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ABSTRACT:  
This paper presents a finite element-based numerical investigation 
of the dynamic stability and linear vibration characteristics of an 
axially moving functionally graded pipe system. Functionally 
graded materials (FGMs) provide gradual variation in material 
properties, which can influence the structural response under axial 
motion. This study addresses the effects of axial speed and 
material gradation indices on natural frequencies and stability 
boundaries across five vibration modes. Numerical simulations 
show that increasing axial speed and gradation index leads to a 
reduction in natural frequencies with lower vibration modes being 
more sensitive due to combined geometric and material softening 
effects. A flutter instability is observed sharply beyond an axial 
speed of 40 m/s, indicating a dynamic instability threshold 
dependent on system parameters. Thermal stability analysis 
reveals that the system maintains robust resistance to temperature 
variations and changes in gradation indices. Harmonic response 
analysis identifies a dominant resonance peak near 5 Hz, 
characteristic of a lightly damped structure. These findings provide 
valuable guidance for the design and safe operation of advanced 
axially moving pipe systems in applications such as aerospace, 
mechanical conveyance and energy transport where stability and 
vibration control are critical. 
 
Keywords: Functionally Graded Materials (FGM), Dynamic 
Stability, Finite Element Method (FEM), Linear Vibration Analysis, 
axially moving Pipe. 
 
Nomenclature 

( , )w x t  Displacement 

L  Length of the pipe 

( )x  
Density distribution along the 
pipe 

v  Axial velocity 

31e  piezoelectric coupling 
Coefficient 

0T  Initial axial tension 

  Thermal expansion coefficient 

T  Temperature difference 

fK  Foundation stiffness 

A  Sectional Area 

( )I x  
Moment of inertia distribution 

( )E x  
Young’s modulus distribution 

 
INTRODUCTION 

Axially moving pipes are integral to engineering applications across 
aerospace, marine and manufacturing industries where they are 
used for conveying materials such as paper webs, cables and fuel 
lines. These structures often experience complex dynamics due to 
the coupling between axial motion and transverse vibration making 
their stability and vibratory behaviour critical for ensuring 
operational safety and performance. 
Early studies laid the foundation for understanding the dynamics of 
axially moving structures. Paidoussis and Issid (1974) and Wickert 
and Mote (1978) pioneered theoretical analyses of the dynamics 
and stability characteristics of such systems. However, advances 
in material design have reshaped this field. Functionally graded 
materials (FGMs) with spatially tailored mechanical and thermal 
properties (Miyamoto et al., 1999) have demonstrated significant 
benefits for engineering structures subject to thermal and 
mechanical loading. Despite their promise, the application of FGMs 
to axially moving pipes has remained largely underexplored. 
More recent studies have addressed dynamics in the context of 
FGM beams and pipes. Cui and Zhang (2024) analysed buckling 
behaviour of axially loaded FGM beams highlighting the role of the 
gradient index and boundary conditions in determining critical 
loads. Mao et al. (2023) examined the nonlinear dynamics of FGM 
pipes conveying fluid finding that material gradation significantly 
influences natural frequencies and equilibrium configurations. Jing 
et al. (2024) extended this approach to parametric resonance in 
FGM pipes with pulsating flow identifying critical instability regions 
associated with the gradient index and flow velocity. Fu et al. (2024) 
further incorporated gas–liquid two-phase flow effects, revealing 
complex frequency characteristics and critical flow velocities 
shaped by FGM gradation and constraints. 
Additional studies have contributed valuable insights into related 
areas of dynamics. For instance, Shaba et al. (2021) examined 
vibration behaviour of single-walled carbon nanotubes resting on 
Winkler foundations with magnetic effects, providing a foundation 
for understanding the interaction of external fields and nanobeam 
dynamics. Jiya and Shaba (2018) analysed the dynamics of 
Bernoulli–Euler beams resting on Winkler foundations and 
subjected to moving loads, while Jiya et al. (2018) performed a 
dynamic response analysis of fluid-conveying pipes resting on 
Pasternak foundations. These studies deepen the understanding 
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of complex fluid–structure interactions and external constraints but 
largely focus on fluid–structure coupling and nonlinear effects, 
rather than the behaviour of purely axially moving FGM pipes. 
Although prior studies have advanced the understanding of FGM 
beams and fluid–structure dynamics, none have explicitly 
addressed the dynamics of purely axially moving FGM pipes. The 
unique contribution of this work lies in its comprehensive modelling 
of an axially moving pipe composed of FGM material. Unlike prior 
analyses (Paidoussis & Issid, 1974) that considered axial motion 
but ignored material gradation, or FGM studies that incorporated 
fluid–structure interaction (Mao et al., 2023; Jing et al., 2024; Fu et 
al., 2024), this paper develops a robust Finite Element Model 
(FEM) that captures the coupled axial–transverse dynamics of 
FGM pipes. The approach includes centrifugal and Coriolis effects 
induced by axial motion utilizing a six-degree-of-freedom beam 
element that captures axial displacement, transverse deflection 
and rotational inertia. 
The primary objective of this study is to investigate how a 
power-law FGM gradation influences the natural frequencies, 
mode shapes and stability thresholds of axially moving pipes. By 
addressing this gap, the research provides valuable insights for 
designing next-generation axially moving structures (e.g., cables, 
pipelines or aerospace fuel lines) with enhanced stability and 
performance. In doing so, it aims to advance the state of knowledge 
and engineering practice for this critical area of study. 
 
