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ABSTRACT 
This study develops a new ordering policy for a Fixed Lifetime 
Inventory System (FLIS) by integrating the three-parameter 
Weibull distribution to model demand distribution. The proposed 
double-order inventory model addresses the challenges of 
perishability, demand uncertainty, and cost optimization by 
determining replenishment decisions based on the remaining 
useful lifetime of inventory items rather than stock levels  A 
sensitivity analysis reveals that the Weibull scale parameter 𝛼  
shows an inverse relationship with total inventory cost in the 
double-order inventory system, while as the shape parameter 𝛽 
increased, it exhibits direction relationship with the cost 
components, though very minimal. On the other hand, smaller 
values of the location parameter 𝜏 caused a slight decrease to 
the cost components, while the Economic Order Quantity (EOQ) 
remain stable.  Under the same demand expectation, the model 
demonstrates superior performance compared to the Poisson 
based double-order policy, by effectively reducing outdate cost 
by 40.5%. Practical implications highlight the importance of 
accurate demand estimation and dynamic inventory control 
systems for industries dealing with perishable goods.  The study 
contributes to inventory management literature by bridging the 
gap between Weibull-distributed demand modeling and double-
order policies, offering a robust framework for optimizing 
perishable inventory systems. 
 
Keywords: Inventory, Perishable, Economic Order Quantity 
(EOQ), Fixed Lifetime Inventory System (FLIS) 
 
INTRODUCTION 
According to a survey report published by the Manufacturers 
Association of Nigeria (MAN) in 2024, the manufacturing sector's 
unsold goods inventory increased from N272 billion in the first 
half of 2024 to N1.24 trillion in the same period the previous year. 
This staggering increase in unsold inventory indicates 
inefficiencies in inventory management and reveals deeper 
economic challenges such as declining consumer purchasing 
power, inflationary pressures, and disruptions in supply chain 
(Okojie & Onyema, 2024). For manufacturing firms, unsold goods 
not only tie up critical working capital but also introduce risks 
associated with storage, deterioration, and outdate, especially 
with perishable or time-sensitive inventory.  
 
A FLIS refers to inventory system that deals with items with a 
defined useful timeframe. Izevbizua and Apanapudor (2019) 
classified inventory into two types – Regular and Non-regular 
FLIS. Those dealing with perishable goods or items with fixed 
lifetime are referred to as regular inventory. Regular inventory 
systems are those where items must be sold, consumed, or used 
within a specific period due to deterioration or outdate. Common 
examples include perishable food items, blood inventory, 
pharmaceuticals, and certain high-technology goods. On the 
other hand, non-regular fixed lifetime inventory system deals with 
reusable items after their useful periods elapsed i.e. after they 
outdate. Examples include: Hotel rooms, seats on a conference 

