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ABSTRACT  
Escherichia coli (E. coli), a Gram-negative bacterium 
predominantly inhabiting the intestines of warm-blooded animals, 
including humans, encompasses both benign and pathogenic 
strains. The ability of this strain to persist and proliferate in food 
matrices underscores the critical importance of effective control 
measures and predictive tools in ensuring food safety across the 
food production and distribution chain. This research investigated 
the development of an Artificial Neural Network (ANN) model for 
predicting Colony Forming Units (CFU) of E. coli based on selected 
environmental factors such as temperature and pH. The study 
involved the collection of CFU data under varying conditions, with 
temperatures ranging from 25 °C to 50 °C and pH levels from 2 to 
12. The ANN model demonstrated a high predictive accuracy, 
achieving an R-squared value of 98%, indicating strong 
correlations between predicted and actual CFU values. The results 
showed that the optimal growth temperature for E. coli was 35 °C 
and pH of 7 (neutral), where the predicted CFU closely matched 
the actual count. Additionally, the model proved effective across a 
range of conditions, confirming its reliability as a tool for predicting 
microbial growth. These findings underscore the potential 
application of the ANN model in fields such as food safety, 
microbiology, and environmental monitoring, providing a valuable 
resource for controlling bacterial populations in various settings. 
 
Keywords: Machine learning model, Escherichia coli, Growth, 
Environmental conditions. 
 
1.0 INTRODUCTION 
Escherichia coli (E. coli), a Gram-negative bacterium 
predominantly inhabiting the intestines of warm-blooded animals, 
including humans, encompasses both benign and pathogenic 
strains. Certain pathogenic variants, such as E. coli 0157 pose 
significant public health risks worldwide due to their potential to 
cause severe food borne illnesses. These strains' ability to persist 
and proliferate in food matrices underscores the critical importance 
of effective control measures and predictive tools in ensuring food 
safety across the food production and distribution chain. (Smith et 
al., 2020, Mordecai et al., 2024). 
 
Predicting microbial growth dynamics, especially of pathogens like 
E. coli, is paramount for safeguarding food products. 
Environmental factors such as temperature, pH, moisture content, 
nutrient availability, and the presence of competing 
microorganisms profoundly influence E. coli growth dynamics 
within food products (Jones and Brown, 2019). Understanding 

these environmental influences is fundamental for implementing 
preventive strategies and interventions aimed at reducing the 
incidence of foodborne illness outbreaks (Musa et al., 2023). 
 
Traditional methods for assessing microbial growth typically involve 
labor-intensive culturing in controlled laboratory settings, which 
may not fully capture the complex interactions between 
environmental variables influencing microbial behavior in real-
world conditions. In contrast, machine learning (ML) techniques 
offer a promising avenue for enhancing predictive modeling of 
microbial growth. ML algorithms excel in analyzing vast datasets 
containing diverse environmental parameters and microbial 
responses, thereby uncovering intricate non-linear relationships 
and patterns that traditional statistical methods might overlook 
(FAO, 2018). 
 
Recent research underscores the effectiveness of ML models in 
predicting microbial growth across various food matrices. These 
models integrate multiple environmental variables simultaneously, 
providing more accurate and timely predictions of microbial 
behavior compared to conventional approaches (Smith et al., 
2020). By harnessing ML capabilities, researchers can develop 
predictive models that not only bolster food safety management but 
also optimize production processes and ensure regulatory 
compliance within the food industry. 
 
In recent years, machine learning has been introduced as a 
comprehensive approach, enabling complex data analysis and 
future predictions in a short amount of time. Furthermore, a 
distinction can be made between three types of machine learning 
applications, namely supervised, semi-supervised and 
unsupervised learning. The first category, supervised learning, is 
based on predicting which class the input belongs to after the 
model has been trained on a labeled data set. A method that often 
is considered logical and straightforward. On the other hand, when 
unsupervised learning is used, the aim is often not to obtain a 
distinct label on the input but to identify different patterns that the 
data contains (Mahesh, 2020). Lastly, semi-structures learning 
corresponds to a combination of the two where a small part of the 
data is labelled and a larger part is un-labelled (Van Engelen and 
Hoos, 2020). 
 
