and 
computational models offer a valuable framework for unravelling 
the complexities of fire-vegetation interactions and comprehending 
wildfire dynamics at multiple scales (Harrison et al., 2021). Among 
various approaches, physically based models that incorporate 
convection and diffusion mechanisms into the dynamics of 
combustible forest material (CFM) provide particularly promising 
avenues for accurate predictions. 
The present study focuses on analysing a specific class of 
physically based wildfire propagation models, with particular 
emphasis on convection and diffusion effects within the volume 
fraction of moisture. We address a fundamental question, whether 
the model admits a unique solution by employing the Lipschitz 
continuity approach under theorems described by Ayeni (1978). 
Through rigorous investigation of the existence and uniqueness of 
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solutions, this research targets to contribute to the advancement of 
reliable predictive tools for understanding and mitigating wildfire 
behaviour, ultimately supporting more effective risk management 
strategies in fire-prone regions. 
 
MATERIAL AND METHODS 
Model formulation 
Here, we consider a 1D wildfire spread model with temperature 

dependence of the rate of chemical reaction ( )K T , diffusion 

coefficients ( ) ( )m oxD T and D T  , and thermal 

conductivity Tk  given respectively by 

( )

0 0

0 0

0

0

exp , 1,2,3,

, ,

i
i

m m ox ox

T

E
K T k i

RT

T T
D D D D

T T

T
k k

T

  
= − =   

   


    
= =    

    


 
=  
  

   

      
    (2) 

Where iE  the activation energy, T the temperature, R  the 

universal gas constant, ik  the pre-exponential factor, 

( ) ( ),m ox TD T D T and k  are moisture diffusion 

coefficient, oxygen diffusion coefficient and thermal conductivity 
respectively. 
The model is formulated based on balance equations for energy and 
fuel, where the fuel loss due to burning corresponds to the fuel 
reaction rate. Convection and diffusion of moisture are considered, 
neglecting the ash phase with thermal equilibrium between the solid 
and gas phase. An existing model is discussed in Barovik and 
Taranchuk (2023). The leading governing equations for this 
investigation follow thus: 
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   (3) 
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    (5) 
The initial and boundary conditions are specified as: 

( )
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(6) 
Here, (3), (4) and (5) denotes the combustible foresee materials 
(CFMs), mass concentration of oxygen and energy (heat) 
equations respectively. The CFM comprises of volume fractions of 
dry organic matter, moisture and coke. 
Where;  

s

m

c













are the volume fractions of dry organic substance 

(matter), moisture and condensed pyrolysis product  

oxC   is the oxygen concentration 

T    is the temperature (in Kelvin) 

0T    is the characteristics value of temperature 

x   is the dimensional coordinate in the system of 

coordinates connected with the center of an initial fire     
 (distance/space) 

 t   is the dimensional time 

T   is the unperturbed ambient temperature 

0oxC   is the characteristics value of oxygen concentration 

S   is the specific surface of the condensed product of 

pyrolysis (coke) 

v   is the dimensional equilibrium wind velocity vector 

v   is the dimensionless equilibrium wind velocity vector 

L       is the characteristic length 

*k  is the effective thermal conductivity 

*

oxD  is the effective oxygen diffusion coefficient 
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*

mD  is the effective moisture diffusion coefficient 

mmk  is the moisture convective mass transfer coefficient 

moxk  is the oxygen convective mass transfer coefficient 

h  is the convective heat transfer coefficient  

oxC


 is the unperturbed density of concentration of oxygen 

i  ( , , )i s m c=  is the 
thi phase densities of 

combustible forest materials CFMs 

g  is the density of gas phase. 

h   is the crown height 

cM  is the molecular mass of carbon 

1M  is the mass of CFMs 

pgC  is the specific heat capacity of a gas phase 

2 3&q q  are the heat effects of processes of evaporation of 

burning 

  is the coefficient of heat exchange between the 

atmosphere and a forest canopy 

c  is the coke number of CFMs 

   is the Stefan-BoltzMann constant. 