hall, stadium, seats of an airplane, advert space of a daily 
newspaper. 
The fixed lifetime inventory system has gained a lot of attention 
from researchers over the last decades. This is due to the 
inherent challenges of managing outdating. Izevbizua and 
Apanapudor (2018) observed that while effort has been made by 
several authors to minimize the number of items that outdates in 
an inventory system, shortages has become a problem to deal 
with. The author developed a model that involves two set of order 
𝑦1 𝑎𝑛𝑑 𝑦2 . Both orders have one period away from each other 
and the second order was intended to fill demand that the first 
order was not able to. 
Research on fixed lifetime inventory management often begins 
with single-period models. Nahmias and Pierskalla (1973) 
tackled the problem of computing optimal ordering policies for a 
product with a fixed two-period lifetime under random demand 
conditions. They constructed a one-period model that adjusted 
for outdate and stockout costs. This model was subsequently 
generalized to incorporate ordering and holding costs, providing 
a more comprehensive approach to inventory optimization. 
Nahmias (1976) further developed a critical-number policy, which 
simplified decision-making by approximating optimal ordering 
thresholds. These contributions laid the groundwork for modeling 
and optimizing inventory systems with fixed lifetimes. 
A large body of literature has been written on the control of 
inventory of improving and deteriorating objects. Whitin (1957) 
was the first to study items that were kept in the fashion industry 
for a certain amount of time. After that, Ghare and Schrade 
(1963) started the inventory study by creating a basic EOQ model 
with a fixed deterioration rate. Covert and Philip (1973) then 
expanded this model to include a variable deterioration rate. The 
deteriorating function was assumed to be a two-parameter 
Weibull distribution. The work was expanded by Misra (1975), 
who included a finite replacement rate. A variant form of the EOQ 
model is examined in Sarker et al. (1997), taking level 
dependence into account when deterioration is present.  
In a very distinct study on an EOQ model, Samanta (2017) 
proposed a fuzzy inventory model with two parameters for 
decaying products that adhered to Weibull rule. The creation of 
a fuzzy-type inventory model is critically examined, and the 
corresponding linear demand rate function is subject to a fully 
backlogged two-parameter Weibull deterioration law.  Gwanda 
(2019) created an EOQ model that took into account both 
improving and degrading products, where the holding costs and 
demand rate are exponentially growing and linear in time, 
respectively. An ordering policy that works well for improving 
retail items with unrestricted money and a steady demand rate 
was examined by Ahmad & Hudu (2019). The goal of the optimal 
control study was to determine the best replenishment cycle time 
while minimizing the total variable cost, or 𝑇𝑣𝑐. Apanapudor and 
Olowu (2023) used two products with similar usage patterns and 
shelf lives to develop a model for the total cost function for a fixed 
lifetime inventory system. The number of outdates decreased as 
observed from the model's simulation. Izevbizua and Mukoro 
(2019) presented a model in which two orders enter the inventory 
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system one period apart. In their paper, they emphasized that 
any demand where the first order is unable to meet is intended 
to be me by the second order. An economic order quantity (EOQ) 
model for two competitive items with stock-dependent inventory 
and an oscillating demand function was put forth by Mondal 
(2023). The model's related dynamical system was developed, 
its equilibrium points identified, and its stability characteristics 
examined.  
More recently, Gupta et al. (2025) developed an Economic 
Production Quantity (EPQ) model that incorporates Weibull-
distributed progressive degradation and dynamic holding costs 
under varying demand patterns. Their work highlights the utility 
of Maclaurin series approximations to solve differential 
equations.  Kaliraman (2019) and Ibina et al. (2023) have 
expanded the scope of Weibull-based models by incorporating 
partial backlogging and inventory-dependent demand. 
Kaliraman’s work focuses on a three-parameter Weibull 
deterioration model with time-dependent demand, while Ibina et 
al. introduce a modified three-parameter Weibull distribution to 
capture the effects of both obsolete and future deteriorating 
items. Their findings underscore the importance of stock-
dependent demand in retail settings, where inventory levels 
influence consumer purchasing behavior. These models provide 
actionable insights for businesses aiming to balance 
replenishment strategies with deteriorating inventory.   
The integration of time-varying demand and Weibull deterioration 
has also been a focal point. Ghosh and Chaudhuri (2004) and 
Singh et al. (2024) examined quadratic demand functions, which 
are particularly suited for seasonal or fashion products. Their 
models demonstrate how Weibull distribution parameters can be 
tailored to reflect real-world deterioration rates, offering a more 
accurate representation of inventory dynamics. Similarly, Mandal 
(2024) introduced stochastic demand into the framework, 
emphasizing the need for adaptive inventory policies in uncertain 
environments. These studies collectively highlight the versatility 
of Weibull distribution in addressing diverse market scenarios.   
Recent works have also explored the interplay between pricing 
and inventory control in supply chains. Barman et al. (2023) 
proposed a bi-objective optimization model for a two-layer supply 
chain, incorporating Weibull deterioration and price-sensitive 
demand. Their application of the NSGA-II algorithm provides a 
novel approach to decentralized decision-making, offering 
practical solutions for collaborative pricing and inventory 
scheduling. This research bridges a critical gap in the literature 
by addressing the competitive dynamics of deteriorating 
inventory systems.   
Moreover, Cholodowicz and Orlowski (2021) advanced the field 
by developing a hybrid discrete-time perishable inventory model 
using Weibull distribution. Their work, grounded in system 
dynamics, incorporates real-world data to validate the model’s 
accuracy, particularly for perishable goods with random lifetimes. 
This study emphasizes the importance of issuing policies (FIFO, 
LIFO) and their impact on inventory performance, providing a 
comprehensive tool for managing perishable products under 
time-varying demand.   
Expanding on these developments, Apanapudor and Olowu 