Microbiology focuses on studying the activity of microorganisms, 
exploring the characteristics, culture conditions, and detection 
methods of microflora, taking its essence (discovering, utilizing, 
improving, and protecting beneficial microorganisms), and 
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removing its dross (preventing, controlling, or transforming harmful 
microorganisms). Thus, it is available for science and benefits 
mankind (Hanage, 2014; Ha and Devkota, 2020). 
Recently, the main research hotspots in microbiology include 
community classification and its environmental role (Zhang et al., 
2021), regulation of gut microbiome and host interactions 
(Turnbaugh et al., 2007; Jones et al., 2014; Malla et al., 2018; Ruff 
et al., 2020), development of pathogenic microorganisms and drug 
vaccines (Shahbaaz et al., 2016; Moos et al., 2017; Zhu et al., 
2020), and trying to dilute the boundaries between microbiome and 
genome editing, molecular modification, ecology and resource 
utilization, biocatalysis, and synthesis (Stres and Kronegger, 2019; 
Galloway-Pena and Hanson, 2020). In addition, microbiology and 
multiomics (including genomics, epigenomics, transcriptomics, 
proteomics, and metabolomics) have combined and developed a 
variety of multiscale emerging fields (Liang et al., 2021). 
The understanding of microorganisms started from microbial cell 
morphology and physiological and biochemical characteristics to 
microbial genotype identification at the nucleic acid and protein 
levels, and chemical analysis methods based on cell chemical 
composition analysis and numerical classification methods relying 
on the level of computational biology have also been established 
successively. The rapid progress in the discipline of microbiology 
is inseparable from the update of observation methods or 
techniques in the same period (Galloway-Pena and Hanson, 2020). 
With the advent of the Big Data era, the pressing questions for 
researchers have gradually evolved into how to quickly and 
efficiently filter/condense this exponential growth of information to 
obtain generalized quality data and how to transform the massive 
data of microbiota into easily understood and visualized 
knowledge. Compared to traditional research with insufficient data 
or purely experimental techniques that cause trouble, such as 
cognitive bias, low reproducibility, and long-time span, the modern 
microbiology research process is more likely to incorporate new 
technologies and big data methods to do this better and right. 
 
Besides supervised, semi-supervised, and unsupervised machine 
learning, a common distinguishment within supervised machine 
learning is classification models and regression models. The 
section below discusses the aims and differences between the two 
groups, Osisanwo et al. (2017) describe machine learning 
classification as a method for making a model take data-driven 
decisions to divide the data into different distinct groups based on 
linear combinations of their feature values. In other words, this 
means using input vectors including features for hyperplane 
decisions to classify the input. Generally, classification is favorable 
for tasks where the data points have many variable properties 
including similarities and differences but still a fundamental quality 
that identifies them (El Naqa and Murphy, 2015). Hence, 
classification interprets those properties and classifies the new 
data point with the proper label. Examples, where classification is 
used, are Jajodia and Garg (2019) who made a model that 
classifies whether images contain dogs or cats, and Li et al. (2020) 
who identified heart diseases using machine learning classification 
in e-healthcare. Moreover, linear classifiers often are beneficial 
where fast decisions are required. Osisanwo et al. (2017) also 
highlight that quite a few models are adequate for classification 
which among others include Logistic Regression, Support Vector 
Machine, Random Forest, and Neural Networks. 
 
 

In contrast to classification, regression as machine learning 
algorithms that estimate a specific value to a task such as future 
energy load using other information including sunlight and wind. 
Furthermore, Maulud and Abdulazeez (2020) mean that regression 
can be used for two specific cases. Firstly, for forecasting and 
prediction where future values are predicted based on dependent 
variables. Secondly, regression is used to determine correlations 
between independent and dependent variables such as air 
temperature and water temperature which clearly are dependent 
(Aransiola et al., 2024). Consequently, regression is adequate for 
finding correlations between a specific variable and a data set 
containing points with other features. As a result, machine learning 
regression has been used in successful studies previously. 
Examples, which aim for different research fields are Zhang and 
Hong (2021), who proposed an approach for electric forecasting 
with support vector regression, Pereira and Cerqueira (2022) who 
used machine learning regression methods to forecast hotel 
demand for revenue management, and lastly predicted stock prices 
using sliding-window metaheuristic-optimized machine learning 
regression. 
 