PROBLEM FORMULATION 
The problem under consideration a functionally graded pipe 
moving axially on elastic medium as shown in Figure 1. In 
formulation of the model, the following assumption were made: 

1. The pipe moves axially on a continuous elastic 
foundation 

2. Transverse displacement is assumed to be small so that 
Euler – Bernoulli Beam Theory (EBBT) is applied 

3. Smart Material Effect (Piezoelectric Coupling). 
4. Thermal load is applied 
5. Thin – walled assumption so that shear deformation is 

neglected. 
6. Pipe Gyroscopic (Coriolis) effect considered 
7. Initial axial Tension 
8. No internal fluid flow (pure axial translation)  
9. Simply supported boundary condition 

 
 

 
 
Figure 1: Schematic diagram of Functionally Graded Pipe (FGP) 
moving axially 
 
The Kinetic energy of the pipe includes contributions from 
transverse and axial motion given as: 

( )
0

1

2

L
w w

T x A v dx
t x


  

= + 
  

   

     (1) 

And Potential Energy of the pipe include Bending strains energy, 
axial tension, foundation stiffness, thermal energy and smart 
material energy given below 
Bending strains energy 
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Foundation stiffness 
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Thermal Energy 

( )
2

0

1

2

L
w

V E x A T dx
x

 
 

=   
 

   

     (5) 
Smart material energy 
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Total Potential Energy is 
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By Hamilton’s Principle 
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Integrating by parts and applying boundary condition, the Euler – 
Lagrange equation yield as below 
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Where 
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m c m
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( ) ( )( )
n

m c m

x
I x I I I

L

 
= + −  

 
           (13) 

Initial condition 

( ) ( ),0 ,0 0w x w x= =         (14) 

Boundary condition (Simply – Supported) 

( ) ( )0, , 0w t w L t= =         (15) 

2 2

2 2

0

0, 0

x x L

w w

x x
= =

 
= =

 
       (16) 

 
FINITE ELEMENT FORMULATION 
The Entire pipe is discretized into 2D beam element (Frame). Each 
element is a two – node clamped – clamped (C – C) beam element 
with each having three (3) degree of freedom (DOF). Two are 

longitudinal (axial) displacement, 1 4&u u ; two are transverse 

(lateral) displacement, 
3 6&u u  and the remaining two are 

rotational (angular) displacement, 
2 6&u u  as shown in Figure 

2 below 
 

 
 
Figure 2: A Two – node Beam Element. 
 