(2023) introduced a novel approach by modeling two products 
with similar usage patterns and shelf lives to derive a total cost 
function for fixed-lifetime inventory systems. Their simulations 
demonstrated a reduction in outdates, highlighting the model’s 
effectiveness in minimizing waste for perishable goods. Similarly, 
in a significant contribution, Zubairu and Gwanda (2024) 
proposed an EOQ model incorporating Weibull amelioration, 
where inventory items improve in utility over time.  
In summary, recent developments in Weibull-based inventory 
models have significantly enhanced the ability to address 
complex real-world challenges. From dynamic demand and 
partial backlogging to a supply chain coordination, stochastic 
environments, and ameliorating inventories, these models offer 
sophisticated tools for optimizing inventory decisions. The 
continued refinement of these approaches ensures their 
relevance across industries, paving the way for future research 
in this evolving domain. 
The present study contributes to this body of literature by 
proposing a double-order inventory model that explicitly 
incorporates Weibull-distributed demand. The model offers a 
balanced approach to perishable inventory management by 
addressing both shortages and outdates, filling a gap in existing 
frameworks that often prioritize one aspect at the expense of the 
other. Furthermore, the emphasis on uncertainty of demand 
aligns with the recent calls for more dynamic and adaptable 
inventory systems, positioning this work at the forefront of 
contemporary research. 
 
MODEL DESCRIPTION/ASSUMPTIONS 
The proposed model is based on the following assumptions.  
(1) Time is separated into discrete periods. The length of 
a period is arbitrary but constant. 
(2) The placement of new order is 
dependent on the useful lifetime remaining on the inventory at 
hand. In this work, new orders are placed when there is only one 
useful period left on the inventory at hand or when demand 
depletes the inventory at hand. 
(3) The arrival of a new order is instantaneous 
(4) All items in the new order have the same age and their 
ages are assumed to start from age zero as they enter the 
inventory system. Table 3.1 shows the orders and age 
distribution for a product with 𝑚 useful lifetime. 
(5)  The lead time is fixed. 
(6) The cycle length begins from when the first order was 
received and ends when the second order enters the inventory 
system. 
(7) Demand 𝐷 ≥ 0  
(8) Demand in subsequent periods follows the three 

parameter Weibull distribution (𝐷) = 1 − 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

 . 
(9) The issuing policy is "first in, first out" (FIFO).  
(10) Units in the inventory system expire after period 𝑚 
(11) Demand in each period is not known but assumed to 
be independent and identically distributed random variable 
variables 𝐷1, 𝐷2, … with known distribution. 
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Table 1: Order and distribution for a product with 𝑚 lifetime. 

𝑂𝑟𝑑𝑒𝑟 𝑇1 𝑇2 𝑇3 ⋯ 𝑇𝑚−1 𝑇𝑚 𝑇𝑚+1 𝑇𝑚+2 

1 
(𝑉 − 𝑑1)+ 

𝑎𝑔𝑒 1 

(𝑉

− ∑ 𝑑𝑖

2

𝑖=1

)

+

 

𝑎𝑔𝑒 2 

(𝑉

− ∑ 𝑑𝑖

3

𝑖=1

)

+

 

𝑎𝑔𝑒 3 

⋯ 

(𝑦

− ∑ 𝑑𝑖

𝑚−1

𝑖=1

)

+

 

𝑎𝑔𝑒 𝑚 − 1 

𝑈 − 𝑑𝑚 

𝑎𝑔𝑒 𝑚 
  

2     
(𝑉 − 𝑑1)+ 

𝑎𝑔𝑒 1 

(𝑦

− ∑ 𝑑𝑖

2

𝑖=1

)