2.0 MATERIALS AND METHODS 
The study utilized a variety of materials and apparatus, including 
soil samples, nutrient agar, EMB agar, distilled water, and general 
laboratory supplies such as aluminium foil, cotton wool, sterile 
containers, petri dishes, and protective gear. Key equipment 
includes the autoclave, gas cooker, incubator, and weigh balance. 
 
2.1 Collection and preparation of sample 
For the collection and preparation of samples, 5g of soil was 
collected from the surface at Federal University of Technology 
Minna (FUT) in front of Microbiology laboratory, which was stored 
in a sterile container. The experiment was preceded with a serial 
dilution process, beginning with the preparation of distilled water as 
a diluent. Test tubes were labelled from 1 to 8 to indicate dilution 
factors ranging from 10-1to 10-8. The 0.5g of soil sample was mixed 
with distilled water to create a stock solution. A sequential dilution 
was performed by transferring 1 mL of the stock solution into the 
first test tube containing 9 mL of distilled water, then repeating the 
procedure for the subsequent tubes to achieve the desired 
dilutions. 
 
 2.1.1 Media preparation 
The media preparation involved the use of 20g of nutrient agar and 
EMB agar, which was prepared strictly in accordance with the 
manufacturer's instructions and sterilized using an autoclave (Merk 
Manual, 2005). 
 
 2.1.2 Culturing 
During the culturing phase, nutrient agar was poured into petri 
dishes and left to solidify. Following this, 0.5ml of the diluted sample 
was spread onto the agar surface and incubated at 37°C for 18-24 
hours (American Public Health Association, 2005). The organisms 
that grow were isolated by sub-culturing them onto fresh nutrient 
agar plates using a streaking technique to obtain pure isolates. 
 
 2.1.3 Biochemical tests and morphology 
Biochemical tests and morphological observations were conducted 
to further characterize the isolates. Gram staining was used to 
determine the reaction of the bacteria, while a series of IMViC tests 
(Indole, Methyl Red, Voges-Proskauer, and Citrate utilization) 
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helped to identify and differentiate bacterial species. Pure isolates 
were inoculated onto EMB agar and incubated under various 
conditions, including different temperatures and pH levels, for 24-
48 hours to study their growth patterns as per APHA (2005). 
 
Environmental conditions such as temperature and pH was 
carefully controlled and varied using incubators and buffers. 
 
 2.1.5 Growth measurement 
The colony counting was employed as described in Merck Manual 
(2005) to estimate the number of viable cells. Additionally, 
microscopic techniques and digital counters was used for precise 
cell counting. 
 
2.2 Development of the Machine Learning Model 
 
2.2.1 Data collection 
Data was collected from various publicly available online 
databases, including Kaggle, and Google Dataset Search. The 
datasets encompassed measurements of E. coli growth under 
diverse environmental conditions, including temperature, pH, 
salinity, and nutrient concentration. The selected datasets were 
downloaded in CSV format and control both quantitative and 
qualitative data. (Jones & Brown, 2019). 
 
2.2.2 Data Preprocessing 
The raw data was pre-processed to ensure consistency and 
reliability. Missing values were identified and handled using 
appropriate methods such as imputation with the mean or median 
values, or deletion of records with excessive missing data. Outliers 
were detected using statistical techniques such as the z-score 
method and were either corrected or removed based on their 
impact on the dataset. 
 
Feature selection was conducted to identify relevant variables for 
predicting E. coli growth. Environmental factors such as 
temperature, pH, and nutrient concentration retained, while 
irrelevant features were discarded. The data were normalized 
using min-max scaling to bring all features into a common range, 
thereby facilitating the training process. The dataset was divided 
into training, validation, and test sets in a ratio of 70:15:15, ensuring 
that each set was representative of the overall data distribution. 
(Jones & Brown,2019). 
 
2.3 Feature Engineering 
Feature engineering was performed to enhance the predictive 
power of the model. Interaction terms between environmental 
factors was created to capture potential synergistic effects. 
Additionally, dimensionality reduction techniques, such as Principal 
Component Analysis (PCA), was employed to reduce the feature 
space and eliminate multicollinearity. (FAO, 2018). 
 