RK
     

is the integral (absorption and scattering) attenuation 

coefficient, 
ipC  is the specific heat. 

 
RESULTS AND DISCUSSION 
Method of solution 
Ayeni (1978) investigated the issue of existence and uniqueness, 
of solution, revealing, among other findings, that these qualities are 
reasonably well understood. The subsequent system of parabolic 
equations serves as an illustration: 

( )

( )
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 (7)       and, 
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 (S.1): ( ) ( ) ( )0 0 0, ,f x g x and h x   are bounded for 

nx R . Each has at most a countable number of 

discontinuities. 

(S.2): , ,f g h  satisfies the uniform Lipschitz condition, such 

that, 

( ) ( ) ( ) ( )1 1 1 2 2 2 1 2 1 2 1 2, , , , , , , , , ,x t u v x t u v M u u v v x t G     −  − + − + − 
     

  (9) 
Where, 

( ) , : ,0nG x t x R t =   
   

     
 (10) 
 
Theorem  Ayeni (1978) 

Let ( ) ( ) ( )0 0 0, ,f x g x and h x  and , ,f g h  satisfy 

(S.1) and (S.2) respectively, then there exist a solution of problem 
(7) satisfying (8). 
 
Dimensionless analysis 
Dimensionless variables are been introduced as: 
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    (11) 
Using (11), on (3) – (6) gives the dimensionless form of the model 

equations (12) – (14) 

( )

( ) ( )
( )

( )

( )
( )

( )

1
1 1

1 0

1
2 2 2 2

1 2 2

2 2
2 20

0 1

3
3 1 4 5 3

3 0

exp ,
1

1

1 1 exp
1

1, 0, 1,

exp exp
1 1

t

mt
x x

t

a
B

t

b
v D B

t x x x

Sh t
x x

a
B B B

t

 






   
  



 
 

  
  

 



=

=
= =

=

 
= −    + 

=

     
+ = + − +         +   

 
= = = −

 

    
= − +         + +    

=1



















 

  (12) 

https://dx.doi.org/10.4314/swj.v20i1.43
http://www.scienceworldjournal.org/


Science World Journal Vol. 20(No 1) 2025   https://dx.doi.org/10.4314/swj.v20i1.43 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Analysing the Existence and Uniqueness Solution of a Wildfire Model with 
Diffusion and Convection of Moisture 

317 

( ) ( )
( )

( ) ( )
( )

( )( )
( )

( )

2 6 7 1 5

1

2
8 2 5 9 10 5 3

0
0 1

1 exp
1

1 exp exp
1 1

1, 0, 1,oxt
x x

a
v D B B B

t x x x

b
B B B B B

Sh t
x x

   
   



 
     

 

 
 

=
= =

     
+ = + − − +         +   


   

− + + − + +      + +    


 
= = = −

  


  (13)

 

( ) ( ) ( )

( )
( )

( )
( )

( )

11 12

1

2
1 2 2 3 5

0
0 1

1 1 4

1 exp exp
1 1

0, 0, 1,

T a

t
x x

v B B R
t x x x

b
B

Nu t
x x

  
   

 
    

 

 
 

=
= =

    
+ = + − + − +   

     
    

− + + +       + +    


 
= = = −

  

    (14)  

where, 

aR
 
is Radiation number 

, 1,2emjP j = are Peclet mass numbers 

eP
 
is the peclet energy number 

, 1,2i i = are Frank-Kamenetskii numbers 

mSh
 
is the Sherwood number (moisture) 

oxSh  is the Sherwood number (oxidizer)  

Nu  is Nusselt number. 