+

 

𝑎𝑔𝑒 2 

⋯ (𝑦 − ∑ 𝑑𝑖

𝑚−1

𝑖=1

)

+

 

𝑎𝑔𝑒 𝑚 − 1 

3        
𝑦  

Age 0 

 
Notations: 
(1) 𝑈 = the amount of items in inventory that has one 

useful period left i.e., 𝑈 = 𝑉 − ∑ 𝐷𝑖
𝑚−1
𝑖=1  

(2) 𝑉 = Amount of new items entering the inventory at 
age 0. 
(3) 𝑚 = the lifetime of inventory items, 𝑚 ∈ ℤ+ 

(4) 𝐾 = Constant ordering cost per unit 

(5) 𝐻𝑐= holding cost per unit item 

(6) 𝑆𝑐 = shortage cost per unit item 

(7) 𝜃 = outdate cost per unit item 

(8) 𝐷 = Demand in each period, 𝐷 ≥ 0. 
(9) 𝐷𝑚 = Demand at period 𝑚. 
 
Derivation of Cost Components 
Shortage Cost 
Shortages occur when demand exceeds current inventory. In our 
model, we have assumed that excess demand is lost and is 
charged as a cost against the inventory manager.  
The expected shortage per order is given by 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡

= ∫ [𝐷

∞

𝑢+𝑣

− (𝑈 + 𝑉)]𝑓(𝐷)𝑑𝐷               (1) 

with 𝑆𝑐 being the shortage cost per unit item, we have the 
shortage cost as 

𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 = 𝑆𝑐 ∫ [𝐷

∞

𝑢+𝑣

− (𝑈 + 𝑉)]𝑓(𝐷)𝑑𝐷           (2) 
 
Outdate Cost 
Outdate period refers to the time in which current inventory items 
are no longer useful and cannot not satisfies demand. Outdate 
usually occur when demand at the last useful period of items is 
less than the number of items in stock. 
The expected outdate cost is given as 
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑂𝑢𝑡𝑑𝑎𝑡𝑒

= ∫(𝑈 − 𝐷)𝑓(𝐷)𝑑𝐷                      (3)

𝑈

0

 

With 𝜃 being the outdate cost per unit, the outdate cost is given 
as 

𝑂𝑢𝑡𝑑𝑎𝑡𝑒 𝐶𝑜𝑠𝑡 = 𝜃 ∫(𝑈 − 𝐷)𝑓(𝐷)𝑑𝐷                         (4)

𝑈

0

 

Holding cost 

The holding cost consists of the cost incurred in holding the items 
from order 1 in their last useful period 𝑚 and the new items from 
order 2 in their first period in stock. 
With 𝐻𝑐 > 0 being the holding cost per unit item, the holding 
cost is given as 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 = 𝐻𝑐 ∫ (𝑈 + 𝑉 − 𝐷)𝑓(𝐷)𝑑𝐷              (5)

𝑈+𝑉

0

 

Ordering cost  
For𝐾𝑐  being the ordering cost per unit item, the ordering cost is 
given as 
𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 = 𝐾𝑐

× 𝑉                                                    (6) 

For 𝑓(𝐷) = 1 − 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

, 

𝑇𝐶(𝑈, 𝑉) =  𝐾𝑐𝑉 + 𝐻𝑐 ∫ (𝑈 + 𝑉 − 𝐷) (1 − 𝑒−(
𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷

𝑈+𝑉

0

+ 𝑆𝑐 ∫ [𝐷 − (𝑈 + 𝑉)] (1

∞

𝑈+𝑉

− 𝑒−(
𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷

+ 𝜃 ∫(𝑈 − 𝐷) (1 − 𝑒−(
𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷

𝑈

0

       (7) 

where 𝐷 ≥ 𝜏, 𝛼 > 0, 𝛽 > 0 𝑎𝑛𝑑 𝜏 ≥ 0. Let 

         𝐼1 = ∫ (𝑈 + 𝑉 − 𝐷) (1 − 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

)

𝑈+𝑉

0

     

               𝐼2 =  ∫ [𝐷 − (𝑈 + 𝑉)] (1

∞

𝑈+𝑉

− 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷 , and 

𝐼3 = ∫(𝑈 − 𝐷) (1 − 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷

𝑈

0

  

Thus, The total inventory cost 
𝑇𝐶(𝑈, 𝑉) =  𝐾𝑐𝑉 + 𝐻𝑐𝐼1 + 𝑆𝑐𝐼2 +  𝜃𝐼3                       (8) 

𝐸𝑂𝑄 (𝑉∗) is obtain by minimizing (7) with respect to 𝑉. 
 