2.4 Model Development 
Multiple machine learning algorithms was selected for model 
development, including Linear Regression, Decision Trees, 
Random Forest, Support Vector Machines, and Neural Networks. 
These models were chosen based on their suitability for regression 
tasks and their ability to handle complex relationships between 
variables. 
 
The models were trained using the training dataset. 

Hyperparameter tuning was conducted using Grid Search and 
Random Search to identify the optimal settings for each algorithm. 
The performance of the models was evaluated using the validation 
set, with metrics such as Mean Squared Error (MSE) and R² score 
employed to assess accuracy and goodness-of-fit. (Mahesh,2020). 
 
2.5 Model Optimization 
Further optimization was achieved through k-fold cross-validation, 
which was utilized to mitigate overfitting and ensure the robustness 
of the models. This process involved dividing the training set into k 
subsets, training the model on k-1 subsets, and validating it on the 
remaining subset.  
The optimized model was tested on the independent test 
(experimental data) set to evaluate its generalization capability. 
Performance metrics, including MSE and R² score, were calculated 
and compared to those obtained from the validation phase. 
Statistical analyses were conducted to determine the significance 
of the results and to validate the model's predictive accuracy 
(Ruder,2016). 
 
RESULTS AND DISCUSSION  
 
Table 1: Colony Morphology of the isolated organism 

 
 
Table 2: Biochemical Tests for the identification of Escherichia coli 

 
 
Indole Test was Positive, indicated by the presence of a pink color. 
Methyl red test also indicated a positive result shown by the 
development of a red color. Whereas, Voges-Proskauer test, 
shows a negative result, as there was no color change. The citrate 
test, also shows a negative result, with no observable color change. 
The positive results for the Indole and Methyl Red tests further 
confirmed the presence of E. coli, as these are standard tests for this 
organism. The negative results for the Voges-Proskauer and Citrate 
tests also align with its expected biochemical profile.  
 
2.6 Confirmation on EMB Agar 
Culture on EMB agar yielded small circular colonies with a greenish 
metallic sheen, confirming the presence of E. coli. The observation 
of a greenish metallic sheen on EMB agar solidifies the identification, 
as this is characteristic of E. coli colonies due to their lactose 
fermentation ability. 
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Table 3: Count of E. coli at different Temperature 

 
 
Table 4: Count of E. coli at different pH 

 
 
The CFU data supports the findings regarding temperature and pH. 
At 35°C and neutral pH, the  CFU count was (7.74 x 10 5) and (7.99 
x 10 5) respectively which are the highest, reaffirming the optimal 
conditions for E. coli growth. Lower CFU values at 25°C, 50°C, and 
extreme pH values reflect suboptimal conditions where growth is 
either slowed or inhibited. 
 
At 4°C, no colony was observed, appearing as straight-line. At 
25°C, Moderate growth, with around 30 small colonies, while at 
35°C, Optimal growth observed, with 387 colonies, larger and 
more crowded. At 50°C, Reduced growth, with 100 smaller 
colonies. Growth patterns across the tested temperatures suggest 
that 35°C is the optimal growth temperature for E. coli, which 
corresponds to its natural habitat in the human gut where 
temperatures are approximately the same. At 4°C, growth was 
limited, confirming that E. coli does not thrive under cold conditions. 
Similarly, at 50°C, growth was reduced, indicating thermal stress 
at higher temperatures. This temperature-related behavior aligns 
with the expected physiological limits of mesophilic bacteria (Smith 
et al., 2020). 
 
2.7 Effect of pH on Growth 
At pH 12, no growth was observed, whereas at pH 7 (neutral), 
significant growth with 400 colonies was observed. At pH 2, 
Scanty growth was observed with colonies not countable, 
appearing as a straight line. The impact of pH on E. coli growth 
follows a predictable trend, with neutral pH (pH 7) supporting the 
highest colony growth. This finding highlights the organism's 
preference for neutral environments, which is consistent with its 
natural adaptation to the neutral pH of the human digestive system. 
At extreme pH values, such as pH 2 (acidic) and pH 12 (basic), 
growth was significantly hindered. This indicates that E. coli cannot 
survive in highly acidic or alkaline environments, likely due to 
disruption of its cellular processes 
 