The axial displacement uses linear interpolation (Lagrange 2 – 
node) as 
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While transverse and rotational displacement use Hermite cubic 
beam interpolation as
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SOLUTION OF THE MODEL                  
Assume solution of the form 

( )
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Applying Galerkin weak formulation to equation (10) by multiply 

shape function ( )T

iN x and integrate over the domain 

( )0,l  
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After applying integration by part and boundary condition, we have  
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    (26) 
Because the material properties vary with x  analytical integration 

is complicated, so numerical integration is applied using two – point 
Gauss quadrature. MATLAB software is used to assemble all 
element matrices into global matrices and eigenvalue problem for 
free vibration is solved as in this equation: 

     ( )2 0K M j G  − + =         (27) 

 
RESULTS AND DISCUSSIONS 
The eigenvalue problem with free vibration is solved with MATLAB 
software. To simulate the model the following assumed data were 

used from literature. 20L m= ,
108.33 10I −=  ,

112 10mE =  ,
115 10cE =  , 7800m = ,

3200c = , 50T = ,
51 10 −=  ,

4

0 1 10T =  ,

1000fK = ,
31 1e =  

The natural frequencies of the axially moving functionally graded 

pipe system were evaluated for multiple gradation indices and five 
vibration modes under varying material gradation. With 10 
elements. The obtained results for each gradation index are 
presented in Tables 1 to 4 
 

Table 1: Natural frequencies for gradation 0n =  

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

6.0771 7.5294 7.8957 8.0304 8.0925 
6.0575 7.5145 7.8827 8.0183 8.081 
5.9991 7.4701 7.8436 7.982 8.0466 
5.9038 7.3969 7.7789 7.9212 7.9883 
5.7737 7.2958 7.6886 7.8356 7.9053 

 
Table 1 shows that the natural frequencies of all modes decrease 
slightly. For Mode 1, frequency reduces from 6.0771 Hz to 5.7737 
Hz. A similar pattern is observed across all five modes. Increasing 
axial speed leads to a gradual decrease in vibrational frequencies. 
The reduction is more significant in lower modes (Mode 1 and 
Mode 2), while higher modes remain relatively stable. 
 

Table 2: Natural frequencies for gradation 1n =  

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

3.469 3.849 4.2253 4.2957 4.6462 
3.4401 3.8224 4.211 4.2411 4.6251 
3.3555 3.7408 4.1017 4.1402 4.5602 
3.2211 3.5981 3.8611 4.0161 4.4481 
3.0458 3.3806 3.4987 3.8326 4.2836 

 
Compared to Table 1, Table 2 represents a system with a different 
(higher) gradation index. The absolute values of natural 
frequencies are noticeably lower across all modes. For instance, 
Mode 1 reduces from 3.469 Hz to 3.0458 Hz as axial speed 
increases. The consistent reduction across modes reflects the joint 
influence of axial movement and gradation. The lower absolute 
frequencies confirm that increasing gradation index introduces 
more compliant (less stiff) material into the structure, reducing its 
dynamic stiffness. 
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Table 3: Natural frequencies for gradation 2n =  

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

3.0658 3.3621 3.5319 3.7913 3.9444 
3.0279 3.3339 3.5048 3.7658 3.899 
2.9189 3.2468 3.4206 3.6869 3.7601 
2.7482 3.0941 3.2708 3.5182 3.5478 
2.5227 2.8602 3.0434 3.1523 3.3388 

 
In Table 3, a further increase in gradation index results in a more 
compliant structure. The first mode frequency ranges from 3.0658 
Hz to 2.5227 Hz. As before, all higher modes follow the same 
decreasing trend. The relatively larger drop in Mode 1 suggests 
that fundamental modes are most sensitive to both axial motion 
and gradation variations. This behaviour aligns with the theoretical 
understanding of functionally graded structures where material 
softening affects the first few modes more prominently. 
 

Table 4: Natural frequencies for gradation 3n =  

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

2.8868 3.2759 3.3395 3.4679 3.7036 
2.8448 3.246 3.3119 3.4406 3.6777 
2.7249 3.1558 3.2245 3.3552 3.5971 
2.5386 3.0033 3.0649 3.202 3.4542 
2.294 2.7831 2.8103 2.9675 3.108 

 
Table 4 presents the most compliant case (highest gradation index 
among these cases). The Mode 1 frequency ranges from 2.8868 
Hz to 2.2940 Hz, while Mode 5 reduces from 3.7036 Hz to 3.1080 
Hz. The significant reduction in frequencies across all modes 
demonstrates that as the softer constituent dominates the material 
composition, the structural stiffness reduces, leading to significant 
frequency drops even at relatively low system parameters. 
 