Partial Backlogging 
Suppose a fraction 𝛾 (where 0 < 𝛾 < 1) of unmet demand is 
backlogged and fulfilled in future periods with backlogging cost 
𝐵𝑐per unit. Let  remaining fraction 1 − 𝛾 of unmet demand is lost 

with a lost sales cost 𝐿𝑐 per unit. Then, to account for partial 
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backlogging, we modify the shortage cost in (2). For 
backlogging cost, we have  

𝐵𝑐𝛾 ∫ [𝐷 − (𝑈 + 𝑉)] (1 − 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷

∞

𝑈+𝑉

       (9) 

and for lost sales cost, we have 

𝐿𝑐(1 − 𝛾) ∫ [𝐷 − (𝑈 + 𝑉)] (1

∞

𝑈+𝑉

− 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷                 (10) 

Thus, the modified total cost function 𝑇𝐶𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝑈, 𝑉) 

becomes: 
𝑇𝐶𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝑈, 𝑉) = 𝐾𝑐𝑉 

+ 𝐻𝑐 ∫ (𝑈 + 𝑉 − 𝐷) (1 − 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷

𝑈+𝑉

0

 

+(𝐵𝑐𝛾 + 𝐿𝑐(1 − 𝛾)) ∫ [𝐷 − (𝑈 + 𝑉)] (1

∞

𝑈+𝑉

− 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷 

+𝜃 ∫(𝑈 − 𝐷) (1 − 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷

𝑈

0

                          (11) 

Let 𝑆𝑐
′ = 𝐵𝑐𝛾 + 𝐿𝑐(1 − 𝛾). Then we have 

𝑇𝐶𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝑈, 𝑉) =  𝐾𝑐𝑉  

+ 𝐻𝑐 ∫ (𝑈 + 𝑉 − 𝐷) (1 − 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷

𝑈+𝑉

0

 

+𝑆𝑐
′ ∫ [𝐷 − (𝑈 + 𝑉)] (1 − 𝑒

−(
𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷

∞

𝑈+𝑉

 

+𝜃 ∫(𝑈 − 𝐷) (1 − 𝑒
−(

𝐷−𝜏

𝛼
)

𝛽

) 𝑑𝐷

𝑈

0

                      (12) 

 
NUMERICAL INVESTIGATION 
In this section, we simulate the Weibull double order inventory 
model. 
Taking 𝐾𝑐 = N250 per unit,  𝐻𝑐 = N0.15 per unit 𝑆𝑐 = N5 

per unit, 𝜃 = N5 per unit 𝑈 = 50 units and initial Weibull 

parameters to be 𝜔 = {1,1,0}, we obtain the following results; 
 

 

 
𝑉 = 873.3, 𝐾𝑐𝑉 = 250 × 873.3 = 218,325 

𝐻𝑐𝐼1= N63,936,  𝑆𝑐𝐼2 = N14,707 and 𝜃𝐼3 = N6,005 
Thus, 

𝑇𝐶(𝑈, 𝑉) = N218,325 +  N63,936 + N14,707
+ N6,005  

= N302,973 

 
Let 70% of unmet demand be backlogged with a cost of N1.5 per 
unit, then 𝑆𝑐

′𝐼2 = 7,501 and the total cost function with 
backlogging is 
𝑇𝐶𝑝𝑎𝑟𝑡𝑖𝑎𝑙(50, 873.3)

=  N218,325 +  N63,936 + N7,501
+ N6,005 

= 𝑁295,767 
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Sensitivity Analysis 
 
Table 2 : Variation in scale parameter 𝛼. 𝛽 = 1 and 𝜏 = 0 are fixed.  