 
Figure 1: Graph illustrating the growth of E. coli under different pH 
range 
 
The pH graph represents a typical bacterial growth curve, which 
signifies the lag phase (period of adaptability), log phase 
(exponential growth phase), the stationary phase (phase of rapid 
decline) and the death phase 
 
Model Performance 
 

 
Figure 2: Mean Squared Error vs. Epochs for Training, Validating 
and Test Sets 
 
This figure illustrates the Mean Squared Error (MSE) for the 
training, validation, and test sets over 21 epochs, highlighting the 
model's learning trajectory. Initially, MSE was high across all 
datasets, but it decreased significantly during the early epochs as 
the model started to grasp the underlying patterns. By the 15th 
epoch, the MSE for both validation and test sets stabilized and 
aligne closely with the training MSE, indicating that the model has 
reached optimal performance and demonstrates effective 
generalization. The absence of divergence among the curves 
suggests that the model avoids overfitting, and early stopping 
contributed to achieving the best performance by the 15th epoch. 
The plot confirms that the model fits the data well and generalizes 
effectively to new, unseen data, with no further improvements 
observed in subsequent epochs. 
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Figure 3: Error Distribution Histogram for Training Validation and 
Test Sets 
 
This displays a histogram of prediction errors across the training, 
validation, and test sets of the neural network model. The 
histogram shows that most errors, particularly in the training set 
(blue), are concentrated around zero, indicating that the model's 
predictions are largely accurate for most data points. Although 
some instances exhibit larger errors, as shown by the bars at non-
zero values, the overall distribution remains similar across the 
validation (green) and test sets (red). This similarity suggests that 
the model generalizes well and does not experience significant 
overfitting. The "Zero Error" line represents the ideal error value of 
zero, which the model approximates closely in most cases, 
demonstrating strong performance. 
 

 
Figure 4: Regression Plot 
 
 

A scatter plot of actual versus predicted values, visualizes how well 
the neural network model's predictions align with actual values. 
Ideally, points should cluster around the 45-degree diagonal line, 
which denotes perfect predictions. While many points are indeed 
close to this line, reflecting accurate predictions, some deviations 
are noticeable, indicating instances where the model's predictions 
diverged significantly from the actual values. These deviations 
highlight opportunities for further refinement of the model. 
The model's overall Root Mean Square Error (RMSE) is 42.9509, 
reflecting the average deviation between predicted and actual 
values. Although a lower RMSE would typically indicate a better fit, 
an RMSE of 42.9509 might be significant depending on the scale 
of the response variable, particularly if the range of values is 
relatively small. On the other hand, the Overall R-squared value of 
0.9880 demonstrates that the model explains 98.80% of the 
variance in the data. This high R-squared value indicates that the 
model captures most of the variability in the actual data, suggesting 
a very strong fit. Overall, these metrics suggest that the model 
performs well with high accuracy in predicting the response 
variables, though there is potential for minor improvements. 
 
Table 5:  Total E. coli count actual and predicted 

 
 

 
Figure 5:  Sensitivity analysis of the ANN prediction 
 
This illustrates the impact of different predictors on the model’s 
responses. Predictor 2 exerts the most significant influence on 
Response 4, as shown by the bright yellow color, indicating that 
even small changes in Predictor 2 can lead to substantial variations 
in Response 4 predictions. Predictor 1 has a moderate effect on 
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Responses 2 and 3, while Predictor 2 also moderately influences 
Responses 3 and 5, as reflected by the greenish-blue shades. In 
contrast, Predictor 3 has minimal impact across all responses, 
represented by the dark blue color, suggesting that changes in this 
predictor have a negligible effect on the model's outputs. This 
analysis provides insights into which predictors are most and least 
influential, helping to guide future model refinement efforts. 
 
Conclusion 
This study successfully developed an Artificial Neural Network 
(ANN) model for predicting Colony Forming Units (CFU) of E. coli 
under varying environmental conditions, particularly temperature 
and pH. The model demonstrated high accuracy, with an R-
squared value of 98%, indicating strong predictive capabilities. The 
predictions closely matched actual CFU values across a range of 
conditions, with minimal deviations observed. The optimal 
temperature for E. coli growth was confirmed at 35°C, where the 
model's predicted CFU of 7.76 × 10⁵ closely aligned with the actual 

value of 7.74 × 10⁵. At non-optimal conditions such as 50°C and 
extreme pH values, the model still performed well, showing its 
robustness across different environmental factors. This suggests 
that the ANN model is a reliable tool for predicting bacterial growth 
in controlled environments, making it useful in applications related 
to microbiology, food safety, and environmental monitoring.. 
 