 
Existence and Uniqueness of Solution 
Here, (12) – (14) are written as follows, with expansion effect on 
volume fraction of moisture, mass concentration of oxygen and 
energy equations 
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=
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      
    

− + + +       + +    


 
= = = −

  

   (17) 
 
Theorem  

Suppose 1 1 2 2 3 3 4, , , ,h h h h      

2 2 2

2
5 6 72 2 2
, ,h h h

x x x

    
  

  
 

Then equation (15) – (17) have unique solution. 
In the proof we shall employ the Theorem 3.1 
 
Proof of Theorem  
Rewriting the equations (15) – (17) as system of equations thus; 

( )

( )

( )

1
1 1 2 3

2

2 2 2
1 2 1 2 32

3
3 1 2 3

, , , , , , , , 0

, , , , , , , , 0

, , , , , , , , 0

n

n

n

g x t x R t
t

v D g x t x R t
t x x

g x t x R t
t


    

  
    


    

 
=   


   

+ = +   
   
 

=    

    

(18)                                          

( )
2

2 4 1 2 32
, , , , , , , , 0nv D g x t x R t

t x x

  
    

  
+ = +  

  
                               (19) 

( )
2

5 1 2 32
, , , , , , , , 0n

Tv g x t x R t
t x x

  
     

  
+ = +  

        
                                   (20) 
Where 
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( ) ( )
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a
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
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
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
   
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

    = − +       + +    

   

(21)                                                  

( ) ( )
( )

( ) ( )
( )

( )( )
( )

2

4 1 2 3 2 2 6 7 1 52

1

2
8 2 5 9 10 5 3
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1

1 exp exp
1 1

a
g x t D D B B B

x x x

b
B B B B B

   
        



 
     

 

   
= + − − +      +  


   
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      (22)                 

( ) ( ) ( )

( )
( )

( )
( )

22

5 1 2 3 11 122

1

2
1 2 2 3 5

, , , , , , 1 4

1 exp exp
1 1

T T ag x t B B R
x x

b
B

 
         

 
    

 

  
= + − + − +   

   


   − + + +      + +   

     

            (23) 
According to Toki and Tokis (2007), the fundamental solutions of 
equation (18) – (20) are as follows:  

( )

( )
( )

( )

1 1

2

2 1 31
1 1 12 22

1

3 2

,

, exp
2 4 4

2

,

G x t C

x v v x
G x t x t

D D D t
D t

G x t C




= 


 

= − −  
 


= 

          

        (24)    

( )
( )

2

4 1 31
2 2 22 22

2

, exp
2 4 4

2

x v v x
G x t x t

D D D t
D t

 
= − − 
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                             (25) 

( )
( )

2

5 1 31

2 22

, exp
2 4 4

2 T T T
T

x v v x
G x t x t

t
t

  
 

 
= − − 

 
     

                                                   (26) 
Next, it suffices to show that the Lipschitz condition in Theorem 3.1 
is satisfied. That is, if we are able to show that; 

( ) ( )

( )

11 21 31 1 1 12 22 32 2 2

11 12 21 22 31 32 1 2 1 2

, , , , , , , , , , , ,

,

1,2,...,5.

i i

i

g x t g x t

k

i

         

         

− 


− + − + − + − + − 


= 
      (27) 
It is important to note that: 

1 2 3

max , , , , , 1,2,...,5i i i i i
i

g g g g g
k i
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     (28) 
Then, 
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Clearly, ( )1 2 3, , , , , , , 1,2,...,5ig x t i     =  are 

Lipschitz continuous. Hence by Theorem 3.1, the result follows. 
This completes the proof. 
 
Conclusions 
In this study, we analytically establish the existence and 
uniqueness of solutions to the governing model equation for wildfire 
spread. A key novelty of our work is the incorporation of convection 
and diffusion terms into the volume fraction of moisture, which, to 
the best of our knowledge, has not been previously integrated in 
this manner. By explicitly accounting for the transport and spatial 
distribution of moisture within combustible forest materials, we 
provide a more comprehensive framework for modeling wildfire 
dynamics. Our findings offer a solid theoretical foundation for future 
numerical simulations and reinforce the well-posedness of the 
model, ensuring its ability to accurately capture the underlying 
physical phenomena under specified conditions and assumptions. 
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