𝛼 𝛽 𝜏 EOQ (V) Ordering Cost 
Holding 
Cost 

Shortage 
Cost 

Outdate 
Cost 

Total Cost 

0.01 1 0 873.2718 218318 63932 14718 6248 303216 

0.05 1 0 873.2718 218318 63932 14718 6238 303206 

0.1 1 0 873.2748 218319 63933 14717 6225 303193 

0.25 1 0 873.2791 218320 63899 14715 6188 303122 

0.5 1 0 873.2864 218322 63865 14712 6126 303025 

0.75 1 0 873.2937 218323 63832 14710 6065 302930 

0.9 1 0 873.2981 218325 63811 14708 6029 302873 

1 1 0 873.301 218325 63798 14707 6005 302835 

1.1 1 0 873.3039 218326 63785 14706 5981 302797 

1.25 1 0 873.3083 218327 63764 14704 5945 302741 

1.5 1 0 873.3155 218329 63731 14701 5886 302647 

1.75 1 0 873.3228 218331 63697 14698 5828 302554 

2 1 0 873.3301 218333 63664 14696 5770 302462 

5 1 0 873.4175 218354 63264 14662 5125 301405 

10 1 0 873.5631 218391 62602 14606 4247 299846 

 
Table 3: Variation in shape parameter 𝛽. 𝛼 = 1 and 𝜏 = 0 are fixed.   

𝛼 𝛽 𝜏 EOQ (V) Ordering Cost 
Holding 
Cost 

Shortage 
Cost 

Outdate 
Cost 

Total 
Cost 

1 0.01 0 848.1183 212030 39420 17059 4006 272515 

1 0.05 0 858.2175 214554 45066 15920 4227 279767 

1 0.1 0 866.511 216628 51442 15043 4497 287610 

1 0.25 0 873.5437 218386 61892 14559 5200 300037 

1 0.5 0 873.3301 218333 63665 14696 5809 302502 

1 0.75 0 873.3065 218327 63773 14705 5962 302766 

1 0.9 0 873.3025 218326 63791 14706 5993 302816 

1 1 0 873.301 218325 63798 14707 6005 302835 

1 1.1 0 873.2999 218325 63803 14707 6013 302848 

1 1.25 0 873.299 218325 63807 14708 6021 302860 

1 1.5 0 873.2981 218325 63811 14708 6027 302871 

1 1.75 0 873.2978 218324 63813 14708 6030 302875 

1 2 0 873.2977 218324 63813 14708 6031 302877 

1 5 0 873.2718 218318 63932 14718 6023 302991 

1 10 0 873.2718 218318 63932 14718 6014 302983 
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Table 4: Variation in location parameter 𝜏. 𝛼 = 1 and 𝛽 = 1 are fixed 

𝛼 𝛽 𝜏 EOQ (V) Ordering Cost 
Holding 
Cost 

Shortage 
Cost 

Outdate 
Cost 

Total 
Cost 

1 1 0 873.301 218325 63798 14707 6005 302835 
1 1 0.01 873.3013 218325 63797 14707 6003 302831 
1 1 0.05 873.3025 218326 63791 14706 5992 302815 
1 1 0.1 873.304 218326 63784 14706 5979 302795 
1 1 0.25 873.3092 218327 63760 14704 5935 302726 
1 1 0.5 873.3199 218330 63711 14700 5846 302587 
1 1 0.75 873.3335 218333 63648 14694 5731 302407 
1 1 0.9 873.3435 218336 63602 14691 5647 302276 
1 1 1 873.351 218338 63567 14688 5584 302177 
1 1 1.1 873.3593 218340 63529 14684 5514 302067 
1 1 1.25 873.3735 218343 63463 14679 5395 301881 
1 1 1.5 873.4024 218351 63330 14668 5152 301501 
1 1 1.75 873.4395 218360 63159 14654 4840 301013 
1 1 2 873.4871 218372 62940 14636 4440 300387 
1 1 5 877.5946 219399 43905 13106 -30111 246298 
1 1 10 1514.819 378705 -4983163 797552 -5390234 -9197140 
1 1 15 873.2718 218318 -4.5E+08 14718 -8E+08 -1.3E+09 
1 1 20 873.2718 218318 -6.7E+10 14718 -1.2E+11 -1.9E+11 
1 1 25 873.2718 218318 -1E+13 14718 -1.8E+13 -2.8E+13 
1 1 30 873.2719 218318 -1.5E+15 14718 -2.6E+15 -4.1E+15 