REFERENCES 
Anon, J. (2004). Vibrio bacteria in coastal waters: Public health 

implications. Journal of Marine Biology, 40(1), 12-16. 
Arnone, A. & Walling, C. (2007). Pathogens in food and water: A 

global perspective. Foodborne Pathogens and Disease, 4(3), 
401-409. https://doi.org/10.1089/fpd.2007.0065 

Bogosian, G., Schabtach, E., & Thiel, P. (1996). Survival of 
Escherichia coli in non-sterile river water. Water Research, 
30(9), 2245-2250. https://doi.org/10.1016/S0043-
1354(96)00015-3 

Buchanan, R. L., & Doyle, M. P. (1997). Foodborne disease and 
pathogen – A risk assessment approach. International 
Journal of Food Microbiology, 36(1-2), 207-220. 
https://doi.org/10.1016/S0168-1605(97)00131-5 

Cahoon, A. B., & Song, H. (2009). Presence of virulence genes in 
Escherichia coli isolated from fresh produce. Food 
Microbiology, 26(3), 271-275. 
https://doi.org/10.1016/j.fm.2008.10.012 

Cebrian, G., García-Yoldi, D., & Morán, A. (2008). Adaptation of 
Escherichia coli to different growth temperatures. 
Microbiology, 154(1), 123-132. 
https://doi.org/10.1099/mic.0.2007/009090-0 

Clermont, O., Gordon, D. M., & Brisse, S. (2000). Multilocus 
sequence typing of enterobacterial species: The case of 
Escherichia coli. Journal of Microbiological Methods, 43(1), 
121-130. https://doi.org/10.1016/S0167-7012(00)00200-6 

Food and Agriculture Organization of the United Nations. (2018). 
Microbial Modeling for Food Safety: Current Trends and 
Future Directions. FAO Food Safety and Quality Series, No. 
14. 

Franz, E., & Van Bruggen, A. H. C. (2008). The role of 
environmental conditions in the survival and growth of 
foodborne pathogens. International Journal of Food 
Microbiology, 124(1), 1-16. 
https://doi.org/10.1016/j.ijfoodmicro.2008.01.013 

Harris, L. J., Kuehn, L. A., & Marth, E. H. (2006). Microbial 

pathogens associated with foodborne illnesses. Food borne 
Pathogens and Disease, 3(3), 259-267. 
https://doi.org/10.1089/fpd.2006.0014 

Hughes, K. T., Ritchie, J. M., & Yang, Y. (2006). Non-O157 Shiga 
toxin-producing Escherichia coli: A review of pathogenicity 
and epidemiology. Clinical  Microbiology Reviews, 19(4), 712-
728. https://doi.org/10.1128/CMR.00032-06 

Jones, B., & Brown, C. (2019). Machine Learning Applications in 
Microbial Growth Modeling: Advances and Challenges. 
Journal of Food Science, 28(4), 567-580. doi:10.1111/12345 

Karapinar, M., & Gönül, A. (1991). Survival of Escherichia coli in 
sterile spring water. Journal of Applied Bacteriology, 71(2), 
152-155. https://doi.org/10.1111/j.1365-
2672.1991.tb02877.x 

Khadil, A. D., & Frank, J. F. (2010). Growth of Escherichia coli 
O157on fresh produce: Impact of storage temperature and 
other factors. Food Microbiology, 27(2), 172-177. 
https://doi.org/10.1016/j.fm.2009.09.005 

Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., & 
Shapiro, C. (1999). Food-related illness and death in the 
United States. Emerging Infectious Diseases, 5(5), 607-625. 
https://doi.org/10.3201/eid0505.990502. 