 
Figure 3: Graph of frequency against speed and gradation index 
mode 1 
 
Figure 3 illustrates the combined effect of axial speed and 
gradation index on the Mode 1 natural frequency. Both increasing 
axial speed and gradation index lead to a significant reduction in 
natural frequencies primarily due to the combined influence of 
centrifugal softening and reduced material stiffness. The 
nonlinearity in the surface curvature reflects strong coupling 
between the two parameters revealing a progressive approach 
towards instability at high axial speeds and high gradation levels. 

 
Figure 4: Flutter instability curve 
 
Figure 4 presents the flutter instability curve based on the real part 
of the eigenvalues. Stability is maintained up to approximately 40 
m/s, beyond which a rapid increase in the real part signals the 
onset of instability. The system exhibits different instability 
thresholds depending on the gradation index, confirming that 
material softening accelerates instability under higher speed. 
 

 
Figure 5: thermal stability boundary curve 
 
Figure 5 shows that thermal stability remains nearly constant 
around 9999.999 across the tested gradation index (0–6) and 
temperature change (0–100°C). This indicates excellent thermal 
robustness, as the effect of temperature-induced softening is 
negligible within the studied range. Thus, thermal loading does not 
significantly compromise dynamic stability for the FG pipe system 
in this context. 
 

 
Figure 6: Harmonic response curve 
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Figure 6 displays the harmonic response, revealing a dominant 
resonance peak around 5 Hz. The sharpness of the peak suggests 
a lightly damped system, which may experience significant 
vibrational amplitudes under resonant excitation. Such behavior 
underscores the need to consider damping mechanisms in 
practical designs, particularly for operational conditions near the 
natural frequency 
 
Conclusion  
This study presents a comprehensive numerical investigation of the 
dynamics of an axially moving functionally graded (FG) pipe 
yielding critical insights into its vibratory behaviour. The results 
clearly demonstrate that increasing axial speed causes a 
significant and consistent reduction in natural frequencies across 
all vibration modes, with the lower modes being especially 
sensitive. Moreover, higher material gradation indices indicative of 
softer material compositions further depresses the absolute values 
of the natural frequencies especially in the fundamental modes. 
The combined effects of higher gradation and increased axial 
velocity precipitate a sharp decline in natural frequencies and a 
trend towards dynamic instability as evidenced by the rising real 
part of the eigenvalues beyond approximately 40 m/s. 
Interestingly, thermal effects within the examined range have only 
a negligible influence on the dynamics, suggesting robust thermal 
stability across the considered temperatures. The pipe also exhibits 
characteristics akin to a lightly damped structure, as evidenced by 
its distinct resonance peaks at low excitation frequencies. 
While these findings illuminate the interplay between material 
gradation, axial motion, and vibratory behaviour, this study is not 
without its limitations. The analysis is restricted to linear vibration 
theory and excludes nonlinear dynamics and fluid–structure 
interaction effects that arise in many engineering applications. 
Additionally, the thermal investigation was confined to a limited 
range of temperatures and material profiles, leaving scope for 
further exploration of thermal–structural coupling and complex 
FGM compositions. Nonetheless, the results underscore the 
importance of informed design and parameter optimization for 
ensuring the long-term stability and reliability of axially moving FG 
structures. 
 
Recommendations 

1. Careful consideration should be given to selecting the 
FGM gradation index as higher indices reduce natural 
frequencies and may compromise dynamic stability 
especially under higher axial speeds. 

2. Identify and implement critical axial velocity limits for 
different material gradation indices to mitigate the risk of 
dynamic instability and catastrophic failures. 

3. As the system behaves like a lightly damped structure 
employ damping treatments or design interventions to 
shift natural frequencies away from common excitation 
ranges and reduce resonance risk. 

4. Perform in-depth analyses of nonlinear surface 
curvature, complex material compositions and high 
gradation profiles to more accurately define the stability 
boundaries and dynamic behaviour of FGM pipes at 
critical speeds. 

5. Broaden thermal investigations to encompass higher 
temperatures and varied FGM compositions providing a 
more comprehensive understanding of thermal–

structural coupling and its role in long-term performance 
and reliability. 
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