 
 
 
Comparative Analysis with Poison-Based Model 
To validate the effectiveness of the proposed Weibull double-order 
inventory model, a numerical comparison was conducted against 
an existing Poisson-based double-order FLIS model (Izevbizua & 
Apanapudor, 2018).  

Here, 𝑓(𝐷) = 1 − 𝑒−𝜆𝐷 is the Poisson cumulative density 

function (cdf) for the demand 𝐷.   𝜆  is the exponential rate 

parameter given by 𝜆 =
1

𝜇
. The parameter 𝜇 is the Weibull mean 

with the relation 𝜇 = 𝜏 + 𝛼𝛤 (1 +
1

𝛽
). The model’s optimal order 

quantity 𝑉𝑝𝑜𝑖𝑠𝑠𝑜𝑛
∗  is derived by solving its first-order condition 

numerically, using the Newton-Raphson method with the same 
convergence criteria as the Weibull model in (7). Table 3 
summarizes their comparison for large values of the Weibull 
parameters (𝛼 = 15, 𝛽 = 15 and 𝜏 = 10). 

 
Table 5: Comparative of the Weibull and Poisson double order model 

Costs Weibull Model Poisson Model 

EOQ (V) 873.985 unit 873.985 unit 

Ordering cost N218,496 N218,496 

Holding cost N60,682 N60,727 

Shortage cost N14,446 N14,446 

Outdate cost N1,630 N2,737 

Total cost (No backlogging) N295,255 N296,407 

 
DISCUSSION 
Here, we discuss the result obtain from the sensitivity analysis 
conducted on the Weibull parameters and the comparison with the 
Poisson based model as contained in Tables 2, 3, 4 and 5. We 
observed that 
(i) EOQ, ordering cost, holding cost and shortage cost 
have nearly constant values across all values of 𝛼. However, there 

is a consistent inverse relationship between 𝛼 with total inventory 
costs which driven by heightened outdate risks due to demand 
clustering near the inventory expiration period.  
(ii) as 𝛽 increases from 0.01 to 0.5, the EOQ (𝑉) rises 
steadily. This reflects the model’s adaptation to increasing demand 
rates. Beyond 𝛽 = 0.5, EOQ stabilizes around 873 units, 
indicating a saturation point in the system’s  

(iii)  as 𝜏 increases from 0 to 2, EOQ increases slightly and 

total cost decreases graduallyfrom N302,835 to N300,387. 

However, beyond 𝜏 = 2, the model begins to behave erratically. 

This indicates a breakdown in the model’s validity when 𝜏 is too 
large.  
(iv) comparative analysis with the Poisson-based FLIS 
model validated the Weibull framework’s superiority in perishable 
inventory management. Under identical demand expectations, the 
Weibull model reduced outdate costs by 40.5% (N1,630 vs. 
N2,737) while maintaining comparable shortage and holding costs.  
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Conclusion 
The research successfully developed a double-order inventory 
model for FLIS with Weibull-distributed demand. The findings 
highlight the importance of accurately estimating demand 
parameters, particularly the scale and shape parameter, to 
minimize costs in perishable inventory systems. The model's ability 
to balance shortages and outdates while adapting to partial 
backlogging scenarios underscores its practical applicability. By 
leveraging the flexibility of the Weibull distribution, the study 
provides a more realistic framework for inventory decision-making 
compared to traditional static or simplified demand models. The 
results affirm that demand variability significantly influences 
inventory performance, and effective management requires 
dynamic, data-driven policies. 
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