Mordecai Gana, Patrick Omoregie Isibor, Josephine Iyosomi 
Damisa, Frances Iseghohi, Innocent Ojeba Musa, and 
Oluwafemi Adebayo Oyewole, (2024). Nanoparticles- Based 
Remediation and Environmental Cleanup. Springer Nature 
Switzerland, Chapter (9), Page 161-182. 
DOI:https://doi.org/10.1007/978-3-031-54154-4, ISBN: 978-
3-031-54154-4 

Musa, O. I., Akande, S. A., Ijah, U. J. J., Abioye, O. P., Maude, A. 
M., Samuel J. O., Mustapha, A., Al-Musbahu A., Gusdanis A. 
C. G., (2023). Biofilms communities in the soil: characteristic 
and interactions using mathematical model. Journal 
Research in Microbiology (Elsevier) ISSN 0923-2508. 

Nwachuku, N., & Gerba, C. P. (2008). Environmental persistence 
and health risks of non-O157 Shiga toxin-producing 
Escherichia coli. Journal of Environmental Health, 71(9), 54-
60. 

Prescott, L. M., Harley, J. P., & Klein, D. A. (2005). Microbiology 
(6th ed.). McGraw-Hill. 

Rai, A., & Tripathi, D. (2007). Environmental pathogens and food 
contamination: A global perspective. Food Control, 18(4), 
429-436. https://doi.org/10.1016/j.foodcont.2006.03.005 

Aransiola Sesan Abiodun, S.S. Leh-Togi Zobeashia, A.A. 
Ikhumetse, Ojeba Innocent Musa, O.P Abioye, U.J.J Ijah, 
Nana Raju Maddela (2024). Niger Delta Mangrove 
Ecosystem: Biodiversity, Past and present pollution, threat 
and mitigation. Regional Studies in Marine Sciences 
(Elsevier), 103568, ISSN 2352-4855, 
http://doi.org/10.1016/j.rsma.2024.103568. 

Sela, S., & Fallik, E. (2009). Effects of temperature on the growth 
of foodborne pathogens. Food Microbiology, 26(7), 726-731. 
https://doi.org/10.1016/j.fm.2009.06.002 

Smith, A., Johnson, B., & Garcia, D. (2020). Predictive Modeling of 
Escherichia coli Growth Dynamics in Food Matrices: A 
Review. Food Microbiology, 35(2), 123-135. 
doi:10.1016/j.fm.2020.04.001 

Tarver, D. (2008). Emerging pathogens and food safety. 
Foodborne Pathogens and Disease, 5(1), 1-8. 
https://doi.org/10.1089/fpd.2008.0026 

Theron, J., & Cloete, T. E. (2002). Waterborne infections: A global 

https://dx.doi.org/10.4314/swj.v20i1.54
http://www.scienceworldjournal.org/
https://doi.org/10.1089/fpd.2007.0065
https://doi.org/10.1016/j.fm.2008.10.012
https://doi.org/10.1016/S0167-7012(00)00200-6
https://doi.org/10.1128/CMR.00032-06
https://doi.org/10.3201/eid0505.990502
https://doi.org/10.1016/j.foodcont.2006.03.005


Science World Journal Vol. 20(No 1) 2025   https://dx.doi.org/10.4314/swj.v20i1.54 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Development of a Machine Learning Model for Predicting Escherichia Coli 
Growth Under Different Environmental Conditions 

411 

perspective. Water Research, 36(3), 889-895. 
https://doi.org/10.1016/S0043-1354(01)00232-0 

Thomas, A., Schets, F. M., & Wullings, B. A. (2006). Non-O157 
Shiga toxin-producing Escherichia coli: A potential threat to 
human health. Applied and Environmental Microbiology, 
72(8), 5641-5645. https://doi.org/10.1128/AEM.00353-06 

Warriner, K., & Namvar, A. (2010). The role of non-pathogenic E. 
coli in food safety and public health. Journal of Food Safety, 
30(4), 900-915. https://doi.org/10.1111/j.1745-
4565.2010.00257.x 

Warriner, K. (2011). The biology and pathogenesis of Escherichia 
coli O157:H7: Implications for food safety. Food borne 
Pathogens and Disease, 8(3), 305-311. 
https://doi.org/10.1089/fpd.2010.0582 

Woolhouse, M. E., & Gowtage-Sequeria, S. (2005). Host range and 
emerging and re-emerging pathogens. Emerging Infectious 
Diseases, 11(12), 1842-1847. 
https://doi.org/10.3201/eid1112.050997 

https://dx.doi.org/10.4314/swj.v20i1.54
http://www.scienceworldjournal.org/

